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Note

This report is the second and final report for the project, and is designed to be read in
conjunction with Report 1.0 [13].

1 Project Plan Review

The UK-OGSA evaluation project [1] started on 15 December 2004, and ran for 12
months. Four organisations (Department of Computer Science - UCL, School of
Computer Science - University of Newcastle, National e-Science Centre - Edinburgh
University, London e-Science Centre - Imperial College), and nine project members were
involved, of which four were employed on the project (equivalent to 2.5 FTEs). A
system administrator at UCL was involved part-time for the first few months for the
initial installation of GT3, and a systems administrator at Newcastle was also associated
with the project. A project web site was maintained during the project [1], and project
issues, records and outputs are hosted in a NeSCForge site [2]. The project was managed
from UCL, and regular meetings via Access Grid were conducted.

A minor hiccup occurred early in the project when Globus announced that the Open Grid
Services Infrastructure (OGSI, [15]) was “dead” and that they would terminate
development of GT3, and start work on GT4, which would instead conform to WS-RF
[3]. We produced a position report explaining our reaction to this event, and the expected
impact/changes to the project goal and plans, which was sent to Tony Hey [4].

In practice, no significant change in the project plan/goals was required, as we were
interested in GT3 as an exemplar of a Grid Service Oriented Architecture (SOA) — the
Open Grid Services Architecture (OGSA) [39] - a role which it was still able to fill even
though it would not be developed further, documentation/support were incomplete and
sporadic, and the OGSA specification itself was incomplete and underspecified.



The novel focus of this project was “the evaluation of OGSA across organisational
boundaries”. We desired to gain insight into the issues related to deploying OGSA across
organisational boundaries, from software engineering, middleware, and architectural
perspectives.

To summarise the project goals:

* Cross-organisational

* Grid SOA (i.e. not GT3 specific), and

* Evaluated from s/w engineering, middleware and architecture perspectives (not
end-user science oriented).

The plan for stage one involved the installation, configuration, testing, securing, and re-
testing of basic (core) GT3.2 infrastructure across the 4 test-bed sites. The results for the
first phase were reported in Report 1 [13].

The plan for the second stage included:

* The development of a synthetic benchmark for evaluating the reliability,
performance and scalability of GT3, and for comparing different architectural and
implementation approaches.

* Installation, configuration and testing of extra services such as index and data
movement services.

* Experiments with automated deployment of infrastructure and services on the
test-bed.

A review of these activities follows.

1.1. GTMark — A GT3.2 Benchmark

In order to evaluate GT3 it was apparent that a realistic (in terms of computational
demands and usage) test application was needed. Given the absence of any existing
GT3.2 specific applications, and the effort required to port an existing scientific
application, or older applications/benchmarks, it made sense to develop our own
benchmark: GTMark (a pure Java Globus Toolkit Benchmark).

Performance, scalability and reliability experiments for one version of the benchmark
were conducted across the four sites, and the results are reported in section 3.

We also intended to use the benchmark to evaluate different architectural and design
choices, particularly the differences between exposing science as “1* order” services
(which can participate in all phases of a SOA model including registration, discovery,
and use), and “2™ order” services (which can only be accessed indirectly via “generic
order grid specific services such as the Master Managed Job Factory Service (MMJFS
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[22]). Figure 1 pictures the difference between the “science as 1 or 2™ order services”
approaches (Green triangles represent external service interfaces, the large grey circle is
the container which hosts the implementation (white circles) of some of the services):
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Figure 1 - Science as 1st or 2nd order services

We also wanted to evaluate various non-functional characteristics against each of these
approaches (e.g. deployment). However, we determined that the use of the benchmark
introduced some artificial artefacts which would inevitably skew the results. For
example, because the benchmark is pure Java code, scalability and response times of the
2" order implementation is bound to be poor due to having to start a JVM for each
service invocation, compared with 1* order approach which enables multiple service
instances to be hosted in the one JVM. Running a few JVMs should not be an intrinsic
problem, but the total resource usage (such as memory) will be higher, and the start-up
time for each new JVM will be slower (the server JVM engine is not optimised for start-
up time, but is needed to ensure adequate performance). However, running a larger
number of JVMs would be substantially more un-scalable [E.g. 40].

Also, due to bugs in various parts of the infrastructure some features that were critical for
the comparison of approaches were known to be defective. For example, bugs in both
Axis and GT3 meant that SOAP attachments do not work correctly. Finally, the
implementation of the two versions of the benchmark was not completed in the time-
frame and with the resources available. The intrinsic difficulties of coordinating and
managing distributed activities, such as development and deployment, across remote



project member sites, contributed to this. Section 2 contains more details of the
benchmark.

1.2 Testing other services

Good progress was made testing index services and data transfer. However, in the long
run these proved to be problematic to set up in the time-frame available, and an
exhaustive evaluation of these services using the benchmark to compare their utility for
each of the architectural choices was not conducted. Instead, an analytic evaluation
based on our experiences is reported in sections 5 and 6.

1.3 Deployment Experiments

Specification, development, deployment and evaluation of a scalable automated approach
for deploying GT3 infrastructure and services was planned. A UCL MSc student project
resulted in the development and demonstration of an automated framework for GT3.2,
Tomcat, and Grid services deployment, in a laboratory setting. However, transferring the
solution out of the laboratory to cross-organisational deployment with firewalls, security,
and deploying secured infrastructure and services, encountered a number of problems
which could not be resolved in the time-frame of the project. More details can be found
in section 4.

1.4 Other activities

Although not explicitly planned, we also expect to publish papers comparing the use of
1 and 2™ order services in GT3 (analytically, using a “mechanisms” or “quality attribute
design primitives” approach, for example see [11]), and an investigation into debugging
service oriented architectures (including a novel approach resulting from combining
deployment context and infrastructure with exception detection, diagnosis and
rectification — see [12]). Sections 7 and 8 introduce some of these areas, including
further thoughts on security.

