

University of London
University College London

Department of Computer Science

Evaluating Architectural Stability with Real Options Theory

Rami K. Bahsoon

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in the Faculty of Engineering Sciences of the
University of London

October 2005

 2

 3

Abstract

Evolution is a key problem in software engineering and exacts huge costs. Industrial
evidence even hints that companies spend more resources on maintaining and
evolving their software than on the initial development. In managing the change and
guiding evolution, considerable emphasis is placed on the architecture of the
software system as a key artifact involved. One of the major indicators of the success
(failure) of software evolution is the extent to which the software system can endure
changes in requirements, while leaving the architecture of the software system intact.
We refer to the presence of this “intuitive” phenomenon as architectural stability.

We highlight the requirements for evaluating architectural stability. We pursue an
economics-driven software engineering approach to address these requirements. We
view evolving software as a value-seeking activity: software evolution is as a process
in which software is undergoing a change (an incremental) and seeking value. The
value is attributed to the flexibility of an architecture in enduring likely changes in
requirements. To value flexibility, we contribute to a novel model that builds on an
analogy with real options theory. The model examines some likely changes in
requirements and values the extent to which the architecture is flexible to endure
these changes. The model views an investment in an architecture as an upfront
investment plus “continual” increments of future investments in likely changes in
requirements. The objective is to provide insights into architectural stability and
investment decisions related to the evolution of software architectures.

We support the model with a three-phase method for evaluating architectural
stability. The method provides guidelines on eliciting the likely changes in
requirements and relating architectural decisions to value. The problem of valuing
flexibility of an architecture to change requires a comprehensive solution that
incorporates multiple valuation techniques, some with subjective estimates, and
others based on market data, when available. To introduce discipline into this setting
and capture the value from different perspectives, the method outlines a valuation
points of view framework as a solution. The framework is flexible enough to account
for the economic ramifications of the change on both structural (e.g., maintainability)
and behavioral (e.g., throughput) qualities of an architecture and on relevant
business goals (e.g., new market products).

We report on our experience in using the model and its supporting method with two
case studies. In the first case, we show how the model and its supporting method can
be used to assess the worthiness of re-engineering a “more” stable architecture in
face of likely changes in future requirements. We take refactoring as an example of
re-engineering. In the second case, we show how the model and its supporting
method can inform the selection of a “more” stable middleware-induced software
architecture in the face of future changes in non-functional requirements.

We critically discuss and reflect on the strengths and the limitations of our
contribution. We conclude by highlighting some open questions that could stimulate
future research in architectural stability, relating requirements to software
architectures, and architectural economics.

 4

Acknowledgements

With a debt of gratitude, which cannot be adequately expressed in words, I thank my supervisor
Prof Wolfgang Emmerich for his advice, guidance, and endless support during my research. His
practical and sharp vision in research has not only been invaluable for my work on this thesis but
also for developing my taste in research and my development as a researcher. For the last four
years, engaging in any discussion with Wolfgang has been an enjoyable practical lesson, where
professionalism, devotion in duty, guaranteed honesty (black or white- never gray), gentleness,
assured care, and a feel of protection are the masters. Thanks for being a friend and an excellent
listener for many awkward matters (jobs, visas, etc.) and for the healthy student-focused
environment, you have provided. I have been very fortunate to work with you Wolfgang. At the
least, I promise to be loyal to all your teachings and lessons in professionalism.

I extend my sincere gratitude to my second supervisor Prof Anthony Finkelstein for his guidance,
insightful suggestions, and encouragements during various stages of my PhD. I am indebted to
Anthony for the many stimulating and exciting discussions, which have trained me in research; for
patiently listening to many bizarre thoughts (Life-Oriented RE- it rings a bell?); and for his
paternal spirit, which eased my early adaptation periods in the group. Thanks for your big heart.

I am deeply indebted to Prof Angela Sasse for all the unforgettable generous support during
periods of the PhD process. I am also indebted to Prof David Rosenblum for all his invaluable
support, gentleness, and his insights during the MPhil/PhD Transfer viva. Thanks to Dr Graham
Roberts for all his internal reviews. Truthful thanks to Dr Cecilia Mascolo for the caring and
harmonious spirit she spreads in the group. Sincere thanks to Dr Licia Capra for her friendship
and all her sharp advices from day one (many to count and many to come, Licia). James Skene and
Andy Dingwall Smith, I thank you for the impressive commitment in reading some chapters of the
thesis.

The work has greatly benefited from discussion with many fellows at the Economics-Driven
Software Engineering workshops for two consecutive meetings. In particular, I am indebted to the
discussions and guidance of Prof Kevin Sullivan, Dr Hakan Erdogmus, Prof Eline Stroulia, and
Vahe Poladian. I am also thankful to Prof David Noktin for his spirit as a great educator and for
the invaluable input during the ICSE Doctoral Symposium. The generous support of Harry Sneed
at ICSM and Dr Tony Wicks at Searchspace are unforgettable. The pleasant discussions and
encouragements of Prof Bashar Nuseibeh have shown that Requirements Engineering has not just
offered an influential researcher, but also an influential human. Thanks for the generous support
of Dr Paul Brebner. The early but advanced research teachings of Dr Nashat Mansour and his
continuous encouragement and support are significant - conveying a word of thanks continues to
be little. My sincere gratitude to Dr Ramzi Haraty for all his teachings. Thanks to Prof Ian Nabney
at Aston U. for the flexibility he provided to complete this thesis.

My years at UCL were very enjoyable, thanks for the friendship of: Christian(for all the
unforgettable help), Carina(for all the stimulating discussions), Genna(I should have predicted the
“implied scenarios” for all the enjoyable distractions), Mirco(for the Lebanese Italian social
epidemic gym gossips), Stef(Stefanouli?- A brilliant context-aware Arabic learner), Toresten(for
the political discussions), Leticia(for being my ambassador to Searchspace), Vlad(for the wisdom
when “sensing” your jokes), Gacomo(for the unforgettable Dublin discussion), Luca, Anti, Clare,
Nima, Danielle, Daniel, Panu, Vitto, Chiara, Ben, Costin, Clovis, Bruno, Evan…. A word of thanks,
loyalty, and respect to those I have forgot to mention.

I express my sincere gratitude to my examiners Prof Kevin Ryan and Prof Rachel Harrison. It is a
big honor to have you as examiners. Thanks for your kindness and your insightful thoughts.

Last but not least, I am deeply indebted to my family for their generous support and the financial
sacrifice for making this possible; it was uneasy trip for either. Endless thanks to my father and
mother for all the feelings, which I cannot really express, to my sister Rachel, and my brother Rabi
for their endless emotional support. The least I can express is a modest prayer for my continuous
loyalty and a hope to continue to be your tireless and obedient servant forever long.

 5

To my parents with loyalty and love…

 6

“I often say that when you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you can not measure it, when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the
beginning of knowledge, but you have scarcely, in your thoughts, advanced to the stage of
Science, whatever the matter may be”

Lord Kelvin

 7

Contents

Chapter 1..15
Introduction ..15

1.1 Problem Definition ... 15
1.2 The Research Perspective .. 18
1.3 The Research Objectives .. 20
1.4 Assumptions ... 22
1.5 Thesis Contribution.. 23

The Contribution in Brief ... 23
The Thesis “Storyline” .. 24
Thesis-Related Publications ... 27

1.6 Thesis Outline ... 28

Chapter 2..30
A Survey of Software Architecture Evaluation Methods.................................30

2.1 Architectural Evaluation: A Brief Background .. 31
2.2 Research Effort on Architectural Evaluation .. 33

2.2.1 The Architecture Trade-off Analysis Method (ATAM) 36
2.2.2 The Software Architecture Analysis Method (SAAM) 37
2.2.3 Active Reviews for Intermediate Designs (ARID)..................................... 38
2.2.4 Attribute-Based Architectural Styles (ABAS)... 39
2.2.5 Software Performance Engineering (SPE) & Performance Assessment of
Software Architectures (PASA) ... 40
2.2.6 The Cost Benefit Analysis Method (CBAM)... 40

2.3 Evaluating Architectural Stability.. 42
2.3.1 Architectural Stability in Perspective .. 42
2.3.2 Approaches to Evaluating Architectural Stability 44

Retrospective Evaluation... 45
Predictive Evaluation... 46

2.4 Architectures Description Languages (ADLs) and Architectural Evaluation 47
2.5 Critical Assessment .. 49

Chapter 3..54
Requirements for Evaluating Architectural Stability.......................................54

3.1 Requirements for Evaluating Architectural Stability .. 54

Assess Evolution.. 54
“Continual” Investment Management in an Architecture 56
Strategic Considerations... 57
Addressing Uncertainty ... 58
Architectural Integrity .. 59

3.2 Summary.. 60

 8

Chapter 4..61
ArchOptions: A Model for Evaluating Architectural Stability with Real
Options Theory...61

4.1 Real Options: A Brief Background... 62

Definition .. 62
What Problems Do Real Options Address?... 62
Origin .. 63
Real Options Valuation... 63
Types and Applications.. 64

4.2 Architectural Stability: An Options Perspective .. 64
Economics Perspective.. 65
A Motivating Example.. 65
Why a Real Options Perspective? ... 66

4.3 The ArchOptions Approach: Valuing Architectural Stability with a Real Options
Analogy.. 68

The Approach .. 69
Black and Scholes Options Pricing.. 74
The Analogy ... 76

Stock price = xiV ... 78
Exercise price = Cei .. 79
Volatility = σ ... 81
Risk-free interest rate = r ... 81
Exercise time = T... 82

Interpretation ... 83
The option is in–the- money ... 83
The option is out –of- money.. 84

Valuation Issues and Assumptions... 85
Finding a twin asset ... 86
Estimating xiV ... 87
Estimating σ .. 88
Estimating Cei .. 89

Sensitivity Analysis ... 90
4.4 Uses... 91
4.5 Related Work... 94
4.6 Summary.. 101

Chapter 5..102
A Method for Applying ArchOptions ...102

5.1 Phase I. Eliciting and Tracing the Change to the Architecture 106

Step I-a. Setting the objectives for evaluating architectural stability 106
Step I-b. Eliciting the changes {i1, i2, …, in}... 107

Definition and nature of change... 107
Eliciting Planned Changes .. 108

Using Technology Roadmapping ... 108
Change scenarios and change cases.. 111

Dealing with the extreme changes ... 113
Step I-c. Trace the change to the architecture .. 114

 9

Identifying goals from scenarios .. 116
Trace the goals to the architecture ... 116

5.2 Phase II. Valuing the Flexibility of the Architecture to the Change......... 121
Step II-a. Estimate Ceipj ... 125

Expert knowledge to cost estimation.. 128
Parametric models to cost estimation....................................... 128

Step II-b. Estimate XiVpj .. 129
Using the valuation objectives, identify the value of the architectural
potential with respect to the change.. 129

Valuation using technical point of view 130
Valuation using the market point of view 132
Calculate σpj:... 137
Construct call options to calculate the option relative to this
valuation point of view... 138

5.3 Phase III. Interpretations and Recommendations.. 139
5.4. Summary... 141

Chapter 6..143
Evaluation – Applying ArchOptions ...143

6.1 The Evaluation Method in Brief ... 143
6.2 Applying ArchOptions to Value the Payoff of Refactoring 145

6.2.1 Motivation ... 146
6.2.2 The Case Study Rationale.. 147
6.2.3. Valuing the Payoff of Refactoring... 149
6.2.4 Results and Discussion .. 153
6.2.5 Concluding Remarks.. 154

6.3 Applying ArchOptions to Select Stable Middleware-Induced Software
Architectures ... 156

6.3.1 Motivation ... 157
6.3.2 The Case Study Rationale.. 160
6.3.3 Setting... 163
6.3.4 The Maintainability Valuation Point of View... 165

6.3.4.1 Scaling the CORBA-Induced Architecture 166
Maintaining fault tolerance support and replication
management... 168
Maintaining load balancing ... 170
Change impact analysis.. 172

6.3.4.2 Scaling the J2EE-Induced Architecture 174
Scalability in J2EE through replication..................................... 174
Change impact analysis.. 177

6.3.5 The Throughput Valuation Point of View .. 178
6.3.6 Applying ArchOptions .. 182

6.3.6.1 Formulation and Interpretation.. 183
6.3.6.2 Options on the Maintainability Valuation Point of View....... 186
6.3.6.3 Options on the Throughput Valuation Point of View............. 188

6.3.7 Options Analysis: Results and Discussion.. 189
6.3.8 Implications on the Discipline .. 211
6.3.9 Concluding Remarks.. 215

 10

6.4 Comparative Analysis.. 218
Qualitative Characteristics ... 218
Prediction Effectiveness.. 220

6.5 Summary and Implications... 227

Chapter 7..230
Conclusions, Future Work, and Open Questions..230

7.1 Summary of the Contribution... 230
7.2 Future Work on ArchOptions... 232

Multi-objective optimization view to design and the interdependence of non-
functional requirements ... 232
Valuation of the architectural potential to the change 233
Further application of the model: aspects and architectural economics 233

7.3 Open Questions .. 234
Coping with rapid technological advancements and changes in the
application domain ... 235
Architectural stability: the architecture or the middleware? 236
Change management: traceability of requirements to the architecture......... 237
Architectural change impact analysis... 239
Empirical studies ... 241
Concluding remarks.. 241

Appendix A ...243
The COnstructive COst MOdel (COCOMO): Brief Background.................243

Appendix B..246
Further Supporting Material: The Middleware-Induced Architecture Case
..246

B.1 Description of the fault tolerance architecture... 246
B.2 Description of the load balancing architecture .. 247
B.3 Implementation of the fault tolerant, the load balancing Services, and their
Change Impact on the CORBA-induced architecture ... 247

Appendix C ...250
Discount Cash Flows (DCF) and Net Present Value (NPV): Brief
Explanation..250

Glossary of Economics Terms ...252
Bibliography ...254

 11

List of Figures

Figure 2.1. Twin Peaks [Nuseibeh, 2001]: a model for the concurrent development of

“progressively” more detailed requirements and architectural (design)
specifications .. 43

Figure 2.2. Color visualization of module evolution- Jazayeri [2002]........................... 46
Figure 4.1. Reengineering leading to a “more” flexible structure with different

architectural and value potentials upon accommodating the some likely change
in requirements. ... 70

Figure 4.2. The model looks at an investment in an architecture as an upfront
investment plus increments of future investments in some likely changes in
requirements... 73

Figure 4.3. Five Parameters determining the value of call options [Erdogmus et al.,
2002] ... 75