2 GTMark — GT3.2 benchmark details

Discussions were held with NASA about using their GT2 benchmark, but the effort to
port it to GT3.2 and support it exceeded our resources [5]. SciMark2.0 [6] was chosen as
the server side load for a new GT3.2 benchmark, as it could be parameterised to run
different algorithms, and use more or less CPU cycles and memory. It was modified to
provide a suitable load for measuring throughput, and implemented as a “1* order”
GT3.2 Grid Service — that is, a callable service which has a unique WSDL/GWSDL
description. The client side work load and metrics gathering capability was based on an



Java 2 Platform Enterprise Edition (J2EE) benchmark, Stock-Online [7], which was
extended to model the execution of concurrent work-flow instances utilising different
tasks.

The benchmark is customisable at run time in a number of different ways. The nodes that
the benchmark service is deployed on to can be enumerated, or discovered via a
directory/index service. Tests can be run for a fixed period of time, or until a steady state
for a minimum period of time has been achieved for a specified metric, and can be run
with a given concurrency (equivalent to the number of concurrent work-flow instances),
or a minimum, maximum and increment to repeat the test for different concurrencies. It
can be configured to measure task throughput, or work-flow response times/throughput
(where a complete sequence of work flow tasks must be completed). Fixed, or variable
task loads can also be chosen to measure the impact on load balancing of heterogeneous
tasks and servers, and the number of tasks per work-flow instance specified. For
simplicity (and because we wanted to measure scalability in the simplest possible way)
the current version assumes a strict pipeline work-flow, but more complex flows are
possible within the same framework (e.g. allowing synchronisation points, and with
variable topologies and fan-outs/ins etc).

A number of different load-balancing strategies can be selected, but the basic one is
round-robin, which needs to be initialised with the relative weights for the capacity of
each server (the relative number of service instances per server is proportional to the
server weight). Approaches to provide dynamic load-balancing and server resource
monitoring options were also investigated. Different data movement (e.g. file size,
frequency and source/targets) and service state behaviour scenarios can be selected,
including: stateless service invocation (data must be sent to and from the client or file
server machine to the server where each service instance will invoked each time a new
service is called); stateful (data only needs to be moved from one server to another when
a new server is used for the next service instance invocation, and for first and last service
instance). Fine grain service instance lifetime management is also possible allowing the
benchmark to be used to test scalability for different service usage/lifetime and resource
usage scenarios (e.g. when instances are created/destroyed, reuse of stateful service
instances in same work-flow, etc).

Alternative security requirements and models can be set, and the way that exceptions
(due to security violations or other causes) are handled can be varied. In the current
version there is limited monitoring of the state/progress of the services/tasks (polling only
at present, polling interval can be set). Metrics gathered during benchmark runs include
average/min/max per call and per work-flow response times, average/min/max
throughput (calls per unit time), reliability (number of service calls failures and
exceptions), and time take for instance creation, work flow execution, and instance
destruction.

Further work would be required to the benchmark to ensure that it the benchmark is
robust, all options (and combinations of options) adequately tested, and documented



sufficiently to enable it to be used outside the test-bed context, and to extend it to target
GT4 or other Grid/Web Service infrastructures.

Some other Grid or OGSA benchmarking efforts that we are aware of include [8-10].

3 Performance, scalability, and reliability

3.1 Performance and Scalability

Test background

Since publication of Report 1, we replaced the “test” container on all sites with Tomcat,

and conducted performance tests. Some of these results have been reported in [14]. The
installation of Tomcat was relatively straightforward, except at one site where a number

of attempts were made before it was reliable enough for repeated load testing.

A basic version of the benchmark was used, with computational load only (no data
transfer apart from parameter values used for each call, and the results sent back to the
client amounting to a few bytes of data only). The tests were carried out across the four
test-bed machines, all with the Tomcat container and the JVM server engine with  GB
Ram available for the heap. A fifth machine was used to run the client program. The
benchmark service was a “1% order” service, and was manually deployed to each
machine. Each service call had exactly the same computational load, and each client
thread made multiple calls to simulate the execution of different work-flow instances.

Load-balancing was handled on the client-side using a round-robin algorithm based on a
weighted measured throughput for each server, by initially creating the weighted number
of factories per server and using a different one for each new call (otherwise it is likely
that a given work-flow/thread will be constantly bound to service instances on the
slowest machine which substantially reduces the throughput).

In practice (with data movement, and stateful services) it is desirable to ensure that
invocations use the same server ,and rely on service state or local data
caching/movement.

A round-robin static load balancer is relatively primitive, and could be improved on with
a dynamic load-balancing algorithm, based on measured response time for each factory
(or node) as, in practice, calls may take different times resulting in some machines being
more heavily loaded than others, exacerbated by other loads running on the same
machines, and differences in speed and capacity of machines, saturation of subnets, etc.
However, more thought needed to be given to the problem of dynamically and accurately
measuring current load, and predicting future capacity.



Moreover, load balancing should really be done server side, for each “cluster” of
machines (although in our case we did not have clusters available), and providing a single
entry point to each cluster. This still leaves the problem of how to correctly load-balance
across multiple “clusters” (i.e. global load-balancing). There does not seem to be a
default 3" party GT3 load-balancer. Condor does resource and job scheduling which is a
different problem (and reveals something of the difference between Grid and SOA
approaches: Grid is application/job oriented, and SOA is service oriented). There are
also problems trying to schedule/balance jobs of different types on the same machines
(e.g. long running batch jobs, and short running services).

Load-balancing and retry/redirection for failures is also an issue. The client should
ideally not have to attempt to interpret and handle errors, or load balancing strategies,
related to resource saturation or the unavailability of containers/machines.

Test results

During benchmark runs we measured throughput (scalability), performance (average
response time for service calls), and reliability (number and type of exceptions).

The impact of security was minimal (unmeasurable) for the two major approaches
provided by GT3.2 (encryption and signing). This is somewhat different to what we
noticed initially using the test containers on all sites. It is likely that the test-container
imposes a higher overhead for the security mechanism.

The fastest response time was on the test-bed machine at Edinburgh (3.6s) and the
slowest was UCL/Newcastle (26s). As server loads, and therefore response times,
increased, client-side timeouts occurred, causing problems as the default client side
exception handling naively retried the call — depending on what the problem is this isn’t
always the best thing to do with stateful services. In fact, calling the same instance a
second time was found to kill the container. It immediately started consuming 100% of
the CPU and the service instance could not be deleted. The only cure was to restart the
container.

A maximum of 95% of predicted maximum throughput was achieved on four machines.
This, along with the slope of the throughput graphs, indicates good scalability. The
reason that 100% capacity wasn’t reached could be due to imperfect load-balancing.

In the original experiments we achieved comparable throughput by excluding the slowest
machine. Basically the slowest machines do little to increase the throughput, and in fact
are likely to impose a penalty due to the substantially longer per task response times they
introduce. We did not try removing them for the final tests however.

In 3 out of 4 cases, the Tomcat and Test containers gave similar performance. However,
on the slowest node (Newcastle), Tomcat was 67% faster than the test container. This
was a peculiar result and even after spending considerable time reinstalling parts of the
infrastructure, and examining and comparing configurations, JVM settings, etc, no



satisfactory explanation was obtained (although one suspicion is that the test container
experiences a bottleneck due to shortage of a critical resource on the relatively powerless
machine).

On long runs consistently reliable throughput was achieved over a period of hours. For
example approx 4,080 calls/hour over 12 hours, delivering a total of 48,000 calls (or
98,000 calls/day).

By comparison, there was minimal (unmeasurable) overhead of using the GT3/Java
version of the benchmark compared to a comparable standalone pure-Java version of the
benchmark using local calls only.

One of the machines was a two CPU, hyperthread machine, and enabled the benchmark
to perform close to the capacity of a four CPU machine, although the scalability was not
perfect (both in terms of increasing load, and in the saturated part of the curve). One of
the other machines also had hyperthreading, but this had not been enabled due to the
inability of the Grid job scheduler associated with another installation of Globus (used by
another project on the same machine) to utilise hyperthreads.

The following graphs show average response time (ART) in seconds (s) for increasing

load (number of client side threads, equivalent to number of server side service instances)
(Figure 2), and Throughput (Calls Per Minute — CPM) for increasing load (Figure 3).

200 -

150 —+—UCL (4 cpu Sun)

Newcastle (2 cpu Intel)
100 » Imperial (2 cpu Intel)
/ Edinburgh (4 hyperthread cpu Intel)
50 %Al
‘1«/ /_/_/f%//

0 T T T T T T 1
0 10 20 30 40 50 60 70

Figure 2 Average Response Time (ART) with increasing load



80

70 //,,7,,;:"”"”’Z:””t

60 —— UCL (4 cpu Sun)

50 Newcastle (2 cpu Intel)
= / Imperial (2 cpu intel)
% 40 Edinburgh (4 hyperthread cpu Intel)

30 —— All (12 cpus)

20 - -— —-#— — Theoretical Maximum

10 / —s

0 T T T 1
0 20 40 60 80
Threads

Figure 3 Throughput (CPM) with increasing load

Instance creation overhead

We also observed that the time taken to create instances using a factory service, and the
first call to a new service instance, is slow by comparison to subsequent calls to the same
instance (between 1 and 10 seconds slower). This is because there is substantial overhead
associated with service creation (e.g. allocating resources), obtaining a grid service
handle (GSH in OGSI terminology [15]), and resolving it to a Grid Service Reference
(GSR). The support for stateful service instances in GT3 provides an opportunity to
minimise service invocation response times compared with a purely stateless service
approach, and therefore shares features of Object technologies such as Enterprise Java
Beans. Although, it is likely that the EJB specification and implementations have better
support for container management of statefulness, and for handling data consistency and
concurrent access to “identical” instances using techniques such as optimistic
concurrency or locking.

Scalability of service creation and destruction

In some tests we noticed that instance creation and destruction was not as scalable as
expected. This is possibly because instance creation/destruction is being serialised at
some point. In some tests exceptions were also noted, associated with instance
destruction. This issue should be investigated further, as it could cause a problem in
highly concurrent applications attempting to initially create a large numbers of service
instances, and during the finalisation/cleanup phase when they all need to be destroyed
cleanly.

3.2 Reliability and Availability

During the first round of preliminary tests using the Test container on all nodes, some
runs repeatedly experienced exceptions at a rate of about 1 in 300 calls (a reliability of
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0.9967%). However, we could not repeat these results with Tomcat installed, and believe
that the test container was unable to service the incoming HTTP requests adequately.
While we believe that GT3.2 with Tomcat now provides high reliability for at least our
standard test, we were made aware of multiple possible causes of container failure, and
reminded of the problems associated with handling remote exceptions.

For example, it is possible for clients to kill the container, as the container relies on
clients being well behaved. A single container may be workable for single users, but with
multiple users and applications hosted in the same container the chance of something
going wrong increases dramatically.

Containers can be killed by invoking the same method on an instance more than once, for
example, after an exception. We assume this is due to a problem with the thread-safeness
of stateful instances. Part of the solution is knowing where/when a fault occurred, and
what the correct response is. In this case the best approach (assuming no critical state is
retained by services across invocations) is to try and kill the instance, and then create
another and call it again. If service state is intended to persist across invocations, and if
the state has been previously persisted in a database, then it may be possible to kill the
instance, and the instance can be recreated and the state re-hydrated.