Figure 4.4. The ArchOptions model... 77
Figure 4.5. Example of a Design Structure Matrix (DSM) [Baldwin and Clark, 2001] 96
Figure 5.1. Phase I of the method ... 104
Figure 5.2. Phase II of the method.. 105
Figure 5.3. Phase III of the method .. 106
Figure 5.3. Company’s x technology road mapping showing the evolution of its

mobile services as it moves from 2G to 3G and its value to the end user 111
Figure 5.3. The goal-oriented refinement for achieving scalability through

replication ... 119
Figure 5.4. Valuing the options using valuation points of view for changes {i1, i2,…, in}

on architecture A.. 124
Figure 5.4. An extract from Company Y’s valuation of the probable payback upon

instantiating from the core architecture a simplified new market product 136
Figure 6.1. Sketch of the simulation rationale .. 148
Figure 6.2. The use of structural and behavioral valuation points of view to capture

the options on the induced-architecture, A, for a likely change in scalability.. 162
Figure 6.3. The architecture of the Duke’s Bank .. 164
Figure 6.4. The Goal-oriented (high-level) refinement for achieving scalability

through replication .. 166
Figure 6.5. The CORBA fault-tolerance architecture [Object Management Group,

1999] ... 170
Figure 6.6. TAO load balancing [Othman et al., 2001b] .. 172
Figure 6.7. Example of J2EE cluster architecture.. 175
Figure 6.8. Clustering Architecture.. 176
Figure 6.9. Plotting the TOPS per host for each of WLS, JBOSS, JacORB for 1 to 4

hosts ... 180
Figure 6.10. The likely cost-trend upon inducing the Duke’s bank architecture with

J2EE-(WLS or JBOSS) and with CORBA (JacORB).. 181
Figure 6.11. Maintainability valuation point of view: Options on S0 relative S1 prior to

adjustment .. 196
Figure 6.12. Maintainability valuation point of view: Options on S0 and S1 upon

varying the number of hosts .. 196

 12

Figure 6.13. Throughput valuation point of view: Options per second ($) for WLS,
JBoss, and JacORB under high volatility assumptions ... 199

Figure 6.14. PV and DCF explained ... 201
Figure 6.15. The likely associated costs compared upon inducing Duke’s architecture

with WLS, JBOSS, and JacORB for very low throughput requirements on 1 host
.. 201

Figure 6.16a. The options, PV, and DCF on S1 when induced with WLS relative to the
throughput valuation point of view.. 203

Figure 6.16b. The options, PV, and DCF on S1 when induced with JBoss relative to
the throughput valuation point of view ... 204

Figure 6.16c. The options, PV, and DCF on S0 when induced with JacORB relative to
the throughput valuation point of view ... 204

Figure 6.17. Impact of volatility on value.. 206
Figure 6.18. ArchOptions and Binomial options compared for 18 observations 224
Figure 6.19. Comparing ArchOptions to [Leitch and Stroulia, 2003].......................... 227

 13

List of Tables

Table 2.1. A summary of the reviewed general-purpose evaluation methods............ 51
Table 2.2. Methods for explicit evaluation for stability and evolution 52
Table 4.1. Financial/real options/ArchOptions analogy ... 78
Table 4.2. Sensitivity parameters and ArchOptions .. 91
Table 5.1. Some useful heuristics for identifying goals from scenarios – Anton [1997]

.. 116
Table 5.2. The refinement of the fault tolerance subgoal (CORBA) 120
Table 5.3. Implementing the fault tolerance service on CORBA 127
Table 5.4. Example of estimated parameters at the end of the valuation 138
Table 6.1. Aggregate results: the change (%) - evolving S0 to S1 149
Table 6.2. The proposed refactoring plan and its design impact [Leitch and Stroulia,

2003] ... 151
Table 6.3. Refactoring effort, schedule, and cost .. 151
Table 6.4. Options on S1 relative to S0 ($) for the twenty likely changes (Maintenance

valuation point of view).. 153
Table 6.5. Options on S1 for one to ten changes at a time ... 153
Table 6.6a. Relating the refactoring case to Phase I of the method.............................. 155
Table 6.6b. Relating the refactoring case to Phase II of the method............................ 156
Table 6.7. The requirements for implementing fault tolerance in CORBA 169
Table 6.8. The requirements for Implementing load balancing in CORBA [Othman et

al., 2001b]... 171
Table 6.9. Scalability in the CORBA-induced architecture: aggregate results 174
Table 6.10. Scalability in the J2EE version... 178
Table 6.11. Upper limit of TOPS per host for each of WLS, JBOSS, JacORB 181
Table 6.12. Scaling the system using replication (1 Host): development, configuration,

and deployment costs ... 186
Table 6.13a. The options in ($) on the architecture induced by S1 relative to S0 for one

host, with S1 license cost (Clicesh) =zero for the maintainability valuation point of
view.. 192

Table 6.13b. The options in ($) on the architecture induced by S0 relative to S1 for one
host, with (Clicesh) =zero for the maintainability valuation point of view........... 192

Table 6.13c. Options in ($) on S0 relative to S1 with (Clicesh) = $25000 and σPM=22.7 and
pessimistic CeiPM for the maintainability valuation point of view 192

Table 6.14a. Supporting 1042 TOPS with three hosts and their options value, if the
Duke’s architecture is induced with either M1 (WLS) or M0 (JacORB................ 194

Table 6.14b. Supporting 1395 TOPS with three hosts and their options value, if the
Duke’s architecture is induced with either M1 (WLS) or M0 (JacORB) σPthro=
100%... 194

Table 6.15a. Throughput valuation point of view: Options per second ($) for S1 when
induced with WLS under high uncertainty (σPthro 100%) for 1 to 4 hosts and their
sensitivity .. 199

Table 6.15b. Throughput valuation point of view: Options per second ($) for S1 when
induced with JBOSS under high uncertainty (σPthro 100%) for 1 to 4 hosts and
their sensitivity... 199

Table 6.15c. Options per second ($) for S0 when induced with JacORB under high
uncertainty (σPthro 100%) for 1 to 4 hosts and their sensitivity 200

 14

Table 6.16a. Illustration NPV and DCF per second ($) very low throuput scenario
(100 TOPS)... 204

Table 6.16b. Illustration options per second ($) very low throuput scenario (100
TOPS)... 205

Table 6.17a. PV and DCF ($) per second for supporting 686 TOPS on S0 and S1 and the
values they ingnore ... 207

Table 6.17b. Adjusted PV and the options in ($) per second under full utilization
scenario of hosts for load greater than 686 TOPS on S0 and S1 and the values
added per second... 207

Table 6.18a. Relating the cases to Phase I of the method .. 217
Table 6.18b. Relating the cases to Phase II of the method... 218
Table 6.19a. The SLOC and the corresponding cost of implementing the load

balancing and fault tolerance by the student on S0(JacORB)for one host 222
(Maintainability valuation point of view)... 222
Table 6.19b. The predicted options ($), PV ($), and MRE on the architecture induced

by S1 relative to S0 relative to the maintainability valuation point of view 222
Table 6.20. The Refactoring case study: the MRE upon computing the calls of

ArchOptions using [Black and Scholes, 1973] and [Cox and Rubinstein, 1985]
.. 225

Table 6.21. Comparing ArchOptions to [Leitch and Stroulia, 2003]............................ 226
Table B-1. Implementing the fault tolerance service on CORBA................................. 248
Table B-2. Implementing the load balancing service on CORBA 249

 15

Chapter 1

Introduction

1.1 Problem Definition

Software requirements, whether functional or non-functional, are generally volatile;

they are likely to change and evolve over time. The change is inevitable as it reflects

changes in stakeholders’ needs and the environment in which the software system

works. Software architecture is the earliest design artifact, which realizes the

requirements of the software system. It is the manifestation of the earliest design

decisions, which comprise the architectural structure (i.e., components and

interfaces), the architectural topology (i.e., the architectural style), the architectural

infrastructure (e.g., the middleware), the relationship among them, and their

relationship to the other software artifacts (e.g., low-level design, testing etc.). One of

the major implications of a software architecture is to render particular kinds of

changes easy or difficult, thus constraining the software’s evolution possibilities

[Jazayeri, 2002]. A change may “break” the software architecture necessitating

changes to the architectural structure (e.g., changes to components and interfaces),

architectural topology, or even changes to the underlying architectural

infrastructure. It may be expensive and difficult to change the architecture as

requirements evolve [Finkelstein, 2000]. Conversely, failing to accommodate the

change leads ultimately to the degradation of the usefulness of the system. Hence,

there is a pressing need for flexible software architectures that tend to be stable as the

requirements evolve. By a stable architecture, we mean the extent to which a

 16

software system can endure changes in requirements, while leaving the architecture

of the software system intact. We refer to the presence of this “intuitive”

phenomenon as architectural stability.

Developing architectures which are (a) stable in the presence of change and (b) flexible

enough to be customized and adapted to the changing requirements is one of the key

challenges in software engineering [Garlan, 2000]. Ongoing research on relating

requirements to software architectures has considered the architectural stability

problem as an open research challenge and difficult to handle [van Lamsweerde,

2000; Nuseibeh, 2001]. In particular, van Lamsweerde [2000] acknowledges that “the

conflict between requirements volatility and architectural stability is a difficult one to

handle”. Nuseibeh [2001] notes that many architectural stability related questions are

difficult and remain unanswered. For example, what software architectures (or

architectural styles) are stable in the presence of the changing requirements, and how

do we select them? What kinds of changes are systems likely to experience in their

lifetime, and how do we manage requirements and architectures (and their

development processes) in order to manage the impact of these changes?

Meanwhile, evolution is still a key problem in software engineering and exacts huge

costs [Jazayeri, 2002; Lehman et al., 2000]. Empirical evidence even hints that

companies spend more resources on maintaining and evolving their software than

on the initial development [Boehm and Sullivan, 2000; Jazayeri, 2002; Bennet and

Rajlich, 2000; FEAST 1-2]. In managing the change and guiding evolution,

considerable emphasis is placed on the architecture of the software system as the key

artifact involved [Garlan, 2000; Jazayeri, 2002]. Cook, Ji, and Harrison note that “In

many software systems, the architecture is the level that has the greatest inertia when

external circumstances change and consequently incurs the highest maintenance costs when

evolution becomes unavoidable” [Cook et al., 2001]. An established route to manage the

change and guide evolution is a universal “design for change” philosophy, where the

architecture is conceived and developed such that evolution is possible [Parnas,

1979]. Parnas’s notion of the “design for change” is based on the recognition that

much of the total lifecycle cost of a system is expended in the change and incurred in

evolution. A system that is not designed for evolution will incur tremendous costs,

 17

which are dispropionate to the benefits [Lientz and Swanson, 1980]. For a system to

create value, the cost of a change increment should be proportional to the benefits

delivered [Parnas, 1972]. “Design for change” is thus promoted as a value-

maximizing strategy provided one could anticipate changes [Boehm and Sullivan,

2000]. The “Design for change” philosophy is believed to be a useful heuristic for

developing flexible architectures that tend to be stable as requirements evolve.

However, there is a general lack of adequate models and methods, which connect

this technical engineering philosophy to value creation under given circumstances

[Boehm and Sullivan, 2000]:

From an economic perspective, the change in requirements is a source of uncertainty

that confronts an architecture during the evolution of the software system. The

change places the investment in a particular architecture at risk. Conversely,

designing for change incurs upfront costs and may not render future benefits. The

benefits are uncertain, for the demand and the nature of the future changes are

uncertain. The worthiness of designing or re-engineering an architecture for change

involves a tradeoff between the upfront cost of enabling the change and the future

value added by the architecture, if the change materializes. The value added, as a

result of enabling the change on a given architecture, is a powerful heuristic which

can provide a basis for analyzing: (i) the worthiness of designing for change, (ii) the

worthiness of re-engineering the architecture, (iii) the retiring and replacement

decisions of the architecture or its associated design artifacts, (iv) the decisions of

selecting an architecture, architectural style, middleware, and/or design with desired

stability requirements, and/or (v) the success (failure) of evolution.

Therefore, to cope with uncertainties, incomplete knowledge in an evolutionary

context, and to mitigate risks in the investment, there is a critical need for evaluating

architectural stability. Evaluating architectural stability aims at assessing the extent to

which the system of a given architecture is evolvable, while leaving the architecture

and its associated design decisions unchanged as the requirements change. The

evaluation shall address the economic interplay between designing flexible

architectures, evolving requirements, impact of the requirements change on the

architecture, and their long-term cost and value implications. Such interplay is

 18

critical for proactively understanding the architectural stability problem and many of

its associated research questions, from an economics-driven software engineering

perspective [EDSER 1-7, 1999-2005]. The evaluation has the promise to answer the

following challenging key question: How much is “buying” flexibility to facilitate

future changes and support the development (evolution) of potentially stable

architectures worth?

The research questions being addressed in this thesis include the following [Bahsoon,

2003]: How can we systematically evaluate the stability of software architectures in

the face of the changing requirements, taking an economics-driven approach? What

are the requirements for such evaluation and how can we address these

requirements? What are the implications of the pursued approach on some

architecture-centric cases, with essential or desirable stability requirements?

Subsequent Sections and Chapters develop these questions.

1.2 The Research Perspective

Sullivan et al. [1997] note that the important book of Shaw and Garlan on software

architecture begins, “As the size and complexity of software systems increase, the design

and specification of overall system structure become more significant issues than the choice of

algorithms and data structures…” [Shaw and Garlan, 1996]. Sullivan et al. [1997] add,

“This statement is true, without a doubt. The problem in the field is that no serious attempt is

made to characterize the link between structural decisions and value added”. That is, the

traditional focus of software architecture is more on structural and technical

perfection than on value added. In addressing the architectural stability problem, our

perspective aims at providing a compromise through linking structural decisions to

value creation.

In particular, the thesis adopts an economics-driven software engineering

perspective [EDSER 1-7, 1999-2005] to evaluate the stability of software architectures

in the face of changing requirements. Traditionally, engineering software has been

primarily a technical endeavor with minimal attention given to its economic context

 19

[Boehm and Sullivan, 2000]. Design and implementation methods are proposed

based on technical merits without making adequate links to the economic

considerations. This is in stark contrast to the reality of software engineering.

Engineering seeks to create value relative to the resources invested. Regardless of

how we define “value”, engineering software is essentially an irreversible capital

investment [EDSER 1-7, 1999-2005]. Developing and evolving software, thus, should

add value to the enterprise, just as any other capital expenditure. As such, the costs

of developing and evolving software should not outweigh the returns from the

product to achieve a net benefit.

In this perspective, the thesis adopts the view that software design and engineering

activity is one of investing valuable resources under uncertainty with the goal of

maximizing the value added [Baldwin and Clark, 1999; Sullivan 1996; EDSER 1-7,

1999-2005]. This view approximates to much industrial practice. In particular, the

thesis views evolving software as a value-seeking and value-maximizing activity:

software evolution is a process in which software is undergoing an incremental

change and seeking value [Bahsoon and Emmerich, 2004a]. The thesis attributes the

added value to the flexibility of the architecture in enduring changes in requirements.

Means for achieving flexibility are typical architectural mechanisms or strategies that

are built-in or adapted into the architecture with the objective of facilitating

evolution and future growth. This could be in response to changes in functional (e.g.,

changes in features) or non-functional requirements (e.g., changes in scalability

demands). For example, consider functionality that is likely to change and evolve

over time: “componentizing” the functionality and hiding it behind negotiable and

configurable interfaces is a simple example of such a mechanism. As we are

assuming that the added value is attributed to flexibility, arriving at a “more” stable

software architecture requires finding an architecture which maximizes the yield in

the embedded or the adapted flexibility in an architecture relative to the likely

changing requirements [Bahsoon and Emmerich, 2004a; Bahsoon and Emmerich

2000b]. Optimally, a stable architecture is an architecture that shall add value to the

enterprise and the system as the requirements evolve. By valuing the flexibility of an

architecture to change, we aim at providing the architect/analyst with a useful tool

for reasoning about a crucial but previously intangible source of value. This value

 20

can be then used for deriving “insights” into architectural stability and investment

decisions related to evolving software.

1.3 The Research Objectives

The goal of the thesis is to develop a framework for systematically evaluating the

stability of software architectures in the face of changes in requirements, taking an

economics-driven approach. By taking an economics-driven approach for evaluating

architectural stability, we intend to proactively assess the complexity and the

economic ramifications of the likely critical changes in requirements and their impact

on the software architecture. The evaluation aims at understanding (i) the tradeoff

between the upfront cost of enabling a change on the architecture of the software

system and the long-term future benefits as a result; (ii) the trade-off between the

architectural “intactness” and the cost-effectiveness of amending the architecture to

accommodate a change; (iii) the cost and the value implications of evolving the

requirements of the architecture; (iv) the economics of flexibility, inflexibility, and

over-flexibility of the architecture relative to a change; and/or (vi) the cost-

effectiveness of the technical design and reengineering decisions for a change.

The framework aims at providing a basis for analyses supporting many architecture-

centric approaches to evolution, with desirable or essential stability requirements. By

architecture-centric approaches to evolution, we refer to approaches, which pursue

the software architecture as the appropriate level of abstraction for reasoning about,

managing and guiding the evolution of complex software systems, and

“synchronizing” the software requirements with its detailed design and

implementation. A distinctive feature of these approaches is that they explicitly

account for the non-functional requirements, the so-called quality attributes. As the

quality attributes comprise the most substantial properties of the system, the

evolution of such properties can be best reasoned about and managed at the

architectural level. For example, the current trend is to build distributed systems

architectures with middleware technologies such as Java 2 Enterprise Edition (J2EE)

and the Common Object Request Broker Architecture (CORBA), resulting in the so-

 21

called middleware-induced architectures [Di Nitto and Rosenblum, 1999].

Middleware-induced architectures follow an architectural-centric approach to

evolution, as the emphasis is placed on the induced architecture for simplifying the

construction of distributed systems by providing high-level primitives, which shield

the application engineers from the distribution complexities, managing systems

resources, and implementing low-level details, such as concurrency control,

transaction management, and network communication. These primitives are often

responsible for realizing many of the non-functional requirements (e.g., scalability,

fault tolerance, etc.) in the architecture of the system induced and facilitating their

evolution over time. Another example is from product-line architectures. Product-

lines, a family of products sharing the same architecture, inherently require domain-

specific variation and evolution of various products. Due to the higher level of

interdependency between the various software artifacts in a product-line, software

evolution is too complex to be dealt with at the code level. As the focus is on the

architecture for “easing” and guiding evolution, architecture-centric approaches to

evolution place considerable emphasis on the flexibility of the architecture in

responding to change. In this context, the framework intends to answer the following

key question: how much is it worth “buying” flexibility to facilitate future changes

and support the development (evolution) of potentially stable architectures?

The benefit of this work is that it provides the analyst/architect with “insights” into

architectural stability and investment decisions related to the evolution of software

architectures. The objective is to assist the analyst/architect in strategic “what if”

analyses involving: valuing the long-term investment in a particular architecture;

analyzing the trade-offs between two or more candidate software architectures for

the long-term value; analyzing the strategic position of the enterprise- if the

enterprise is highly centered on the software architecture (as is the case in web-based

companies); valuing the worthiness of designing or reengineering for the change;

and valuing the flexibility of the architecture and its associated artifacts relative to

the change. The intellectual framework is most critical; it demonstrates that with

value-based reasoning we can improve our ability to evaluate for architectural

stability and develop software systems that need to adapt to the inevitable evolving

requirements.

 22

1.4 Assumptions

The major assumptions underlying the thesis are as follows:

− Changes in requirements could be predictable in advance. Chapter 5 of the

thesis provides guidelines for eliciting likely changes in requirements that are

critical for evaluating architectural stability.

− The cost of re-engineering or re-architecting an architecture for the change

can be predicted a long time in advance using a similar development or an

evolution experience. However, the prediction needs not be accurate as the

framework we propose provides treatment to the uncertainty of the

prediction.

− Adapting flexibility into the architecture of the software system is often a

costly option: For example, flexibility often come with a price (e.g., through

the provision of primitives for facilitating the change). Furthermore, the

adapted flexibility might be underutilized to reveal a net benefit upon

exercising the change.

− We look at systems that are intended to evolve. In Lehman’s concept [FEAST

1-2], there are two types of systems: these are E-type systems and S-type

systems. E-Type systems that are embedded in real world applications and

are used by humans for everyday business functions. Examples might be

customer service, order entry, payroll, operating systems, databases engines.

S-Type systems are executable models of a formal specification. The success

of this software is judged by how well it meets the specification. For E-Type

systems the “real world” is dynamic and ever changing. As the real world

changes the specification changes and the E-Type systems adapt to these

changes. Hence, E-Type systems are evolvable. For S-Type systems the

specification becomes invalid in the presence of change. In Lehman’s

terminology, we look at E-type systems.

 23

1.5 Thesis Contribution

The Contribution in Brief

This thesis advances the understanding of the architectural stability problem from an

economics-driven software engineering perspective [EDSER 1-7, 1999-2005]. The

merits of such a contribution can not be overstated: revealing a new practical

perspective in tackling an unaddressed problem; stimulating; and possibly

motivating future research in architectural stability and related problems.

Accordingly, this thesis should be regarded as a culmination of four years of

independent “make a way” challenge into the concept and the problem, in the

absence of very closely related research. The thesis makes the following specific

contributions:

− Surveys research work on architecture evaluation and discusses their limitations

in addressing architectural evaluation for stability.

_ Highlights the requirements for evaluating architectural stability in the face of

changing requirements from an economics-driven perspective.

− Describes a novel approach and devises a real-options based model, referred to

as ArchOptions, for valuing the flexibility of an architecture to change. The

model builds on a sound theory in financial engineering to provide insights into

architectural stability and investment decisions related to the evolution of

software architectures.

− Complements the model with a three-phase method for conducting an

architectural evaluation for stability. The problem of valuing flexibility of an

architecture to change requires a comprehensive solution that incorporates

multiple valuation techniques, some with subjective estimates, and others based

on market data, when available. To introduce discipline into this setting and

capture the value from different perspectives, the method outlines a valuation

points of view framework as a solution. The framework addresses the problem

that valuing the flexibility of an architecture to likely changes in requirements is a

multi-perspectives valuation problem. The framework is flexible enough to

account for the economic ramifications of the change on the structural (e.g.,

 24

maintainability) and behavioral (e.g., throughput) qualities of an architecture and

the associated business goals.

_ Applies the approach to two architecture-centric evolution case studies, with

desirable stability requirements. These applications demonstrate novelty in the

use of real options theory in software engineering and draw some preliminary

observations, lessons, and insights that could stimulate future research in the

area of relating requirements to software architectures. The applications also aim

at verifying the thesis-related claims (outlined in the next Subsection).

_ Highlights some open questions that could stimulate future research in

architectural stability, relating software requirements and architectures, and

architectural economics.

The Thesis “Storyline”

A survey [Bahsoon and Emmerich, 2003a] of architectural evaluation methods

indicates that current approaches to architectural evaluation focus explicitly on

construction and only implicitly, if at all, on the phenomenon of software

“evolution”. Despite their concern with “change”, these methods do not address

stability. When these methods address qualities like modifiability, they do not

predict and measure the capability of the architecture to withstand change.

According to Cook, Ji, and Harrison, the provision of such measure is important,

because, for example, ”it assists the objective assessment of the lifetime costs and benefits of

evolving software, and the identification of legacy situations, where a system or component is

indispensable but can no longer be evolved to meet changing needs at economic cost” [Cook

et al., 2001]. Moreover, existing methods ignore any economic considerations and are

driven by ways that are not optimal for long-term value creation. Factors such as

flexibility often have impact on value creation [Boehm and Sullivan, 2000].

To bridge the gap, this thesis proposes an economics-driven approach for evaluating

architectural stability in face of changing requirements [Bahsoon, 2003]. It is assumed

that the software architecture’s goal is to facilitate the system’s evolution. Software

evolution is viewed as a process in which a software system is undergoing a change

 25

incrementally and seeking a value. The thesis highlights the requirements for

evaluating architectural stability from an economics-driven software engineering

perspective [EDSER 1-7, 1999-2005; Boehm and Sullivan 2000]. The thesis then claims

that using strategic value-based reasoning we can address these requirements. In

particular, the thesis argues that real options theory [Myers 1977; Myers 1987] is suited

to assist in the evaluation. However, this begs the question: Why real options theory?

Real options theory argues that flexibility under uncertainty can be viewed as values in

the form of real options [Schwartz and Trigeorgis, 2000]; the value of these options

lies in the enhanced flexibility to cope with uncertainty. This perspective is appealing

to the architectural stability problem: unfortunately, future changes in software

requirements are uncertain, as the demand for change, its nature, and its likelihood

are often uncertain. Hence, change is the likely source of uncertainty that confronts

the architecture during its lifetime. In the face of uncertainty, there is a pressing need

for architectures, which are flexible enough to cope with change. This gives the need

to value the flexibility of the architecture in the face of change. This value can then be

used as a metric for predicting architectural stability [Bahsoon and Emmerich, 2004a,

Bahsoon and Emmerich, 2004b, Bahsoon and Emmerich, 2003b]. The importance of

the idea cannot be overemphasized: it gives the architect an ability to reason about a

crucial but previously intangible source of value and to use it in the evaluation of

architectural stability.

To value the flexibility of an architecture in the face of changing requirements, the

thesis contributes to a novel model that exploits Black and Scholes (Nobel Prize

winning) financial options theory [Black and Scholes, 1973]. The model is referred to

as ArchOptions [Bahsoon et al., 2005, Bahsoon and Emmerich, 2004a, Bahsoon and

Emmerich, 2004b, Bahsoon and Emmerich, 2003b]. In ArchOptions, investment

opportunity in an architecture amounts to an upfront investment for developing the

system of a given architecture plus “continuous” future investments for evolving the

software in response to likely future changes in requirements. Briefly, ArchOptions

examines critical likely changes in requirements and values the extent to which the

architecture is flexible enough to withstand these changes. ArchOptions draws on a

simple and intuitive analogy with Black and Scholes [1973] for valuing this

flexibility. ArchOptions assumes that the architecture is the appropriate level of

abstraction at which to reason about and analyze the evolution value, costs, and

 26

investment opportunities. The model builds on a sound theory in financial

engineering to provide insights into architectural stability, investment decisions

related to the evolution of software architectures, and a basis for analyses for many

architecture-centric evolution problems. The thesis describes how we have derived

the ArchOptions model: the assumptions and the analogy made, its formulation, its

sensitivity, and report on its possible interpretations and uses.

The thesis complements the model with a three-phase method for conducting an

architectural evaluation for stability. The method provides guidelines on eliciting the

likely changes in requirements; it pursues scenarios as a possible solution to describe

the likely future changes in requirements that are critical to the evaluation. To trace

the likely future change in requirements to the architecture, goals are extracted from

scenarios [Anton, 1997] and then refined (e.g., [Dardenne and van Lamsweerde,

1993]) using guidance on how they could operationalized by the architecture. The

objective is to trace the change and quantify the flexibility of the architecture in

withstanding the scenario. The valuation using ArchOptions requires a

comprehensive solution that incorporates multiple valuation techniques, some with

subjective estimates, and others based on market data, when available. The problem

associated with how to guide the estimation in this setting, we term as a multiple

perspectives valuation problem. To introduce discipline into this setting and capture the

value from different perspectives, the method suggests valuation points of view (i.e.,

market or subjective estimates) as a solution. The framework is comprehensive

enough to account for the economic ramifications of the change, its global impact on

the architecture, and on other architectural qualities. The solution aims to promote

flexibility through incorporating both subjective estimates and/or explicit market

value, when available.

The thesis uses case studies to empirically evaluate ArchOptions and explore its

fitness in addressing two architecture-centric evolution cases, with desired stability

requirements. In the first case, we apply ArchOptions to value the payoff of

refactoring [Bahsoon and Emmerich, 2004a; Bahsoon and Emmerich, 2004b]. The

application demonstrates how ArchOptions can be used to value the worthiness of

reengineering for better support to likely future changes in requirements. In the

 27

second case, we apply ArchOptions to inform the selection of stable middleware-

induced software architecture in face of likely critical changes in non-functional

requirements [Bahsoon et al., 2005]. In this case, we argue that the choice of a stable

distributed software architecture has to be guided by the choice of the middleware

and its flexibility in responding to future changes in non-functional requirements.

We draw on a case study that adequately represents a medium-size component-

based distributed architecture: we report on how a likely future change in scalability,

as representative critical change in non-functional requirements, could impact the

architectural structure of two versions, each induced with a distinct middleware, one

with CORBA and the other with J2EE. We show how we can apply ArchOptions to

value the flexibility of the induced-architectures and to guide the selection. Research

wise, addressing these problems has resulted in novel applications of real options

theory in valuing the payoff of refactoring and in informing the selection of

middleware-induced software architectures. On the discipline level, the application

of ArchOptions to the above cases has provided some preliminary observations,

lessons, and insights that could stimulate future research in the area of relating

requirements to software architectures. Consequently, these observations aim at

advancing our understanding of the architectural stability problem, when addressed

from an economics-driven software engineering perspective.

The thesis concludes by highlighting some open questions that could stimulate

future research in architectural stability, relating requirements to software

architectures, and architectural economics.

Thesis-Related Publications

The work presented in this thesis is based on and extends several papers that have

been published in the last three years [Bahsoon et al., 2005, Bahsoon and Emmerich

2004a; Bahsoon and Emmerich 2004b; Bahsoon 2003; Bahsoon and Emmerich 2003a;

Bahsoon and Emmerich 2003b]. This thesis should be regarded as the definitive

account of the work.

 28

1.6 Thesis Outline

In Chapter 2, we survey seminal work on software architecture evaluation methods

and identify their limitations in addressing stability and evolution. We document

research motivation and perspectives on architectural stability. We differentiate

between two types of approaches for evaluating architectural stability; these are

retrospective or predictive.

In Chapter 3, we highlight the requirements for evaluating architectural stability. We

motivate the need for an economics-driven approach to address these requirements.

In Chapter 4, we pursue an economics-driven approach to address the requirements

highlighted in Chapter 3. We motivate the use of real options theory as a solution.

We devise a real option model, referred to as ArchOptions, to systematically evaluate

architectural stability. We describe the analogy that ArchOptions make with real

options theory. We report on ArchOptions formulation, its possible interpretation, its

sensitivity, and its possible uses. We discuss valuation issues and assumptions. We

provide an overview of closely related work on the use of real options is software

design and engineering.