Containers can also be killed by consuming and saturating their resources. For example,
by creating thousands of instances, and invoking them with high concurrency (or even
just a few and calling them sequentially if they use sufficient memory). This is relatively
easy to do, as numerous objects can be created in a container successfully, but then cause
failures once methods on them are invoked due to lazy memory allocation. Eventually the
container will saturate (cpu usage), or the memory capacity will be exceeded causing
numerous exceptions when services are used or new services created (if you’re lucky), or
complete container failure (if you’re unlucky). Similar problems have also been reported
in [37].

Isolation of users, applications, and VOs through the use of more sophisticated security
models (e.g. allowing role delegation), and sand-boxing of run-time environments, are
likely to be important requirements in production grids. One solution is to isolate users
and applications in different containers. This will have scalability limitations eventually,
but is a well known enterprise solution (e.g. Borland and Fujitsu J2EE containers can be
replicated on the same machine to provide customisable run-time environments, and
increase reliability and scalability).

Another approach is to enable containers to manage their own run-time resource usage,
by service instance activation/passivation, so that they do not run out of resources
catastrophically. For example, J2EE Entity Beans can be transparently (from the client
perspective) passivated/activated at any time, even during a transaction. This mechanism
could be used to allow containers to provide a fine-grain (per instance) control over
resources, rather than relying entirely on the good behaviour of clients, or external
job/resource schedulers, thereby combining policy and finer grained resource handling at
the container level. For example, long running jobs could be passivated allowing short-
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term jobs to use container resources for a short period of time, and then reactivating the
previously passivated jobs. Currently some grid job schedulers exclude short-term jobs
from gaining resources if long-term jobs are already running (which can cause serious
QoS isues, and can even be used to “cheat” to gain resources in advance of when they are
actually needed.

Security and availability are often mutually exclusive. For example, due to problems
with the host certificate expiration, notification, and renewal process, and the inability of
the process to allow an overlap in the lifetime of certificates, one of the test-bed host
machines was unavailable for approximately a week during a critical phase of the test
activities. More attention needs to be paid to the management of certificates, in particular
the process and infrastructure support for managing the whole lifecycle of certificates.

4 Deployment

During the project we elicited deployment requirements and investigated the use of one
technology for an automated approach to the deployment of Grid infrastructure and
services across organisations. A short paper on “Grid Deployment Scope and
Requirements” was written ([16]), and used as an input to an MSc project at UCL to
develop a trial solution in a laboratory setting.

We planned to investigate automated Grid deployment in the following phases:

*  Within the lab

* Across sites

* Across firewalls (using port 80 only)

* Securely (secure deployment)

* Secured infrastructure (deploying secure infrastructure)
* Grid services (deploying services, and securing them)

The results of these investigations follow.

4.1 Within the laboratory

A UCL MSc student project ran concurrently with the second phase of the OGSA
evaluation project, to investigate the use of SmartFrog (from HP, [17]) to deploy GT3.2
in a laboratory setting. This involved configuring SmartFrog to install and run GT3,
Tomcat, and test grid service across multiple machines in the laboratory, and providing a
management console to drive the process. The evaluation project acted as an end-user
client for determining requirements, scope, and testing. The solution worked well in the
laboratory, but relied on the freedom to install and run a completely new installation of
GT3 and associated supporting software as an unprivileged user on a public file system.
It was also constrained to the deployment of core/container infrastructure only, over a
LAN, with no security (either for deployment, or for the GT3 infrastructure). A GUI was
provided for selecting target machines (based on measured available resources, although
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this was limited to JVM resources), and installing, configuring, starting and stopping
either all the infrastructure, or just services. The progress of the installation (along with
any exceptions) can be monitored, and a partial (just services) or complete
(infrastructure) uninstall also carried out automatically. The deployment process is
scalable and takes no longer for multiple machines compared to one machine.

4.2 Across sites

Upon completion of the MSc project we took delivery of the documentation and software
and attempted to use it to deploy GT3.2 across the OGSA test-bed sites. However, a
number of problems were encountered (some expected, others not) including: inability to
get the project’s version of SmartFrog deployment working correctly; different security
policies at sites — some sites where prepared to open the SmartFrog daemon port with no
security, others required security to be enabled, and others may not have been prepared to
open an extra port even with security enabled (given the nature of the SmartFrog daemon
as an automated deployment infrastructure which can be used to remotely install and run
arbitrary code — potentially a perfect virus propagation mechanism).

We were able to use standard (unmodified) SmartFrog deployment across an unsecured
port in a test situation. But we were unable to get the project’s version of SmartFrog,
their Grid specific deployment files, and their GUI management console all working
together correctly. There were deployment and configuration issues with SmartFrog and
the project software itself which could not be resolved in the time available, even given
the assistance of some of the students and the SmartFrog support group.

Installing the base level, pure Java container (core) part of GT3 is considerably easier
than the complete stack of GT3 packages (as we documented in Report 1.0, [13]), as
some of them are platform specific, and require security to be enabled before they can be
used. Given the reported experiences of cross-platform installation of GT3, automating
remote deployment for the entire GT3 stack will be non-trivial.

4.3 Securely — secure deployment

The second problem was to get SmartFrog working with security. This was not possible
in the available time frame due to issues related to the configuration, use, and debugging
of SmartFrog security, and the SmartFrog support group was not able to resolve the
security issues in time. This illustrates one of the problems of working with open source
software with limited support and documentation, and the difficulties debugging both
security infrastructure, and secured infrastructure. Basically as soon as you turn security
on you loose the ability easily diagnose infrastructure problems when they occur. How
you debug security infrastructure itself is also perplexing.

SmartFrog and Globus use different security models and certificates. In order to deploy
infrastructure securely with SmartFrog an independent, and largely redundant, security
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infrastructure, process, and certificates is required, which introduces yet another layer of

complexity into already complex infrastructure and security environments. Nevertheless,
the SmartFrog security architecture is relatively sophisticated, and includes code signing

and multiple trust domains, and is probably well designed for the deployment domain.

4.4 Across firewalls (using port 80 only)

In theory RMI over HTTP (tunnelling [41]) could be used over port 80 to get through
fire-walls without having to open extra ports. This may have been harder than it looks to
set-up, and would still have required getting SmartFrog security to work to satisfy local
security policies.

4.5 To deploy secured infrastructure

The next challenge was how to use SmartFrog to install, configure, and run a secure
container. In theory all the static security configuration files and host certificates etc can
be prepared and then installed using SmartFrog, although there may be some host specific
information that needs to be changed. The obvious problem starts when any of the
security infrastructure needs to be run as root. The “—noroot” option is an alternative for
configuring GT3 security without root permission, but we are uncertain how well this
works, or if it is appropriate for production environments [18]. A related issue is whether
the GT3 infrastructure can be correctly installed and run by the SmartFrog daemon user.
It seems probable that the Globus user will be required to install and run it.

Another issue is creating the grid-map files (host and service specific) which map
certificates to local user accounts. This requires access to the user certificates for each
node, and knowledge of the local user accounts that they are mapped to. It is possible in
theory to use a generic single user to run all the jobs for a node, and it may even be the
case that for non-mmjfs services a real user account is not needed at all [19]. However,
there are significant issues to do with trust, security and auditing if the binding between
users and accounts is weakened, although some sort of role-based security mechanism is
inevitable [E.g. 42].

One alternative is to require the first installation and configuration to be done locally and
manually, which would then enable subsequent updates or (re-)installations for different
user communities to proceed automatically/remotely, as these can reuse the existing
security configurations (i.e. the globally available certificates). This is what we found
with multiple installations on the same machine — as long as one was installed and
secured already, other versions could be installed as non-root users (although we didn’t
test this with more than GT3 core packages) as the security infrastructure was in place
and capable of being shared across multiple installations.

4.6 Deploying services
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A related problem is that of deploying services to an already deployed infrastructure.
One solution is for the infrastructure itself to provide a service for deploying services. In
GT3 this would most logically be a container based “deployment service” for deploying
services into the container, and would need to use “hot” deployment so that the container
does not need to be restarted each time. The only capability GT3 currently has is to use
MMIFS, but it can’t deploy “1* order” services, just “executables”.

SmartFrog in the laboratory demonstrated the ability to deploy services to a container,
and then start the container. However, this assumes that the container is not being shared,
and there is only one user (community) per container. The problem with a shared
container is that there is no “hot” deployment of services in GT3 — a random user can’t
just shut the container down whenever someone else is using it (because there is no
remote facility to do this, and it would interfere with other users who have services
running in the container) — unless there is one container per user (community) or
application (which is possible by running multiple containers per server). The extended
problem is deploying secured services. Service-specific grid-map files are used, which
currently requires knowledge of user certificates and local user accounts.

In the above discussion the assumption has been made that each user can remotely deploy
infrastructure and services. In practice this is extremely unlikely, and a confusion of
roles. More feasible roles could be: Grid infrastructure deployers, who would deploy
infrastructure to a set of resources remotely; and service deployers (for applications or
user-community), although they would need to be able to restart containers. This
wouldn’t be such an issue if services were persistent across container restarts (which is
possible in theory with container hosted services as long as the required per-service
persistence code has been implemented, but is harder to support with legacy code). How
a deployment infrastructure such as SmartFrog can be configured to allow multiple
deployment roles (with different capabilities) to share the same deployment infrastructure
would need to be considered further. Alternatively the sand-boxing approach of having
one container per application or user-community is worth investigating.

We also consider the requirement for a single developer (or user, as in many Grid
scenarios scientists both develop and use code) to install/update services across some or
all of the grid sites. This is likely as developers are typically in charge of their own code
and need to deploy, test, distribute, and update it. This could be done with a
configuration management approval mechanism (via the application or user community
deployers), or by further delegation of the deployment roles to the user and developer
communities. There would need to be mechanisms to prevent conflict in the case of
deployment of the same service at the same time, and to ensure service versioning (i.e.
that clients use the correct version of services, with backwards compatibility maintained
if necessary), and probably audit trails.

In a SOA there must be some way for potential consumers to discover deployed services.
This is normally done by registering new services with a publicly readable
registry/directory service. This can be done automatically (i.e. everything deployed in a
container is automatically registered in the registry service of that container, and all
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registry services that are subscribed to that container), or manually as an extra step in the
deployment process. It is important to note that, because service registration is an aspect
of the deployment role, both deployment and registration need to be adequately treated as
activities in typical Grid SOA deployment roles.

4.7 Differences in deployment philosophy, requirements, roles,
and practice between 1°' and 2" order Grid approaches

In the standard 1* order SOA world, deployment of new services is done within an
enterprise, behind firewalls, by enterprise developers and deployers (E.g. In the J2EE
specification deployment is an explicit role, with good product support). Deployed
components are exposed as services for intra- and inter- organisational interoperability.
Users typically don’t (and can’t) develop or deploy code. However, in the grid
community these roles need to be supported across firewalls and enterprise/organisational
boundaries (i.e. inter-enterprise), and for multiple different types of deployers, some of
whom are essentially end-users.

The typical 2" order approach for Grid services (where science isn’t exposed as a 1
order service, but only invokable via a 1* order execution service) does support a type of
end-user deployment, whereby executables and data are moved onto target execution
machines in preparation for execution. This is typically called “staging”. However, there
is no way to deploy real 1* order services using this mechanism, and no support for
explicit description and registration/discovery of the science code itself (requiring the
applications or clients to have explicit built-in knowledge of the correct code to use, and
tight compile-time coupling). We also note (see section 6 on data movement) that the
mechanism used to invoke MMJFS, and the data movement mechanism, are entirely
different, even to the point of using different security approaches. Intuitively we assume
that there is substantial overhead in the approach to deployment used by MMIJFS,
depending on the size of the executables, network latency and bandwidth, and scalability
of the originating file server. However, one paper reports that there may not be much
impact on throughput [22] even if everything is copied every time. One difference is
likely to be response time for short jobs. The 1* order approach allows services to be in
place ready to run with minimal setup overhead per service call. The 2" order approach
will inevitably incur a much higher overhead for short jobs, as staging followed by job
forking will increase response times.