In Chapter 5, we support the model with a three-phase method for evaluating

architectural stability. We provide guidelines on applying ArchOptions and discuss

practical ways for estimating the model parameters.

In Chapter 6, we apply ArchOptions in two architecture-centric evolution case

studies. We critically discuss and reflect on the strengths and the limitations of its

application. We attempt to verify many of the thesis-related claims. We qualitatively

evaluate the ArchOptions model and relate its application to the supporting method.

In Chapter 7, we summarize the thesis contribution. We highlight possible future

research on ArchOptions. We conclude by highlighting some open questions that

 29

could stimulate future research in architectural stability, relating requirements to

software architectures, and architectural economics.

In Appendix A, we provide background information on COCOMO II (COnstructive

COst MOdel) [Boehm 1995], a cost and schedule estimation model.

In Appendix B, we provide supporting material related to the case study of using

ArchOptions to select stable middleware-induced architecture of Chapter 6.

In Appendix C, we provide brief background on Net Present Value (NPV) and

Discount Cash Flows (DCF) valuation techniques.

 30

Chapter 2

A Survey of Software Architecture
Evaluation Methods

In [Bahsoon and Emmerich, 2003a], we have distinguished between two classes of

software architecture evaluation methods:

(i) General-purpose methods that evaluate software architectures for

qualities that need to be met by the system, such as performance, security,

and modifiability, and

(ii) an emerging class of methods that explicitly evaluate for stability and

evolution.

In this chapter, we first review representative examples of (i). The motivation behind

this review is to find through existing research stocks insights for evaluating

software architectures for stability, which we examine in Chapter 3. Many of the

ideas presented relate to the use of software evaluation methods in general.

Secondly, we report on research effort related to (ii). We document research

motivation and perspectives on architectural stability, as reported in the literature.

We discuss why and how to evaluate an architecture for stability. We differentiate

between two types of approaches to evaluation; these are retrospective or predictive.

We note that methods for evaluating software architectures for stability do not exist,

with [Jazayeri, 2002] and our work being the only notable exceptions. Thirdly, we

briefly survey research effort on Architectures Description Languages (ADLs) as they

 31

have implications for supporting the evaluation of software architectures. ADLs are

languages that provide features for modeling and analyzing software architectures.

We show how ADLs can be used in the context of evaluating software architectures

in general and the evaluation for architectural stability in particular.

2.1 Architectural Evaluation: A Brief Background

In this section, we lay down the groundwork for evaluating a software architecture:

we describe architectural review and evaluation; discuss why and when to evaluate

an architecture; who is involved in the evaluation; and list approaches to evaluation.

The architecture of the system is the first design artifact that addresses the quality

goals of the system such as security, reliability, usability, modifiability, stability, and

real-time performance. As the manifestation of early design decisions, the

architecture represents those design decisions that are hardest to change [Parnas,

1976] and need to be validated against the quality goals for mitigating risks.

Architecture evaluation is an activity for developing an assessment of an architecture

against the quality goals. It is a form of artifact validation. The evaluation is done

with the objective of ensuring that the architecture under question satisfies one or

more quality goals. Evaluation also aims to ensure that the architecture is buildable.

That is, the system can be built using the resources at hand: the staff, the budget, the

legacy software (if any), and the time allotted before delivery. From an evolution

perspective, architectural evaluation is a preventive activity that aims to delay the

decay (as referred to by Parnas) and limits the effect of software aging [Parnas, 1996].

Architectural evaluations represent a risk-mitigation effort and are relatively

inexpensive [Clements et al., 2002].

Architectural evaluation can be applied at any stage of an architecture lifetime. The

classical evaluation of an architecture occurs when the architecture has been

specified but before implementation has begun. Users of iterative or incremental life-

cycle models can evaluate the architectural decisions made at the end of each

iteration or during the most recent architectural cycle. For instance, the Rational

 32

Unified Process (RUP) [Krutchten, 1999] splits the development (evolution) process

into four phases. These phases are Inception, Elaboration, Construction, and

Transition. The four phases (I, E, C, and T) constitute a development (evolution)

cycle and produce a software generation. Under the RUP context, the architectural

evaluation can span iteratively and intertwinedly the Inception phase and iterations

of the Elaboration phase, and/or can take place at the Life-Cycle Architecture (LCA)

milestone. At the LCA milestone, the detailed system objectives and scope are

examined; the choice of the architecture is considered; and the major risks are

identified.

Early evaluation need not wait until an architecture is fully specified. It can be used at

any stage in the architecture creation process to examine those architectural decisions

already made and choose among architectural options that are pending. Early

evaluations may take the form of discovery reviews. A discovery review is a very early

mini-review activity. It aims to analyze whatever “proto-architecture” may have

been crafted. The output of a discovery review is an “iterated” or a “revised” set of

requirements and an initial architectural approach to satisfying them, which is

subject in turn to later and iterative evaluation. Note that the architecting process is

best conducted iteratively and intertwined through requirements, architecting, and

validation

Late evaluation is a form of evaluation for an existing architecture. It takes place when

the architecture already exists and the implementation is complete. This occurs when

an organization inherits some sort of legacy system and need be integrated with the

existing system. The evaluation at this level helps the new owners understand the

legacy system, and determine whether the system can be counted on to meet its

quality and behavioral requirements.

Clements et al. [2002] provides two rules of thumb on when to hold the evaluation.

They suggest i) hold the evaluation when the development team start to make

decisions that depend on the architecture; and ii) when the cost of undoing those

decisions would outweigh the cost of holding the evaluation.

 33

Generally, architectural evaluation is a human-centered activity. The reviews are

typically conducted in the presence of key stakeholders, clients, designers, and the

evaluation team. Architecture evaluation may involve “thought experiments”,

modeling, and walking-through scenarios that exemplify requirements, as well as

assessment by experts who look for gaps and weaknesses in the architecture based

on their experience. The evaluation may be supported by analytic models, simulation

tools, and other architectural analysis means (e.g. parsers, Abstract State Machines,

etc). These may be quality-specific, suitable to reason about one quality goal (e.g.,

performance), or multi-quality goal, suitable for assessing more than one quality

goal.

2.2 Research Effort on Architectural Evaluation

In this section, we provide a comprehensive review of software architecture

evaluation methods. We trace the evolution of software architecture evaluation

methods starting from the early effort by [Parnas and Weiss, 1985] on Active Design

Reviews (ADRs) up to the latest existing effort. We describe the evolution of the

principles and practices of software architecture evaluation through the following

methods: the Software Architecture Analysis Method (SAAM) [Kazman et al., 1994];

the Architecture Trade-off Analysis Method (ATAM) [Kazman et al., 1996]; the

Active Attribute-Based Architectural Styles (ABASs) [Klein et al, 1999]; the PASA

Software Performance Engineering (SPE) [Smith 1990; Smith and Williams, 2002];

Reviews for Intermediate Designs (ARID) (Clements, 2000); and the Cost Benefit

Analysis Method (CBAM) [Kazman et al., 2001].

Effort on architectural evaluation goes back to the seminal work of David Parnas and

David Weiss [1985]. Their paper entitled “Active Design Reviews: Principles and

Practices” is regarded as the cornerstone to the architectural review/evaluation area.

In their paper, Parnas and Weiss expressed one of the fundamental principles behind

the architectural evaluation methods: undirected and unstructured design reviews

for software design do not work. Their work was motivated by the observations that

approaches to design review tend to be spotty, ad hoc, and not repeatable. The

common practice was –and still is- to identify a group of reviewer, drop a stack of

 34

read-ahead material on their desk a week or so prior the meeting, haul them in a

conference room for a few tedious hours, ask for comments on the material read, and

hope for the best [Clements et al, 2000]. The outcome of such practice is predictable

and entirely disappointing: failing to uncover any serious problems with the design

under consideration and propagating the problem to other phases. Obviously, this is

attributed to human nature: participants will not have cracked the read-ahead

material until the last minute (if at all), or perhaps they have read to make some

intelligent comment. In short, the outcome is an unexercised design artifact.

Parnas and Weiss prescribed a better way. ADRs are contrasted with unstructured

reviews in which people are asked to read a document, attend a long meeting, and

comment on whatever they wish [Clements and Northrop, 2002]. For validating

architectural (and other design) specifications, ADRs are suitable. ADRs are

particularly well suited for evaluating the designs of single components before the

entire architecture has been solidified [Clements and Northrop, 2001]. ADRs can be

used to evaluate an architecture that is still under construction. Reviewers are chosen

because of their areas of expertise, not simply because of their availability. Each

reviewer is given a questionnaire and/or some exercises to complete. The

questionnaires and/or the exercises compel them to use the documentation and

think about the architecture. The result is that the artifact being reviewed is actually

exercised. For example, an exercise might be, “How would you use the facilities

provided by this module to send a message to the user and wait a response?” The

reviewer would then be obliged to sketch out the answer in pseudo-code, using

facilities described in the design and the documentation.

The Software Engineering Institute (SEI) at CMU has played a notable role in

evolving and flourishing the principles and the practices of reviews that address

Parnas and Weiss’s concerns. They have argued to consider the architecture

evaluation as a standard part of the development cycle. With a particular focus on

architectural design, the SEI has developed a number of methods. Examples include

the Tradeoff Analysis Method (ATAM) [Kazman et al., 1996], the Software

Architecture Analysis Method (SAAM) [Kazman et al., 1994), and the Active Review

for Intermediate Designs (ARID) [Clements, 2000]. These methods have been applied

 35

for years on dozens of projects of all sizes an in a wide variety of domains. Other SEI

methods include the Attribute-Based Architectural Styles (ABAS) [Klein et al., 1999],

and The Cost Benefit Analysis Method (CBAM) [Kazman et al., 2002]. The only

notable effort outside SEI is the Software Performance Engineering (SPE) [Smith

1990; Smith and Williams, 2002]. We describe the above listed methods in the

subsequent sections.

The evaluation using these methods generally identifies what the quality goals of

interest are and then highlights the strengths and weaknesses of the architecture to

meet the identified goals. These methods either explicitly address a single quality

goal or multi-quality goals of interest. Abowd et al. [1996] broadly categorize existing

techniques to architectural evaluation as either questioning, measuring techniques,

or hybrid. Questioning techniques use scenarios, questionnaires, and checklists, and

the like for architectural investigation. Measuring techniques use metrics, simulation,

prototypes, or experimentations on running systems. Measuring techniques result in

quantitative results. These techniques differ from each other in applicability, but they

are all used to elicit discussion about the architecture and increase understanding of

the architecture’s “fitness” with respect to its requirements. Hybrid techniques may

combine both questioning and measuring. The architecture evaluation methods

described in this review are generally hybrid; they tend to elicit “discussion” about

the architecture using questioning techniques and use some measurements for

reasoning.

Conceptually, all the architecture evaluation methods described in this review are

active design reviews. They require the participation of experts for their specific

stake in the architecture. They pursue a path of directed analysis such as eliciting a

specific statements on quality goal(s) that the architecture must meet to be

acceptable, and then follow an analytical/measuring path to demonstrate how the

architecture satisfies (or does not satisfy) the quality goal(s).

 36

2.2.1 The Architecture Trade-off Analysis Method (ATAM)

The Architecture Trade-off Analysis Method (ATAM) [Kazman et al., 1996] does not

only reveal how well an architecture satisfies particular quality goals, but it also

provides insight into how these goals interact with each other – how they trade off

against each other [Clements et al., 2001]. ATAM is a scenario based architecture

evaluation method. A scenario describes the interaction with the system from the

stakeholders’ point of view. The ATAM uses three types of scenarios. These are use

case scenarios, growth scenarios, and exploratory scenarios. Use case scenarios describe

the typical uses of the completed running system. Growth scenarios represent typical

anticipated changes of the system. Exploratory scenarios expose the limits or

boundary conditions of the current design; in other words, they tend to expose

extreme changes that are expected to “stress” the system.

The input to the ATAM consists of an architecture, the business goals of a system,

and the perspectives of the stakeholders involved with the system. The ATAM

achieves its evaluation of an architecture by utilizing an understanding of the

architectural approach that is used to achieve particular quality goals and the

implications of that approach. The quality attributes that compromise system

“utility” (e.g. performance, availability, security, modifiability, usability, and so on)

are elicited, specified down to the level of scenarios, annotated with stimuli and

responses, and prioritized. The scenarios are used for the evaluators to understand

the inherent architectural risks, non-risks, sensitivity points to particular quality

attributes, and trade-offs among quality attributes.

The ATAM can be used at various stages of development (conceptual, before code,

during development, or after deployment). The ATAM is fully described in

[Clements et al., 2002].

 37

2.2.2 The Software Architecture Analysis Method (SAAM)

The Software Architecture Analysis Method (SAAM) [Kazman et al., 1994] elicits

stakeholder’s input to identify explicitly the quality goals that the architecture is

intended to satisfy. Unlike the ATAM, which operates around a broad collection of

quality attributes, the SAAM concentrates on attributes for modifiability, variability

(suitable for product line), and achievement of functionality. The development of

SAAM was motivated by the observation that practitioners regularly make claims

about their software architectures (e.g. “This system is more robust than its

predecessor”, “Using CORBA will make the system easy to modify and upgrade”)

that are untestable [Clements et al, 2001]. SAAM tends to make these claims testable;

it replaces claims with quality attributes (like maintainability, modifiability,

robustness, flexibility, and so forth) and uses scenarios to operationalize these

attributes.

SAAM indicates places where the architecture fails to meet its modifiability

requirements and in some cases shows obvious alternative designs that would work

better. Like ATAM, SAAM is a scenario-based method. A scenario in SAAM is a brief

description of some anticipated or desired use of the system. Scenarios are classified

as either direct or indirect scenarios. Direct scenarios are those scenarios that are

directly supported by the architecture, meaning that anticipated use require no

modification to the architecture for the scenario to be accommodated. An indirect

scenario is one that requires a modification to the architecture to be satisfied; the

architect describes how the architecture would need to be changed to accommodate

the scenario. When two or more indirect scenarios require changes to a single

component of an architecture, they are said to interact in that component. Areas of

high scenario interaction reveal potentially poor separation of concerns in a

component. This indicates that the architecture is not documented to the right level

of structural decomposition. The right level of structural decomposition often

demands that the decomposed component handles one task at a time, easing both its

comprehension and evolution.

 38

The input to SAAM consists of an enumerated set of stakeholder’s scenarios that

represent known or likely changes that the system will undergo in the future. These

scenarios are prioritized and mapped onto the architecture representation. The

activity of mapping indicates problem areas in the architecture, where the

architecture is overly complex (e.g. if distinct scenarios affect the same component(s))

and areas where changes tend be problematic (e.g. if a scenario causes changes to a

large number of components). Bass et al. [1998] and Clements et al [2002] provide a

complete description of SAAM.

2.2.3 Active Reviews for Intermediate Designs (ARID)

The Active Reviews for Intermediate Designs (ARID) [Clements, 2000] is a hybrid

design review method that combines the philosophy of the Active Design Review

(ADRs) with the scenario-based evaluation techniques, such as the ATAM or SAAM.

ARID is a method for evaluating subdesigns of partial architectures in their early or

conceptual phases. Designs of partial architectures are architectural in nature; they

are subdesigns that represent the stepping stones to the full architecture. It aims to

validate the suitability of the subdesign being proposed from the point of view of

other parts of the architecture. ARID is motivated by the fact that if the architectural

subdesigns are inappropriate, then the entire architecture can be undermined. Hence,

reviewing a design in its early pre-release stage provides valuable early insights into

the design’s viability and allows for timely discovery of errors, inconsistencies, or

inadequacies.

Note that ADRs are primarily used to evaluate detailed designs of coherent units of

software, such as modules or components. It tends to address (i) the sufficiency,

fitness, and suitability of the services provided by the design, and (ii) the quality and

the completeness of the documentation. ARID can be carried out in the absence of

complete documentation. In ARID, the reviewers are the design’s stakeholders. The

reviewers prepare a set of scenarios. Like ATAM and SAAM, a session is held for

scenario brainstorming and prioritization. After scenarios are gathered, a winnowing

process occurs. In this process, two or more scenarios that are versions of the same

scenario or one that subsumes another are merged. Prioritization is by voting: each

 39

reviewer is allowed to vote up to 30 percent of the number of scenarios. Beginning

with the scenarios that have received the most votes, the reviewers craft code or

pseudo-code that uses the design to carry each scenario.

2.2.4 Attribute-Based Architectural Styles (ABAS)

Attribute-Based Architectural Styles (ABASs) [Klein and Kazman, 1999] build on

architectural styles to provide a foundation for reasoning about architectural design.

An architectural style is a generic description of an architecture. An architectural

style specifies the component types, the topological structure relevant to the specific

style, and patterns of data and control interaction among the components. A single

architectural style may result in several ABASs, where every ABAS reasons about a

specific quality attribute. For example, an architecture with a Client-Server

architectural style might have a Security Client-Server ABAS, a Modifiability Client-

Server ABAS, a Performance Client-Server ABAS, and so forth. ABAS explicitly

associate a reasoning framework (qualitative or quantitative) with an architectural

style. The evaluation of an architecture is facilitated by a reasoning framework. The

reasoning is based on quality attribute-specific models (e.g. performance, reliability,

and maintainability models), which exist in the various quality attribute

communities. The reasoning framework may be quantitatively grounded (For

example based on rate monotonic analysis, queuing theory, or other metrics) or it

may be qualitative in nature (such as checklists, questionnaires, or scenario-based

analysis).

 For example, Rate Monotonic Analysis of the pipe-and-filter style allows the creation

of Performance Concurrent Pipelines ABAS to support the architect in reasoning

about worst-case latency quantitatively. Similarly, adding scenario-based reasoning

using SAAM, allows the creation of Modifiability Layering ABAS, which supports

the designer in reasoning about the effects of changes on the modifiability and

maintainability of the system. As far as evaluation is concerned, a style may be

“stressed” by stimuli on quality of interest. The objective is to gain insight into the

responses of the architecture under evaluation to these stimuli using a quality-specific

models as a basis of reasoning. The architectural properties are provided as input to

 40

the analysis. This aids the architect in understanding how to achieve a desired

response by manipulating the architectural parameters. ABAS facilities evaluating

qualities of a generated architectural design and trading among different

architectural alternatives.

2.2.5 Software Performance Engineering (SPE) & Performance
Assessment of Software Architectures (PASA)

Software Performance Engineering (SPE) is systematic quantitative approach to

proactively analyze and manage software performance [Smith, 1990; Smith and

Williams, 2002]. The SPE technique can be used to examine an architecture to see

whether the designed system will meet it performance constraints. It uses model

predictions to evaluate trade-offs in software functions, hardware size, quality of

results, and resource requirements. It also includes techniques for collecting data,

principles and patterns for performance-oriented design, and anti-patterns for

recognizing and correcting common performance problems. PASA, a Method for the

Performance Assessment of Software Architectures, is SPA based [Smith, 1990].

Participants in PASA are key developers and project managers. The assessment of

the architecture for performance using PASA starts by the identification of critical

use cases that are important to the responsiveness or scalability of the system. For

each critical use case, the scenarios that are important to performance are identified.

Measurable performance objectives are then identified for each key scenario. The

architecture is analyzed to determine whether it will support the performance

objectives. In the face of a performance discrepancy, the designer has many choices

to make: the performance requirements can be relaxed, functionality can be omitted,

hardware capability can be increased, or alternatives architectural designs for

meeting the performance objectives are recommended. Conceptually, PASA

resembles the ATAM, in which the singular quality of interest is performance.

2.2.6 The Cost Benefit Analysis Method (CBAM)

The Cost Benefit Analysis Method (CBAM) [Kazman et al., 2001] is an architecture-

centric method for analyzing the costs, benefits, and schedule implications of

architectural decisions. The CBAM builds upon the ATAM to model the costs and

 41

benefits of architectural design decisions and to provide means of optimizing such

decisions. Conceptually, CBAM continues where the ATAM leaves; it adds a

monetary dimension to ATAM as an additional attribute to be traded off. The CBAM

consists of the following steps: i) choosing scenarios and architectural strategies (AS);

ii) assessing Quality Attribute (QA) benefits; iii) quantifying the Architectural

Strategies; iv) costs and schedule implications; v) calculating desirability; and vi)

making decisions.

Upon completion of the evaluation using CBAM, CBAM could have guided the

stakeholders to determine a set of architectural strategies that address their highest

priority scenarios. These chosen strategies furthermore represent the optimal set of

architectural investments. They are optimal based upon considerations of: benefit,

cost, schedule, within the constraints of the elicited uncertainty of these judgments

and the willingness of the stakeholders to withstand the risk implied by uncertainty.

To quantify the architectural strategies benefits, stakeholders are asked to rank each

AS in terms of its contribution to each quality attribute of –1 to +1. A +1 means that

this AS has substantial positive effect on the QA (for example, an AS under

consideration might have substantial positive effect on performance) and –1 means

the opposite. Each AS can be assigned a computed benefit score from –100 to +100.

CBAM doesn’t provide a way to determine the cost; it considers that cost

determination is a well-established component of software engineering and is

outside its scope. The benefits and scores result in the ability to calculate desirability

metrics for each architectural strategy. The magnitude of desirability can range from

0 to 100.

 42

2.3 Evaluating Architectural Stability

In this section, we first document research motivation and perspectives on

architectural stability, as reported in the literature. We then discuss why and how to

evaluate an architecture for stability. Finally, we differentiate between two types of

approaches to evaluation; these are retrospective and predictive.

2.3.1 Architectural Stability in Perspective

Ongoing research on the relation between requirements and software architectures

has considered the architectural stability problem as an open research challenge and

difficult to handle [Finkelstein, 2000; Nuseibeh, 2001; van Lamsweerde, 2001;

Emmerich 2002]. In particular, Finkelstein [2000] motivated research in architectural

stability. Nuseibeh [2001] proposed the “Twin Peaks” model, a partial and simplified

version of the spiral model. The cornerstone of this model is that a system’s

requirements and its architecture are developed concurrently; that is, they are

“inevitably intertwined” and their development is interleaved. Nuseibeh advocated

the use of various kinds of patterns – requirements, architectures, and designs- to

achieve the model objectives. As far as architectural stability is concerned, Nuseibeh

had only exposed a tip of the “iceberg” (as referred to by Nuseibeh): development

processes that embody characteristics of the Twin Peaks are the first steps towards

developing architectures that are stable in the face of inevitable changes in

requirements. Nuseibeh noted that many architectural stability related questions are

difficult and remain unanswered. Examples include: what software architectures (or

architectural styles) are stable in the presence of changing requirements, and how do

we select them? What kinds of changes are systems likely to experience in their

lifetime, and how do we manage requirements and architectures (and their

development processes) in order to manage the impact of these changes? Our work

addresses some of these questions.

 43

Figure 2.1. Twin Peaks [Nuseibeh, 2001]: a model for the concurrent
development of “progressively” more detailed requirements and
architectural (design) specifications

Not far from the motivation of bridging the gaps between requirements and software

architectures, van Lamsweerde [2000] noted that the goal-oriented approach to

requirements engineering may support building and evolving software architectures

guaranteed to meet both its functional and non-functional requirements. As far as the

architectural stability problem is concerned, van Lamsweerde noted that:

 “Even though streamlined derivation processes may be envisaged for
architectural development, things get much more complicated for evolution.
For example, the conflict between requirements volatility and architectural
stability is a difficult one to handle”. [van Lamsweerde, 2000]

Emmerich [2002] has reflected on the architectural stability problem with a particular

focus on developing software architectures induced by middleware. Specifically,

Emmerich considered the architecture stability problem from the deployment

perspective of distributed components technology, in response to changes in non-

functional requirements. Emmerich advocates adjusting requirements elicitation and

management techniques to elicit not just the current non-functional requirements,

but also to assess the way in which they will develop over the lifetime of the

architecture. These ranges of requirements may then inform the selection of

distributed components technology, and subsequently the selection of application

server products. Emmerich considers that addition or changes in functional

requirements can be addressed in distributed component-based architectures by

adding or upgrading the components in the business logic. However, changes in

 44

non-functional requirements are more critical; they can stress an architecture

considerably, potentially leading to an architectural “breakdown”. For example, such

breakdown may occur if the container or application server, selected to execute

distributed components, does not provide sufficient deployment flexibility to meet

the changing requirements. As a result, the container or application server has to be

changed, which is considerably more expensive than just adjusting a component

replication strategy.

In summary, these brief positions have reflected on open challenges and possible

strategies in developing software architectures that need to be stable as requirements

evolve. They have highlighted the architectural stability problem from a

requirements perspective. Focused research attempts, however, have not followed

these lines. Hence, the concept is still far from being fully understood and the

problem is left unaddressed. Our perspective provides a compromise through

linking technical issues to value creation. The approach, which we suggest in this

thesis, has the promise to provide insights and a basis for analysis and support for

many of the concerns highlighted above. The approach demonstrates that using

value-based reasoning, we can analyze for architectural stability and support the

development of software systems that need to adapt to inevitable evolving

requirements.

2.3.2 Approaches to Evaluating Architectural Stability

Evaluating architectural stability aims to assess the extent to which the system of a

given architecture is evolvable, while leaving the architecture and its associated

design decisions unchanged as the requirements change. Approaches to evaluating

software architectures for stability can be retrospective or predictive [Jazayeri 2000].

Both approaches start with the assumption that the software architecture’s primary

goal is to guide the system’s evolution. Retrospective evaluation looks at successive

releases of the software system to analyze how smoothly the evolution took place.

Predictive evaluation provides insights into the evolution of the software system

based on examining a set of likely changes and the extent to which the architecture

can endure these changes.

 45

Retrospective Evaluation

To the author’s knowledge, the only visible research effort on architectural stability is

the work of Jazayeri [2002]. Jazayeri has looked at the problem from a software

evolution perspective. Jazayeri motivated the use of retrospective approaches for

evaluating software architectures for stability. Retrospective evaluation looks at

successive releases of a software system to analyze how smoothly evolution took

place. The analysis relies on comparing properties from one release of the software to

the next. The intuition is to see if the system’s architectural decisions remained intact

throughout the evolution of the system, that is, through successive releases of the

software. Jazayeri refers to this “intuitive” phenomenon as architectural stability.

Retrospective analysis can be used for empirically evaluating an architecture for

stability; calibrating the predictive evaluation results; and predicting trends in the

system evolution [Jazayeri, 2002]. In other words, retrospective analysis can also

provide a basis for predictive analysis. For example, previous evolution data of the

system may be used to anticipate the resources needed for the next release of the

system, or to identify the components most likely that require attention, need

restructuring or replacements, or to decide if it is time to entirely retire the system. In

principle, predictive analysis and retrospective analysis should be combined.

However, perfect predictive evaluations would render retrospective analysis

unnecessary [Jazayeri, 2002].

Jazayeri’s approach uses simple metrics such as software size metrics, coupling

metrics, and color visualization (see Figure 2.2.) to summarize the evolution pattern

of the software system across its successive releases. The evaluation assumes that the

system already exists and has evolved. This approach is therefore not preventive and

unsuitable for early evaluation (unless the evolution pattern is used to predict the

stability of the next release). The evaluation appears to be expensive and unpractical

(in the absence of dedicated tools), for it requires information to be kept for each

release of the software. Such data could be available through configuration

management repositories. Yet such data is not commonly maintained, analyzed, or

exploited. Moreover, as we will see in Chapter 3, the problem of architectural

stability is strategic in essence and not purely technical. Jazayeri addresses the

problem from a purely technical perspective.

 46

Figure 2.2. Color visualization of module evolution- Jazayeri [2002]

Predictive Evaluation

Retrospective approaches for evaluating architectural stability are unsuitable for

early evaluation; the approach assumes that the system already exist and has

evolved. The evaluation tends to summarize how smoothly the evolution has taken

place. In contrast, predictive approaches can be applied during the early stages of the

development life cycle to predict threats of evolution to the stability of the software

architecture. Unlike retrospective approaches, predictive approaches are preventive;

the evaluation aims to understand the impact of the change on the stability of the

architecture if the likely changes need to be accommodated, so corrective design

measures can be taken. Therefore, in predictive approaches the effort to evaluation is

justified and the evaluation is generally cost effective, when compared to

retrospective approaches. Briefly, in ArchOptions (detailed in Chapter 4), we

examine a set of likely changes that are critical to the evaluation. This begs the

question: How can we predict the change? We pursue scenarios as a possible

solution to describe these changes. To link the likely future change in requirements

to the architecture, we adopt Goal-Oriented Requirements Engineering (GORE)

paradigm, where the goals are extracted from scenarios [Anton, 1997]. We then

 47

predict the extent to which the architecture can endure these changes taking a value-

based reasoning to prediction.

2.4 Architectures Description Languages (ADLs) and
Architectural Evaluation

Although software evaluation methods are typically human-centered, formal

notations for representing and analyzing architectural designs, generically referred

to as Architectures Description Languages (ADLs), have provided new opportunities

for architectural analysis [Garlan, 2000] and validation. In this section, we briefly

survey efforts on ADLs as they have implications for supporting the evaluation of

software architectures. We explain how ADLs can be used to support the evaluation

of software architectures in general and provide some insights on their use to

evaluate the architecture for stability in particular.

ADLs are languages that provide features for modeling a software system’s

conceptual architecture [Medovidovic and Taylor, 1997]. ADLs provide a concrete

syntax and a conceptual framework for characterizing architectures [Garlan et al.,

1997]. The conceptual framework typically subsumes the ADL’s underlying semantic

theory (e.g., CSP, Petri nets, finite state machines).

A number of ADLs have been proposed for modeling architectures both within a

particular domain and as general-purpose architecture modeling languages

[Medovidovic and Taylor, 1997]. Examples are Aesop [Garlan et al., 1995], Darwin

[Magee et al., 1995; Magee and Kramer, 1996], MetaH [Vestal, 1996], C2

[Medovidovic et al., 1996], Rapide [Luckham and Vera, 1995], Wright [Allen and

Garlan, 1994], UniCon [Shaw et al., 1995], SADL [Moriconi et al., 1995], and ACME

[Garlan et al., 1997].