There is a difference in security between the 1% order and MMIJFS approaches. The 1*
order approach allows services in the same container to have different security settings,
thereby allowing different users to access them. Using the 2" order approach to
execution of code, such as MMIJFS, only one set of security policies can apply to the
execution of all “jobs” run in the container. This difference in the security models is
likely to have an impact on the deployment, use, and management options.

For more information see an article on data services in Grid [21], and a paper measuring
the impact of staging [22].
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5 Index Service

We intended to evaluate Index, Data Movement and Deployment services in the context
of the 1* and 2™ order architectural choices. However, as this approach wasn’t pursued as
extensively as planned, a stand-alone analysis will be used instead (based partially on
[23]). In reality, given the nature of the benchmark, and the limited number of nodes and
configuration choices available, it would have been problematic to conduct more
extensive but realistic scalability tests of the registry service.

The Index Service (MDS3 - the Monitoring and Discovery System) is an information
service that uses an extensible framework for managing static and dynamic data for Grids
built using the Globus Toolkit 3.2. This framework provides the following functionality:

* Creates and manages dynamic Service Data via Service Data Provider programs
* Aggregates Service Data from multiple Grid service instances
* Registers Grid service instances using the ServiceGroup port type

Index Services provide the functionality within which Service Data Elements (SDEs) can
be collected, aggregated, and queried. Each Grid service instance has a set of service
data associated with it, and this data is represented in a standardized way as Service Data
Elements (SDEs).

MDS3 is not exactly equivalent to a Web Services directory service such as UDDI,
although the list of features supported by UDDI 3.0 is growing [38]. There are many
possible roles associated with MDS3, some of which (as we have noted above) overlap
with other roles: Deployment, configuration, replication and topology of multiple index
services, lifecycle management, registration/de-registration of services, security, etc. A
more rigorous analysis of the relationship between these roles, features of MDS3, and the
support provided by the Grid (and other standards or industry based) infrastructures
would be informative.

One of the differences between UDDI and MDS3 is the ability of MDS3 to obtain, cache
and display data associated with each service instance (essentially any public state of the
instance) in SDEs. A related concept is service data aggregation [24]. The index service
caches SDE from subscribed services until updated (this is also known as “notification
caching”), and enables SDEs from multiple sources to be aggregrated into single sink
services [25].

MDS3 supports both push and pull models for information update and query. By using
the ServiceDataAggregator class in the service code, service data from both locally
executing information providers and other OGSA service instances can be aggregated
into any given service. By using Registry and ServiceDataAggregator components,
multiple MDS3 services can be interconnected together into arbitrarily complex
topologies to form both Virtual Organizations and Virtual ServiceDataSets. Services can
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contain a union of all the service data defined in the portTypes they implement, and
service data aggregation is related to inheritance.

The advantages claimed for this programming model are that it:

* Provides an aggregated view of the service state rather than individual state values
or properties

* Gives a document (XML documents) centric view of the data, thereby avoiding
specific methods for state access

* s flexible for supporting dynamic state information and service state
introspection

* Provides lifetime and subscription support on the state properties

* Enables dynamic construction of state data information elements and values

For more information see [15, 26, 27].

A limited number of experiments with the MDS3 service were conducted between test-
bed sites. The basic test involved creating and starting an index service on one machine,
registering local and remote services in it, and querying the index service to determine if
the registered services and associated information were visible and current. Registration
of services in the index from the client/service side is also possible.

A Brief summary of the steps involved for each index service related task follows (Based
on the more detailed description in [23]).
1. To setup an Index Service (8 operations)
a. Configure the server configuration file (2 operations)
b. Configure index service configuration file (5 operations, then restart
container)
2. To register a service to an Index Service (4 operations)
3. To test Service Data Aggregation (8 operations)
4. To register a service on one container to the index service on another host (4
operations)

In task 3 we discovered that the information entered during configuration did not seem to
be checked until execution time (“success” was always reported even if incorrect
information was entered for the “New Service Data Name/Namespace/from Provider”).
Most of these operations require manual local server-side editing of configuration file
entries. Higher-level tool support for both local and remote configuration and checking
would be an improvement.

We also ran a version of the test-bed benchmark which exercised local container index
services. This demonstrated that service data could be obtained (using pull based
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querying) for each service, to determine things like the progress of the computation
(using dedicated code in the service which updated the progress SDE when the next
computational phase was entered), and some resource information (e.g. the number of
active services per server). There was no measurable overhead (i.e. drop in throughput)
for frequent polling (up to several times a second per service instance) of the index
services for this information across the four node test-bed.

A number of open questions raised by our investigations are:

* What are the alternative ways of using the MDS3 service in our benchmark, and
for the two architectural approaches? Can MDS3 information be used to provide
more sophisticated load balancing?

* How does this approach to state visibility compare with approaches taken by
Enterprise Java Beans? (Particularly related to issues of data consistency,
persistence of data, state modification, etc). A partial answer is that it supports
transparent service data persistence through the use of the Apache Xindice XML-
native database platform.

* How does this approach to state visibility compare with the directions that UDDI
and Web Services standards and technologies are heading? Will it be compatible
or interoperable with them?

*  What is the worst case behaviour expected due to the size of SDEs? What if the
SDE is just the state of an entire database or long running computation? If SDEs
are large, will queries become inefficient? Will they scale? What if a notification
to a subset of a large SDE is desired, or notification that a subset of a large SDE
has changed? Current conclusion is that these are indeed real problems.