ADLs are often intended to model large, distributed, and concurrent systems.

Evaluating the properties of such systems upstream, at the architectural level, can

 48

substantially lessen the costs of any errors. The formality of ADL renders them

suitable for the manipulation by tools for architectural analysis. In the context of

architectural evaluation, the usefulness of an ADL is directly related to the kinds of

analysis a particular ADL tends to support. The type of analyses and evaluation for

which an ADL is well suited depends on its underlying semantic model. We refer to

Medovidovic and Taylor [1997] to state few examples: Wright is based on CSP; it

analyses individual connectors for deadlocks. MetaH and UniCon both support

schedulability analysis by specifying non-functional properties, such as criticality

and priority. SADL can establish relative correctness of two architectures with

respect to a refinement map. Rapide’s and C2’s event monitoring and filtering tools

also facilitate analysis of an architecture. C2 uses critics to establish adherence to

style rules and design guidelines.

Another aspect of analysis, that supports architectural evaluation, is enforcement of

constraints. Parsers and compilers enforce constraints implicit in types, non-

functional attributes, component and connector interfaces, and semantic models.

Static and dynamic analyses are used. Static analysis verifies that all possible

executions of the architecture description conform to the specification. Static analysis

helps the developers to understand the changes that need to be made to satisfy the

analysed properties. They span approaches such as reachability analysis [Holzman,

1991; Valmari, 1991; Godefroid and Wolper, 1991], symbolic model checking [Brush

et. al, 1990; McMillan, 1993], flow equations, and data-flow analysis [Dwyer and

Clarke, 1994]. The applicability of such techniques to architecture descriptions has

been demonstrated in [Naumovich et al., 1997] using two static analysis tools. These

tools are INCA [Corbett and Avrunin, 1995] and FLAVERS [Masticola and Ryder,

1991; Dwyer and Clarke, 1994]. Rapide [Lukham et al., 1995] provides a support to

simulate the executions of the system. The simulation verifies that the traces of those

executions conform to high-level specifications of the desired behavior. Allen and

Garlan [1994] use the static analysis tool FDR [Formal Systems, 1992] to prove

freedom from deadlock as well as compatibility between the component and

connectors in an architecture description. The term dynamic architectures denote

that application’s architecture evolves during runtime. Examples of analyses support

for dynamic architectures include the work of [Magee and Kramer, 1996]. Magee and

 49

Kramer’s Darwin provides a support to the analysis of distributed message-passing

systems.

In the context of evaluating software architectures for stability, no notable research

effort has explored the role of ADLs in supporting such evaluation. However, we

believe that ADLs have the potential to support such evaluation. For instance

comparing properties of ADL specifications for different releases of a software can

provide insights on how the change(s) or the likely change(s) tends to threat the

stability of the architecture. This can be achieved by analyzing the parts of newer

versions that represent syntactic and semantic changes. Moreover, the analysis can

provide insights into possible architectural breakdown upon accommodating the

change. For example, the analysis may show how the change may break the

architectural topology (e.g., the architectural style) and/or the architectural structure

(e.g., components, connectors, interfaces ect.). We note that ADLs have potential for

performing retrospective evaluation for stability. In this context, the evaluation can

be performed at a correspondingly high level of abstraction. Henceforth, the

evaluation may be relatively less expensive as when compared, for example, to the

approach taken by [Jazayeri, 2002], detailed in the previous section.

2.5 Critical Assessment

Architectural evaluation aims at providing confidence that the system of the crafted

architecture is buildable, meets both its functional and quality goals (i.e., non-

functional requirements), and satisfies the constraints entailed by the environment in

which the system works. Table 2.1 depicts a summary of the surveyed general-

purpose software architectural evaluation methods. These methods provide

frameworks for software architects to evaluate architectural decisions with respect to

quality attributes that need to be met by the system. Examples of these quality

attributes include performance, security, reliability, and modifiability. Despite the

concern with “change” and accommodating changes, some existing architectural

evaluation methods focus explicitly on construction and only implicitly, if not at all,

on the phenomenon of software “evolution”. Further, none of these methods,

 50

addresses stability of an architecture over time. For example, ATAM and SAAM

indicate places where the architecture fails to meet its modifiability requirements and

in some cases shows obvious alternative designs that would work better. When used

for evaluating modifiability, the input to these methods consists of an enumerated

set of stakeholders’ scenarios that represent known or likely changes that the system

will undergo in the future. These scenarios are prioritized and mapped onto the

architecture representation. The activity of mapping indicates problem areas in the

architecture: areas where the architecture is overly complex (e.g., if distinct scenarios

affect the same component(s)) and areas where changes tend be problematic (e.g., if a

scenario causes changes to a large number of components). The approaches to

evaluation involve “thought experiments”, modeling, and walking-through

scenarios that exemplify requirements, as well as assessment by experts who look for

gaps and weaknesses in addressing modifiability based on their experience.

However, these methods do not support their prediction with an analytical basis and

rigorous models. When methods, such as SAAM and ATAM are used to analyze

qualities that are related to change (such as modifiability), they do not predict and

measure the capability of the architecture to withstand the change. This renders their

predictive effectiveness myopic. Further, these methods have ignored any economic

considerations, with CBAM [Asundi and Kazman, 2001] being the notable exception.

The evaluation decisions using these methods tend to be driven by ways that are not

connected to, and usually not optimal for value creation. Factors such as flexibility,

time to market, cost and risk reduction often have high impact on value creation

[Boehm and Sullivan, 2000]. Such ignorance is in stark contrast to the objective of

architectural evaluation, where cost reduction, risk mitigation, and long-term value

creation are among the major drivers behind conducting evaluation. This brings a

need for economics-driven models of predictive power for supporting the

evaluation. Such provision is important for “it assists the objective assessment of the

lifetime costs and benefits of evolving software, and the identification of legacy

situations, where a system or component is indispensable but can no longer be

evolved to meet changing needs at economic cost” [Cook et al., 2001].

 51

Table 2.1. A summary of the reviewed general-purpose evaluation methods

Method Technique Goals of
Interest

Approach to Evaluation Development/
Evolution

ATAM Scenario-
based

Emphasizes:
modifiability,
security, and
performance

Thought experiments,
walk through scenarios,
assessment by experts

Development/
Evolution
implicit

SAAM Scenario-
based

Modifiability,
variability,

achievement of
functionality

Thought experiments,
walk through scenarios,
assessment by experts

Development/
Evolution
implicit

ARID Scenario-
based

Suitability of
functionality

Walk through Scenarios,
pseudo-code analysis,
assessment by experts

Development

ABAS Scenario-
based;

Measuring

Emphasizes:
modifiability,
security, and
performance

Reasoning framework
associated with an

architectural style to
facilitate the evaluation

Development/
Evolution
implicit

PASA/SPE Use-cases/
Scenario-

based;
Measuring

Performance Predictive models to
evaluate trade-offs in
software functions;

hardware size; quality of
results; and resource

requirements

Development

CBAM Scenario-
based;

Measuring

See ATAM
AND Cost,

benefits,
Scheduality

Economics-driven; Based
on optimizing benefits;

costs; and schedule

Development/
Evolution

Despite addressing the costs and benefits of architectural strategies, CBAM does not

address stability. Further, CBAM does not tend to capture the long-term and the

strategic value of the specified strategy. When CBAM complements ATAM [Kazman

et al., 1998] to reason about qualities related to change such as modifiability, CBAM

does not supply a rigorous predictive basis for valuing such impact.

We have described research perspectives on architectural stability. We have

discussed why and how to evaluate an architecture for stability. We have

differentiated between two types of approaches for evaluation; these are

retrospective and predictive, as depicted in Table 2.2. We have critically compared

the strengths and limitations of these approaches. Retrospective evaluation can

summarise how smoothly the evolution took place across releases of the software

 52

system. The evaluation assumes that the system already exists and has evolved

making this approach not preventive and unsuitable for early evaluation (unless the

evolution pattern is used to predict for the stability of the next release). Evaluation

appears to be expensive and unpractical (in the absence of dedicated tools), for it

requires information to be kept for each release of the software. Such information

could be available through configuration management repositories. Yet, such data is

not commonly maintained, analyzed, or exploited. Though using retrospective

evaluation it may be feasible to predict future evolvability of an architecture by

assessing how easily it evolved in the past, these approaches cannot easily be applied

for short and uncertain history [Cook et al., 2001]. In contrast, predictive evaluation

provides insights into the evolution of the software system based on examining a set

of likely changes and the extent to which the architecture can endure these changes.

Unlike retrospective evaluation, predictive evaluations are preventive and can lead

to corrective design measures.

Moreover, the problem of architectural stability and its “resilience” over time is

strategic in essence and not purely technical. Jazayeri has addressed the problem

from a purely technical perspective. Instead, we aim to assist in proactively

engineering stable architectures. We believe that the economic interplay between

evolving requirements and architectural stability need to be addressed.

Table 2.2. Methods for explicit evaluation for stability and evolution

Method Technique Goals of
Interest

Approach to Evaluation Development/
Evolution

Jazayeri’s
Approach

Quantitative
Retrospective

Stability Retrospective evaluation;
design metrics

Evolution
Explicit/

Development
ArchOptions Quantitative

Predictive
Stability,
Added
Value

Predictive evaluation;
Economics- Driven; value

based reasoning; Real
options theory

 Evolution
Explicit/

Development

Though our current work on ArchOptions does not exploit Architecture Description

Languages (ADLs), we have briefly surveyed research effort on ADLs as they have

implications on architectural evaluation. The key message is that that role of ADLs is

left unexplored in the evaluation of architectural stability. In this context, it is

 53

believed that ADLs can facilitate the evaluation at correspondingly higher level of

abstraction than code, as when compared to the approach taken by [Jazayeri, 2002].

Hence, the evaluation may be relatively less expensive.

To address the shortcomings of the surveyed methods, the next Chapter highlights

the requirements for evaluating architectural stability from an economics driven

software engineering perspective [EDSER 1-7, 1999-2005; Boehm and Sullivan 2000].

 54

Chapter 3

Requirements for Evaluating Architectural
Stability

In the previous chapter, we have reviewed research work on architecture evaluation.

We have discussed their limitations in addressing architectural evaluation for

stability. In this chapter, we state the requirements for evaluating architectural

stability when addressed from an economics-driven perspective [EDSER 1-7, 1999-

2005; Boehm and Sullivan 2000].

3.1 Requirements for Evaluating Architectural Stability

In a nutshell, if the business goal is that a system should be long-lived, should evolve

to accommodate future requirements, and should support value creation, it becomes

necessary to evaluate the stability of an architecture. The evaluation has to relate

technical issues to value creation. The evaluation has to proactively address the

economic ramifications of the likely critical changes in requirements and their impact

on the architecture. Below, we highlight the requirements that should be addressed

when evaluating an architecture for stability.

Assess Evolution

Despite the concern with “change” and accommodating changes, existing

architectural evaluation methods focus explicitly on construction and only implicitly,

if not at all, on the phenomenon of software “evolution”. A Software architecture

represents those design decisions that are hardest to change [Parnas, 1996]. From an

 55

evolution perspective, architectural evaluation is a preventive activity that aims to

delay the decay and limit the effect of software aging [Parnas, 1996]. Easing

evolution is the underlying, if implicit, motivation for many of the recent software

development practices, which place considerable emphasis on the architecture of the

software system as the key artifact involved. For example, product-line architectures

aim at the systematic controlling of software evolution [Jazayeri, 2002]. Product-line

architectures anticipate the major evolutionary milestones in the development of the

product, capture the properties that remain constant through evolution and

document variability points from which different family members may be created.

The approach gives a structure to the products’ evolution and possibly rules out

some unplanned evolutions, if the architecture is respected [Jazayeri, 2002]. Though

the software architecture, as a key designed artifact, is considered to be “the

promising solution for easing software maintenance and evolution” [Jazayeri, 2002],

rapid technological advances and industrial evidence are now showing that the

architecture is creating its own maintenance, evolution, and economics problems. For

example, assume that a distributed e-shopping system architecture which relies on a

fixed network needs to evolve to support new services, such as the provision of

mobile e-shopping. Moving to mobility, the transition may not be straightforward:

the original distributed system’s architecture may not be respected, for mobility

poses its own non-functional requirements for dynamicity that are not prevalent in

traditional distributed setting [Capra, 2003]. Examples of these requirements include

the need to react to frequent changes in the environment, such as change in location,

resource availability, variability of network bandwidth, the support of different

communication protocols, loss of connectivity when the host need to be moved, and

so forth. These requirements may not be satisfied by the current fixed architecture,

the built-in architectural caching mechanisms, and/or the underlying middleware.

Replacement of the current architecture and/or its underlying middleware may be

required.

Therefore, what constrains the success of evolving the system with a given

architecture is the ability of the architecture to support the likely change in

requirements. In evaluating architectural stability, the architectural evaluation may

not only need to assess how the current requirements could be realized by the

 56

architecture, but also the ranges in which these requirements may change and evolve

during the life time of the software system.

“Continual” Investment Management in an Architecture

According to Bennet and Rajilich [2000], software evolution takes place only when

the initial development was successful. The goal is to adapt the system to the

changing requirements. The inevitability of evolution is documented in [Lehman,

1985]: “the software is being evolved because it is successful in the marketplace,

revenue streams are buoyant, user demand is strong, and the organization is

supportive. Return on investment is excellent”. Hence, evolution is primary driven

by business needs. Conversely, software evolution needs to seek and create value

relative to the resources invested [Bahsoon and Emmerich, 2004a]. As such, the costs

of evolving software should not outweigh the returns from the process to achieve a

net benefit. Under the assumption that the primary role of the software architecture

is to guide evolution, the success of software evolution is hence dependent on the

architecture [Bahsoon and Emmerich, 2004a; Bahsoon and Emmerich, 2004b]. An

architecture needs to be flexible enough to accommodate the change(s) without

breaking the architecture itself, the supporting infrastructure, and/or the topology.

Breaking the architecture is costly. On the other hand, having an “overly flexible”

architecture implies upfront costs, which could not be utilized to achieve a net

benefit [Bahsoon and Emmerich, 2004a; Bahsoon and Emmerich, 2004b]. For

example, if a likely change does not occur, then the value of the system decreases

because the flexibility will not pay off. When a likely change is significant enough,

the architecture needs to be considered to incorporate enough flexibility with the

promise that such flexibility could lead to the right to claim future cost savings.

Accounting for evolution brings a need for continuous “management” and

optimization for the net benefit of the flexibility provided by the architecture. This

needs to be considered upon evaluating an architecture for stability. As the success

(failure) of evolution is very much linked to the architecture, the long-term costs and

likely savings are revealing measures to the “resilience” of the architecture to the

change. The ability of a system with a given architecture to maintain/add value as

the software system evolves is hence indicative of its stability.

 57

In short, “designing for change” is approached by designing flexible and

customizable architectures. One of the major criteria that the architectural evaluation

for stability should consider is optimizing the net-benefit of the embedded or the

adopted flexibility of the architecture relative to the likely changes. A particular

question of interest is: how much to do we need to invest in designing for change

and how valuable are the associated design decisions? Investing in flexibility incurs

upfront costs and may render future and long-term benefits, such as supporting

software reuse and instantiating from the core architecture new market products.

Hence, the tradeoff between the upfront investment and the long-term future

benefits should be assessed.

Strategic Considerations

In software engineering, the term strategy refers to techniques that treat uncertainty,

incomplete knowledge, risk, competition, and related issues systematically,

consciously, and in a sound manner with the aim to maximize the expected value of

a given product or project [Sullivan et al., 1997]. Strategic considerations are related

to or concerned with strategy. The term implies that the focus is on improving and

sustaining the “performance” of the software system over time in meeting both its

technical and business goals, aligning the system and its evolution with the

organization’s performance objectives, and seeking new strategic opportunities. We

consider the architecture as the appropriate level of abstraction at which to think of

strategic software decisions and guide the evolution of the software system. Further,

the problem of architectural stability and the architecture “resilience” to evolution is

strategic in essence and not purely technical [Bahsoon and Emmerich, 2003a]. A

stable architecture is a significant strategic asset during the operation and the

evolution of the software system. Stability is an architectural quality with strategic

importance and with long-term strategic and operational benefits. Stability is said to

be of strategic importance as it reflects on the architecture’s “performance” over time,

the architecture “dynamism” with respect to likely changes in requirements over the

projected life of the software system, and its “resilience” to change(s). Architectural

stability may result in benefits of strategic importance, such as the opportunity to

instantiate from the architecture new market products; the flexibility to respond to

competitive forces and changing market conditions; and the ability to accommodate

new services. It may also render long-term operational benefits, such as reduced

 58

maintenance cost. A characteristic of these benefits, whether strategic or operational,

is that their payoffs are uncertain and may not be immediate.

Our consideration of stability as a strategic architectural quality reveals a new

segmentation of architectural qualities, which appears to be absent from the software

architecture literature. For example, Bass, Clements, and Kazman [1997] segment

architectural qualities into two: these are dynamic (i.e., qualities observed via

execution, e.g. performance) or static (i.e., qualities not observed via execution, e.g.

modifiability). Both segments correspond to qualities, which need to be “built” into

the software to fulfill its requirements. Even when qualities such as modifiability are

considered under Bass and Clements’ segmentation, they are treated from a “build”

perspective as opposed to an investment. However, stability poses challenges, which

make it difficult to be considered under Bass and Clements’ segmentation of

architectural qualities. Intuitively, the stability term refers to the “resilience” of an

entity over a time period in the face of changes. The term implies a time dimension; it

necessitates observing the effect of the change on the “global” properties of the

subject architecture relative to its predecessor(s). The “global” properties may not

necessarily be structural or behavioral; they may “crosscut” the business goals and

other factors that constrain the architectural decisions.

In this context, evaluating an architecture for stability must address the following

strategic dimensions: (i) the time-line in which likely changes may need to be

realized; (ii) the long-term cost of accommodating the change; and (iii) the long-term

value implications of the architectural potential in accommodating the change.

Addressing Uncertainty

Uncertainty is defined as an event that can happen, but the probability of its

occurrence is unknown [Ross et al., 1996]. We identify three major types of

uncertainty, which need to be addressed upon evaluating an architecture for

stability. First, the uncertainty associated with the change, its complexity, and its

likelihood. The change could be considered as a major source of uncertainty that may

place the investment in a particular architecture at risk. For example, the uncertainty

 59

might be because of changes in stakeholders preferences and expectations, features

of a system that are likely to change in the future and across a product line, changes

in the environment in which the system works, macroeconomic influences,

organizational changes, new market demands such as standardization,

internationalization, product segmentation, economics constraints and so forth.

These changes may not necessarily be perceived during the development of the

software system. Second, when the change in requirements is likely, the value that

the analysts ascribe to the architecture in supporting the change, perhaps resulting in

new products, is often uncertain. Uncertainty of this value implies variation in the

probable future values of the “architectural potential” relative to the change. Third,

even if the changes in requirements are perceived during the development, the You

Aren’t Going to Need It principle (YAGNI) [http://xp.c2.com/], for example, may

entail delaying the implementation of some of these requirements until uncertainty

about their value is resolved. When applicable, this means that the evaluation shall

also address the value of delaying an investment decision in the change and relative

to the uncertainty of the requirement’s value itself. Fourth, the uncertainty which is

partially driven by the immaturity of the discipline and the state-of-practice in

eliciting requirements, anticipating their changes, the way the change relate to the

architecture, and the unique nature of the architecture as a capital asset.

Unfortunately, there are no silver bullets, that can address these challenges. Yet, we

believe that architectural evaluation for stability should try to control these

uncertainties as much as possible in order to mitigate risks.

Architectural Integrity

An architecture with limited flexibility may realize the change through “cosmetic”

solutions of an ad-hoc or propriety nature, such as modifying part of the architecture;

implementing additional interfaces; extending the primitives of the underlying

middleware; and so forth. These solutions could be costly, problematic, and

unacceptable. Yet these solutions may turnout to be more cost-effective in the long-

run and relative to other alternatives. Even, if we accept the fact that modifying the

architecture or the infrastructure is the only solution towards accommodating the

change, analyzing the impact of the change and its economics becomes necessary to

see how much we are expending to “re-maintain” or “re-achieve” architectural

 60

stability relative to the likely change(s) [Bahsoon et al., 2005]. Though it might be

appealing to intuition that the “intactness” of the structure is the definitive criteria

for selecting a “more” stable architectures, the practice reveals a different trend: it

boils down to the potential added value upon exercising the change. Hence, under

some circumstances breaking the architecture could be acceptable [Bahsoon et al.,

2005]. Therefore, upon evaluating an architecture for stability, a tradeoff between the

architectural “intactness” and the cost-effectiveness of amending the architecture to

accommodate the change must be addressed.

3.2 Summary

We have highlighted the requirements for evaluating architectural stability from an

economics-driven software engineering perspective. These requirements entail

finding an approach for assessing evolvability. The approach shall aim at assessing

the economic ramifications of the likely critical changes in requirements and their

impact on the architecture of the software system, the “profitability” of evolution,

and consequently the success of evolution. The approach shall provide the basis for

analyzing many of the economic tradeoffs involved in designing and reengineering

for the change. Examples include (i) the economic tradeoff between the upfront cost

of enabling the change on the architecture of the software system and the resulting

long-term future benefits, and (ii) the economic tradeoff between the architectural

integrity and the cost-effectiveness of amending the architecture to accommodate the

change.

 61

Chapter 4

ArchOptions: A Model for Evaluating
Architectural Stability with Real Options
Theory

In the previous chapter, we have highlighted the requirements for evaluating

software architectures for stability. In this chapter, we pursue an economics-driven

approach to address these requirements. We describe a novel model that exploits

options theory to evaluate architectural stability. The model is referred to as

ArchOptions [Bahsoon et al., 2005; Bahsoon and Emmerich, 2004a; Bahsoon and

Emmerich, 2004b; Bahsoon 2003; Bahsoon and Emmerich, 2003b]. The model

provides “insights” into the evolution of the software system based on valuing the

extent to which an architecture is flexible enough to endure some likely critical changes

in requirements. The model builds on Black and Scholes[1973] financial options

theory (Nobel Prize winning) for valuing this flexibility. The valuation provides a

basis for analyzing the stability and investment decisions for many architecture-

centric approaches to evolution.

We first provide background on real option theory that is necessary to understand

our approach. We then describe the options-based approach to the systematic

evaluation of architectural stability, leading to the ArchOptions model. We show

how we have derived the model, the analogy and the assumptions that the model

makes, the model formulation and its sensitivity, and we report on its possible

interpretations and usage scenarios. We finally provide an overview of closely

related work on the use of real options in software design and engineering.

 62

4.1 Real Options: A Brief Background

Definition

Central to the real options approach is the concept of an option. An option is an asset

that provides its owner the right without a symmetric obligation to make an

investment decision under given terms for a period of time into the future ending

with an expiration date [Schwartz and Trigeorgis 2000]. If conditions favorable to

investing arise, the owner can exercise the option by investing the strike price

defined by an option. A call option gives the right to acquire an asset of uncertain

future value for the strike price. A put option provides the right to sell an asset at that

price. A European option can only be exercised on the expiration date of the option.

A real option is an option on non-financial (real) asset, such as a parcel of land or a

new product design.

What Problems Do Real Options Address?

Real options theory addresses the problem that investment valuation based on

discounted cash flow (DCF) and net present value (NPV) tend to overlook the value

of decision flexibility. Critics recognize that DCF and NPV often undervalue

investment opportunities, leading to myopic decisions, underinvestment, and

eventual loss of competitive position. The problem originates in the inability of these

techniques to properly value important strategic considerations and to capture the

value of future operating flexibility associated with many projects. Myers [1987]

acknowledged that these techniques have inherent limitations when it comes to

valuing investments with significant operating or strategic options, for they overlook

the sequence of interdependence among investments over time. Myers [1987]

suggested that options pricing holds the best promise to value such investments.

The options pricing approach has two major advantages. First, it relieves the

decision-maker from having to forecast cash flows and predict the probabilities of

future states. Second, it provides valuations that are not based on subjective,

questionable parameter values, but rather on data from the market or market-

calibrated data. In a nutshell, the decision-maker provides the current value of the

asset under consideration and the variance in the value over time. That is enough to

 63

determine the “cone of uncertainty” in the future value of the asset, rooted as its

current value and extending over time as a function of volatility. The variance is

obtained by identifying assets in the market that are subject to the same risks as the

one in question. Valuing flexibility using options considers that the risk (variance) is

implicit in the asset being considered be “in the span of the market”.

Origin

The real options field opened in 1977 when the economist Myers noted that “part of

the value of the firm is accounted for by the present value of the options to make

further investments on possibly favorable terms” [Myers, 1977]. Myers saw that, all

else equal, a firm that is in a position to exploit lucrative opportunities, for example,

through an upfront strategic investment, is worth more than a firm that is not. Myers

saw that such opportunities take the forms of real (as opposed to financial) options.

Real options theory is an emerging field and based on financial options theory.

Financial options have been studied since 1900; however, the seminal modern

results, which provided long-sought closed-form mathematical formulations for

valuing financial options, are due to Black and Scholes [1973], and Merton [1973].

Black and Scholes received the 1997 Nobel Prize in economics for their work on the

topic. Many other results, which are now elements of basic finance, have been

produced since (e.g., [Brealey and Myers, 1996; Cox and Rubinstein, 1984 and 1979;

and McDonald and Siegel, 1986]). For the past 25 years, researchers have been

building the theory of real options (e.g., [Brealey and Myers, 1996; Dixit and Pindyck,

1994; Trigeorgis, 1995]).

Real Options Valuation

Options are valued using a variety of techniques. These techniques make different

assumptions and require different tools to capture uncertainty. Uncertainty is often

captured by a certain stochastic model that represents the movement of the

underlying asset value over time. The options valuation determines the value of a

project or investment opportunity from the values of other market-traded assets. The

quantitative origins of real options derive from the seminal work of Black and

Scholes [1973] in pricing financial options. Subsequently, Cox, Ross and Rubinstein

[1979] developed a binomial approach that enables a more simplified valuation of

 64

options in discrete time. The mechanics for calculating the value of an option reduce

to folding back a decision tree, as done for either a dynamic DCF analysis or decision

analysis [Schwartz and Trigeorgis, 2000]. The difference among these techniques

revolves around how one chooses relevant values and represents uncertainty. Option

pricing focuses on market value and uses the standard deviation of the rate of return

on an underlying or (twin asset). The underlying asset is an asset with the same risks

as the project (or asset) the firm would own if the options were exercised, that is, if

the investment were made and the project completed.

Types and Applications

Real options analysis has been extensively applied to various sectors such as natural

resources (exploration and development), pharmaceutical (drug development), real

estate (leasing decisions), manufacturing systems (convertible plants), aerospace

(aircraft development and acquisition), and information technology (R&D,

technology valuation). For examples, see [Schwartz and Trigeorgis 2000] and

[Amram and Kulatalika, 1999]. The application of real options in software

engineering is detailed in Section 4.4 of this chapter. In traditional applications, real

options analysis recognizes that the value of the capital investment lies not only in

the amount of direct revenues that the investment is expected to generate, but also in

the future opportunities flexibility creates. These include abandonment or exit, delay,

exploration, learning, and growth options. The economic literature analyses many

types of real options. These real options could either occur naturally in a particular

project/real asset (e.g., the option to defer, to contract, to shutdown, or to abandon)

or could be planned and built in at some upfront extra cost (e.g., the option to

expand capacity, to build growth options, to default when investment is staged

sequentially, or to switch between alternative inputs or outputs).

4.2 Architectural Stability: An Options Perspective
In the previous chapter, we have highlighted the requirements for evaluating

architectural stability. These requirements necessitate finding an approach, which

assesses evolvability and traces technical issues to value creation. The approach shall

continually “manage” the investment in evolvable architectures and provide a basis

for analyzing the economics of an architectural flexibility in relation to change; the

 65

economics of maintaining architectural integrity versus the economics of

architectural modification; and the value of designing and reengineering for the

change. The approach shall account for structural flexibility in the face of

uncertainty, where uncertainty is attributed to the change, its nature, and its

likelihood. The approach shall address the strategic considerations that we have

highlighted.

Economics Perspective

We approach the architectural stability problem from an Economics-Driven Software

Engineering (value-based) perspective [EDSER 1-7; Boehm and Sullivan 2000].

Economics-Driven Software Engineering Research has drawn the attention that

software design and engineering activities need to be judged by their contribution to

the added value and value creation [Boehm and Sullivan, 2000]. This need becomes

more intense when the economics of an architecture accommodating the change is

among the primary considerations that determines evolvability and its “resilience”

over time. This claim is indirectly supported by observations [FEAST 1-2] and other

studies [Lehman et al., 2000], which suggest that evolving software eventually

reaches a condition where, from an economic point of view at least, replacement is

indicated [Bennet and Rajilich, 2000; Lehman et al., 2000]. In addition, the biggest

tradeoffs in architectures of large, complex systems have always to do with

economics [Kazman et al., 2001].

A Motivating Example

As a motivating example, consider a distributed software architecture that is to be

used for providing the back-end services of an organization. This architecture will be

built on middleware. Middleware provides the application developer with

primitives for managing the complexity of distribution, the system resources, and for

realizing many of the non-functional requirements in the architecture of the software

system. Depending on which middleware is chosen, different architectures may be

induced [Di Nitto and Rosenblum, 1999]. These architectures will have differences in

how well the system is going to cope with changes in non-functional requirements.

For example, a CORBA-based solution might meet the functional requirements of a

system in the same way as a distributed component-based solution that is based on a

 66

J2EE application server. A notable difference between these two architectures will be

that increasing load demands might be easily accommodated in the J2EE architecture

because J2EE application server provide primitives for replication of Enterprise Java

Beans that can be used, while the CORBA-based architecture may not easily scale.