* There are obviously security aspects related to registration and discovery of
services in the MDS3 service. Some open questions remain including: Is the
index service just like any other service as far as setting security goes? Can
different security levels be set for registration and viewing entries in the index
service? Can registration from external services be limited? What impact does the
security setting of external services have on the ability to register these services?

* What are the intended use cases of the different features of the index service, and
are there any documented examples in the literature?

* Reliability of contents. Service data may be out of date, and possibly inconsistent
across caches and compared with original data sources etc. Is this an issue with
the index or programming models? (E.g. [28]).

The GT3 MDS3 service model is relatively sophisticated, but complex, and we didn’t
experiment with it to the full extent required to evaluate it exhaustively for all possible
uses. However, it does seem to address relatively obvious holes in the standard Web
Services stack related to service management and information transparency. Integrated
tool support for the secure remote management of index services and service registration
is desirable. For more information about MDS3 see [23-31].
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6 Data movement

This section of the report covers some approaches to data movement using GT3.2 (Based
partially on [32]).

6.1 Direct SOAP encoding in the message body

Encoding data in the SOAP message body is the obvious approach to take as it is the
default data interchange mechanism for Web Services. However, it is only appropriate for
relatively small amounts of non-binary data, as the size of the encoded data is enormous,
serialisation and de-serialisation take forever (and connection times out), and the JVM
memory usage blows up. It thus only works for under IMB of non-binary data.

6.2 SOAP attachments

SOAP messages with attachments [43] is the default Web Services approach to data
movement for larger or binary data sets, and is supported by Axis [44]. However, there is
no mention of SOAP attachments in the Globus documentation, and we received no
response from globus newsgroups about the level of support offered by GT3.2, resulting
in a series of experiments to try attachments with GT3.2. We discovered that up to 1GB
of data can be transferred (with DIME, less with MIME), but not with GT3 security
enabled. However, scalability would be non-existent with more than one transfer of this
size at a time due to memory exhaustion. We did not reach a limit to the number of
attachments per SOAP body (100,000 very small attachments worked). But, as Axis
didn’t clean up temporary disk files correctly (and a disk file is created for anything other
than tiny attachments), unless the files are manually deleted, space on the file system was
soon exceeded due to quotas. Because temporary disk files are created for even modest
sized files a fair performance test couldn’t be performed, as attachments should be
processed in memory as long as there’s sufficient available. Fixes need to include the
ability to specify that attachments should be processed in memory below a dynamically
configurable size threshold (or below a heap usage threshold), and automatic cleanup of
temporary disk files.

Provisional results of these experiments were posted to the globus newsgroup in response
to several requests for assistance [33], and are summarised here.

1. Axis attachments and GT3.2 test container don't work. The server throws an
exception: org.xml.sax.SAXParseException: Content is not allowed in prolog.

2. There's a "feature" in axis attachment methods. Calling getAttachments() on the
client side to check if the attachments were created results in the attachments
being deleted before the message is sent.
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3. SOAP/Axis attachments and GT3.2 with Tomcat work. There were initially
reliability problems and eventually Tomcat wouldn't even start correctly. After a
complete reinstallation it worked better for no apparent reason.

4. Using MIME attachments we can pass:

a. 40,000 attachments, total size of 386MB before an exception:
java.net.SocketException: Broken pipe

b. Increasing memory on client/server doesn't help (from 1/2GB to 1GB).

5. Using DIME we can pass more (with 1GB heap):

a. 90,000 attachments, total size of 869MB, but

b. 100,000 attachments, total size of 966MB blows up with exception:
java.lang.reflect.InvocationTargetException

c. We could increase the memory above 1GB, but didn’t.

6. GT3.2 security won’t work with attachments. Not sure why, but as soon as client
side security is turned on, no attachments are received on the server.

7. Single large attachments cause problems. There is a bug in Axis which fails to
clean up temporary files, and no way to increase the threshold for the size of files
that are processed in memory with no temporary file created.

6.3 GridFTP

GridFTP is a legacy Globus component and not well integrated with GT3 services and
the container (basically because it’s not OGSI compliant). It reuses the GT3 security, but
requires a GridFTP server to run as well as the container. However, using GridFTP to
pass data to a Grid service is far from ideal, as it requires the use of a separate (poorly
documented) API, and the client and service must use additional mechanisms to
coordinate transfer and lifecycle events (such as notification of data transfer completion)
and file names, etc. We were unable to get it work correctly. The problems originated
from poor documentation, lack of example code, bugs in the GridFTP server, and
certificate issues.

6.4 Alternatives

More complex solutions exist, such as Globus’ Reliable File Transfer (RFT, [45])
subsystem and the OGSA-DALI suite [34], but both of these seem overkill for the very
simple task of moving data from A to B.

What about the far simpler approach of using wget? (essentially HTTP GET). Wget is
used in MMJFS to stage both data and executables, and requires a web server on each
machine (client and server). This is typical of the Globus assumption that each machine
involved in the Grid is really a server and has most, if not all, the Globus infrastructure
installed on it. The notion of a lightweight client machine with only “client-side”
infrastructure installed is not widely supported.

Some other data transfer performance results include [35, 36]
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More extensive tests of the different approaches, with different applications and
configurations of services and servers should be carried out to determine the real impact
of different data transfer approaches on performance (scalability, response times and
reliability), application programming models, security, and other qualities of interest.

7 Security

As documented in Report 1 [13], cross-organisational Grid security is an intrinsically
complicated area, as it must address security from multiple concurrent perspectives
including intra- and inter- organisational policy and administration, grid infrastructure
and deployment/configuration, users and communities (VOs) including developers,
deployers, maintainers, debuggers, end-users, etc, and science security requirements
(even in some cases legal and legislative requirements).

Critical attributes of the security infrastructure include usability (from the perspective of
different tasks and roles), initial installation and configuration, scalability (setup, runtime,
maintenance), functionality and flexibility (what levels of security are offered, how do
they apply to subsets of users, resources, services, etc), impact of security on availability,
how easy is it to debug, how manageable and maintainable is it, etc.

We have also noticed a distinction between the 1% and 2™ order approaches to security.
The 1% order approach enables services to have different security settings, thereby
allowing different users to use different services. However, the 2™ order approach, using
MMUIEFS, can only apply one set of security policies to the execution of all jobs in a
container — i.e. there is no way to differentiate users and security levels for different jobs.
We also believe that there are potentially security issues surrounding index and data
transfer services which require further investigation.

We discovered that there are complex issues surrounding the interaction of deployment
and security: “Trust” with Systems Administrators, deploying a secured deployment
infrastructure, and deploying and configuring secured grid infrastructure and services are
different aspects of the problem, and offer their own challenges. Moreover, there are
multiple deployment roles and tasks, each with their own security requirements.
Consequently, the ability to automate secure deployment of secured grid infrastructure
and services remains an unsolved problem.

8 Exception handling and Debugging

In a complex distributed system a well known problem that requires better understanding
and infrastructure support is exception handling and debugging. Things go wrong, and
there must be adequate means in place to understand them (predicting and averting
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failure, recognising and recording failures, diagnosing and rectifying failures). Failures
can occur in many parts of the system, and phases of the lifecycle, including deployment
of infrastructure (even in the deployment of the deployment infrastructure), securing of
infrastructure, deployment of services, use of services, and use of secured infrastructure
and services, initial deployment and testing of an application, and subsequent use of the
application (i.e. even if something works correctly once, it may not continue to work in
the same way).

Programming and design of infrastructures and applications in the presence of security
requirements and mechanisms is relatively poorly understood — in a sense, security
constraints are reflected in the handling of exceptions — models of development which
treat (combinations of) abnormal situations as first order requirements with an
appropriate design process to address them are needed.

The problem is also related to the interaction of systems and roles as follows. It is painful
to debug both security infrastructure, and secured grid infrastructure and applications.
There must also be the ability to do “secure” debugging of both of these — i.e. how to
debug securely without utilising or opening up potential security holes.

We believe that a possible approach to providing better support for debugging grid
infrastructures and applications is motivated by two observations:

1. Many faults in distributed systems arise because of state management issues —
typically the only way to fix them is to restart the offending part of the system to
put it back into a workable state.

2. Deployment is obviously part of the problem, but maybe it’s part of the solution
to.

We therefore propose an approach to debugging called “deployment-aware debugging”,
based on a combination of an understanding of the relationship between an application
and how it is deployed (including its run-time environment) in order to diagnose
problems, and the use of a deployment infrastructure to attempt to rectify them.

In order to have an explicit relationship between applications and deployment, explicit
deployment plans (or deployment-flows) can be generated from work-flows.
Deployment-flows can be executed prior-to, concurrently, or interleaved with the
application work-flows, and are used in conjunction with the deployment infrastructure to
provide automatic, consistent, resource aware, JIT deployment (and un-deployment) of
infrastructure and services required by the application.

If there is failure at the application level, then the deployment flow corresponding to the
failure can be analysed to determine possible causes of failure, and then portions of the

deployment flow can be re-executed in an attempt to correct the situation.

This is just an outline of the problems and the approach. More details can be found in
[12], and the planned paper.
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9 Conclusions

The difference between 1% and 2™ order “science as services” approaches roughly
corresponds to OGSA/GT3 vs legacy Grid (E.g. GT2) approaches. Some of the
differences have been highlighted, particularly from cross-organisational deployment
viewpoints. For example, the trade-offs in deployment vs discovery and security: A 1%
order approach is worse for service deployment, better for discovery and security; a 2™
order approach is better for “service” deployment, but worse for discovery and security.
However, it is doubtful if there has been much progress in unifying the two views, or
determining the full extent of the implications and tradeoffs of using one or the other
approach for all tasks and roles, although a more focussed analysis is planned for a paper.

We conclude that there is a need for better understanding and research into the enactment
of multiple tasks and roles associated with cross-cutting non-functional concerns across
organisations. Production quality Grid middleware needs support (processes and tools)
for remote, location independent, cross-organisational multiple role scenarios and tasks
including:

* Automatic, platform independent, installation.

* Configuration and deployment creation, validation, viewing and editing.

* Managing grid, nodes, grid and supporting infrastructure, containers and services.

* Remote deployment and management of services.

* Secure remote distributed debugging of grid installations, services, and
applications.

¢ Scalable security processes.
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10 UK-OGSA Evaluation Project Presentations and
Reports

16 March UK OGSA Evaluation Project, Status Report 16 March 2004, “Impact of
2004 GT3 termination, GT4, and WS-RF”, UK-OGSA project NeSCForge site.

Invited talk at the Core e-Science Programme Grid and Web Services Town

23 April Meeting on Grid and Web Services, presentation on UK OGSA Evaluation

2004 Project initial findings.

é: tomber UK-OGSA Evaluation Project Report 1.0: Evaluation of GT3.2 Installation
5 0p0 y Word document (28pp)

15 October Oxford University Computing Laboratory Talk: "Grid middleware is easy to
2004 install, configure, debug and manage - across multiple sites (One can't

believe impossible things)" Power Point Document

1 November University College London, Computer Science Department Seminar: "Grid
2004 Middleware - Principles, Practice, and Potential" Power Point Document

UK OGSA Evaluation Project, Report 2.0 (Final),
Evaluating OGSA across organisational boundaries (This document, 27pp),
http://sse.cs.ucl.ac.uk/UK-OGSA/Report2.doc

February
2005
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