The choice is not straightforward as the J2EE-based infrastructures usually incur

significant upfront license costs. Thus, when selecting an architecture, the question

arises whether an organization wants to invest into an J2EE application server and its

implementation within an organization, or whether it would be better off

implementing a CORBA solution. Answering this question without taking into

account the flexibility that the J2EE solution provides and how valuable this flexibility

will be in the future relative to the likely changes in non-functional requirements

might lead to making the wrong choice.

In general terms, means for achieving flexibility are typical architectural mechanisms

or strategies built-in or adapted into the architecture with the objective of facilitating

evolution and future growth, in response to changes in functional (e.g., changes in

functionality) or non-functional requirements (e.g., changes in scalability demands).

Unfortunately, built-in or adapted flexibility comes with a price. Questions of

interest, however, are how worthwhile is it “buying” flexibility to facilitate future

changes and support the development (evolution) of potentially stable architectures?

How can we select an architecture which maximizes the yield of such flexibility

relative to the likely changes in requirements? When does investing in flexibility

result in potential stability? We aim to provide an answer to these questions using

“options thinking”.

Why a Real Options Perspective?

Real options theory is well suited to address many Software Engineering problems

from a value-based engineering perspective [Boehm and Sullivan, 2000; EDSER 1-7,

1999-2005]. To understand the stability of software architectures using an economic

approach, we need a valuation technique that is suitable for strategic and long-term

valuation, accounts for flexibility, and makes the value of the options created by

 67

flexibility tangible, as a way to make the value of stability tangible. Real options

satisfy these requirements.

First, real options theory provides an analysis paradigm that emphasizes the value-

generating power of flexibility under uncertainty [Erdogmus et al., 2002]. In

traditional applications, real options analysis recognizes that the value of the capital

investment lies not only in the amount of direct revenues that the investment is

expected to generate, but also in the future opportunities flexibility creates. The

flexibility may take the form of abandonment or exit, delay, exploration, learning,

and growth options. In an evolutionary context, the change is uncertain as the

demand on the future changes in requirements is uncertain. Thus, the value-

generation of the architectural flexibility in accommodating the change is a powerful

heuristic for analyzing investment decisions and its implications on the stability of an

architecture. We view stability as a strategic architectural quality that adds to the

architecture values in the form of growth options. A growth option is a real option to

expand with strategic importance [Myers 1987]. Growth options are common in all

infrastructure-based or strategic industries with multiple-product generations or

applications [Schwartz and Trigeorgis 2000]. As many early investments can be

prerequisites or links in chain of interrelated projects [Myers 1987], growth options

set the path for the future opportunities. Obviously, investments in software

architectures are infrastructure-type of investments. The architecture may provide

both the system and the enterprise the potentials for growth. In the architectural

context, growth opportunities are linked to the flexibility of the architecture to

respond to future changes. Note that flexibility has a value under uncertainty [Ross

et al., 1996]. Since the future changes are generally unanticipated, the value of the

growth options lies in the enhanced flexibility of the architecture to cope with

uncertainty; otherwise, the change may be too expensive to pursue and/or

opportunities may be lost.

Second, the search for a potentially stable architecture requires finding an

architecture that maximizes the yield in the added value, relative to some future

changes in requirements. As we are assuming that the added value is attributed to

flexibility, the problem becomes maximizing the yield in the embedded or adapted

 68

flexibility in a software architecture relative to these changes. A Real options

approach is a value-maximizing paradigm and suited to address this problem. Back

to our motivating example, the choice of inducing the architecture with either

CORBA or J2EE is a value-maximization problem. What we need to maximize is the

added value as a result of choosing either CORBA or J2EE: once a particular

middleware is chosen, it will be extremely expensive to revert the choice and adopt a

different middleware. As the middleware is responsible for realizing much of the

non-functionality, the choice is influenced by the non-functional requirements.

Unfortunately, these requirements tend to be unstable and evolve over time. Hence,

the choice has to maximize the value added upon accommodating the change in non-

functionality, such as the changes in the likely future load. Interested reader may

refer to Chapter 6 for an example.

Third, classical financial valuation techniques, such as Discounted Cash Flow (DCF)

analysis and Net Present Value (NPV) (see Appendix C for a brief background), fall

short in dealing with flexibility and uncertainty [Schwartz and Trigeorgis 2000]. The

main problem with these techniques is that they are best valid when valuing an

ongoing business or an immediate investment. However, in the case of valuing the

stability of software architectures in the face of evolutionary changes, the nature of

the investment is long-term and strategic. For example, assume that an investment in

an architecture appears to be unattractive, as it would have a negative NPV in the

first instance: unless the enterprise makes the initial investment, subsequent

generations or other applications will not even be feasible. The value of the

investment, thus, may derive not only from the direct measurable cash flows of the

investment, but also from the ability of an architecture to unlock future growth

opportunities (e.g. case of reuse, exploring new markets, expanding the range of

services while leaving the architecture intact).

4.3 The ArchOptions Approach: Valuing Architectural
Stability with a Real Options Analogy

In subsequent sections, we describe a real options-based approach for evaluating

architectural stability using an analogy with Black and Scholes [1973] options theory.

 69

We describe the approach. We present the analogy. We formulate and interpret the

ArchOptions model. We report on its sensitivity and on its possible uses. We discuss

valuation issues and assumptions under ArchOptions.

The Approach

We assume that the software architecture’s goal is to guide the system’s evolution.

We view evolving software as a value-seeking and value-maximizing activity:

software evolution is a process in which software is undergoing a change (an

incremental) and seeking value [Bahsoon and Emmercih, 2004b]. We attribute the

value to the flexibility of the architecture in responding to the change(s). In this

perspective, we rely on intuition in relating flexibility to stability: flexibility is a

strategic resource that is built-in or adapted into the architecture with the aim of

facilitating future growth and evolution with the objective of creating value. For

example, upon reengineering an architecture to facilitate future changes, the

reengineering activity aims at adapting further flexibility into the architecture of the

software system. The reengineering exercise may lead to a “more” flexible structure

with different value potentials, as depicted in Figure 4.1. The investment in

reengineering may create future value. This is because reengineering adapts

flexibility into the architecture making it more adaptable than the original version.

The realized value may span several dimensions including savings in the future

maintenance effort. The value may be realized only if some future changes need to be

accommodated on the system of the given architecture. The more valuable the

adapted flexibility is in responding to future changes, the more successful the

software evolution is likely to be. Consequently, the better the potentials are for

maintaining architectural stability. However, in case of an existing architecture with

built-in flexibility, the embedded flexibility could be unutilized but may translate

into value upon exercising the flexibility as the inevitable change(s) in requirements

materializes. Hence, stability is a result of the success (failure) of the flexibility

resource in responding to the change(s).

 70

Figure 4.1. Reengineering leading to a “more” flexible structure with different
architectural and value potentials upon accommodating some likely change
in requirements.

We claim that stable software architectures add to the software system and to the

enterprise owing the architecture a value. The added value is attributed to flexibility

and the options that flexibility creates over the evolutionary periods of the software

system. The added value under the stability context is strategic in essence and may

not be immediate. It takes the form of (i) accumulated savings through enduring the

change without “breaking” the architecture; (ii) shortened time-to-market through

rapid adaptation of new features or requirements and henceforth preserving the

competitive position of the enterprise; (iii) savings and opportunities due to reuse;

(iv) enhancing the opportunities for strategic “growth” (e.g. regarding an

architecture as an asset and instantiating the asset to support new market products);

and (v) giving the enterprise a competitive advantage by activating the stable

architecture like any other capitalized asset.

In this context, the flexibility of an architecture to endure changes in stakeholders’

requirements and the environment has a value that can assist in predicting the

 71

stability of software architectures. More specifically, flexibility adds to the

architecture values in the form of real options that give the right but not a symmetric

obligation to evolve the software system and enhance the opportunities for strategic

growth by making future follow-on investments (e.g., case of reuse, exploring new

markets, expanding the range of services, etc.). In software systems, the change in

requirements is a major source of uncertainty that confronts the architecture during

its lifetime. As flexibility has a value under uncertainty, the value of these options

lies in the enhanced flexibility to cope with uncertainty. The importance of the idea

cannot be overemphasized: it gives the architect an ability to reason about a crucial

but previously intangible source of value and to employ it in the evaluation of

architectural stability.

We contribute to an approach for evaluating the stability of software architectures

with real options theory. As we have mentioned in an earlier chapter, approaches to

evaluating software architectures for stability can be retrospective or predictive

[Jazayeri, 2002]. We contribute to a predictive approach, where we use value-based

reasoning to prediction (real options theory). We examine critical likely changes in

requirements and value the extent to which the architecture is flexible in enduring

these changes. These changes could be of functional or non-functional nature.

We derive a predictive model from [Black and Scholes 1973] financial options theory.

The model is referred to as ArchOptions. ArchOptions builds on a simple and

intuitive analogy with Black and Scholes [1973]. ArchOptions looks at investment in

a particular architecture as upfront investment plus future investments in likely

future change(s) in requirements. However, these changes are uncertain, as the

demand for the change(s) is uncertain. Uncertainty attributed to the change and its

likelihood is one of the major reasons, which justify the use of real options theory.

For a likely change in requirements, the model constructs a call option to value the

flexibility of the architecture to accommodate the change, as a way to make the value

of stability tangible. Recall, a call option gives the right to acquire an asset of

uncertain future value for the exercise price. Accommodating the change, thus, is

analogous to buying an “architectural potential” (i.e., an option on an asset) with

uncertain future value paying an exercise price. The exercise price corresponds to the

 72

cost of accommodating the change on the system of the given architecture. The value

of the call option, whether in-the-money or out-of-the-money, is a measure of the

architecture flexibility in accommodating change. This value is an indicative measure

of the “architectural potential” in unlocking future growth opportunities (e.g., case of

reuse, new market products), enhancing the upside potentials of the architecture,

generating value (e.g., savings in maintenance), or incurring losses (e.g., case of a

disruptive changes), as a consequence of accommodating the change. The value of

the call is a powerful heuristic, which can provide a basis for analyzing many

architecture-centric evolution problems, which place considerable emphasis on the

flexibility of the architecture as a way for easing software evolution. For example, the

value can provide insights into the economics of flexibility, the inflexibility, and the

over-flexibility of the architecture relative to the change. The value of the calls can

have extensive uses as highlighted in Section 4.3.

As the values of the calls are correlated with the extent to which an architecture is

flexible, whether this flexibility is embedded or adapted, the search for a potentially

stable architecture requires finding an architecture or an associated artifact, which

maximizes the yield in the calls relative to some critical changes.

 73

Figure 4.2. The model looks at an investment in an architecture as an upfront
investment plus increments of future investments in some likely changes in
requirements.

In brief, the approach considers the architecture as the appropriate level of

abstraction at which to think about strategic investment decisions, guide the

evolution of the software system, and analyze the evolution value, costs, and

investment opportunities. The approach builds on a sound theory in financial

engineering to provide “insights” into architectural stability, investment decisions

related to the evolution of software architectures, and a basis for analysis for many

architecture-centric evolution problems, with desired stability requirements.

 74

Black and Scholes Options Pricing

In this section, we provide background information on Black and Scholes [1973]

options pricing method that is necessary to understand the analogy detailed in the

next Sections.

Black and Scholes [1973] is the best-known financial option pricing method (the

seminal work in the field); the method is a solution to a stochastic calculus problem.

Under the Black and Scholes model, five parameters are needed to determine the

option price, as depicted in Figure 4.3. These are the current stock price (S), the strike

price (X), the time to expiration (T), the volatility of the stock price (σ), and the free-

risk interest rate(r). The price of the stock option is a function of the stochastic

variables underlying the stock’s price and time. The strike price (X) is the price for

which the holder may exercise a contract for the purchase/sale of the underlying

stock; also referred to as the exercise price. The current stock price (S) if exercised at

some time in the future, the payoff from a call option will be the amount by which

the stock price exceeds the strike price. Call options, therefore, become more valuable

as the stock price increase and less valuable as the strike price increases. The

volatility of the stock price (σ) is a statistical measure of the stock price fluctuation

over a specific period of time; it is a measure of how uncertain we are about the

future of the stock price movements. The value of a call option on an asset depends

on the value of the asset itself and the cost of exercising the option.

 75

Figure 4.3. Five Parameters determining the value of call options [Erdogmus
et al., 2002]

The expected value of a European call option is given by E [max (St- X, 0)], where E

denotes the expected value of a European call option and St denotes the stock price

at time t. The European call option price, C, is the value discounted at the risk-free

rate of interest. It calculates to equation (4.1).

C = e –r (T-t) E [max (St- X, 0)] (4.1)

In a risk-neutral world, ln St has the following probability distribution given by (4.2),

ln St ~ φ [ln S + (r-σ2/2)(T-t), σ(T-t)1/2] (4.2)

where φ [m, s] denotes a normal distribution with mean m, and standard deviation S.

Evaluating the right-hand side of (4.1)- in application of integral calculus- results in

Black and Scholes valuation of a European call option.

 76

C = S N (d1) – Xe –r (T-t) N (d2) (4.3)

where,

 d1 = ln(S/X) + (r +σ2/2)(T-t)

 σ(T-t) ½

 d2 = ln(S/X) + (r -σ2/2)(T-t) = d1 -σ(T-t)1/2

 σ(T-t) ½

N (x) is the cumulative probability distribution function for a standardized normal

variable (i.e., it is the probability that such a variable will be less than x). Interested

reader may refer to [Hull, 1997] for a more detailed derivation.

The Analogy

A major insight behind real options theory is that flexibility in real asset is analogous

to financial options: investing in flexibility is said to be analogous to creating options

on an asset and exercising such flexibility is seen as exercising options for buying.

Having set the flexibility of the architecture in responding to likely changes in

requirements as an option problem, the challenge becomes valuing such flexibility.

We build on a simple and intuitive analogy with Black and Scholes [1973] to value

the flexibility of the architecture to change. In this section, we formulate the

ArchOptions model as expressed in (4.4) and explore in depth the analogy

ArchOptions make with Black and Scholes. In the next sections, we interpret

ArchOptions in the context of architectural stability and discuss related valuation

issues and assumptions.

Let us assume that the architecture potential of a given system is V. As the software

evolves, a change in future requirement ii is assumed to buy xi% of the architectural

potential with a follow-up investment cost of Cei, where Cei corresponds to an

estimate of the likely cost to accommodate the change. This is similar to a call option

to buy (xi%) of the base project, paying Cei as exercise price. The investment

 77

opportunity in the system can be viewed as an upfront investment, denoted by VDev

plus call options on future opportunities, where a future opportunity corresponds to

the investment to accommodate some future requirement(s). The payoff of the

constructed call option gives an indication of how valuable the flexibility of an

architecture to endure likely changes in requirements. The value of an architecture

with a given system materializes to ArchOptions expressed in (4.4) and accounting

for VDev and both the expected value and exercise cost of accommodating likely

changes in requirements ii, for i ≤ n. ArchOptions is derived by mapping the

economic characteristics of the architecture (under development or evolution) onto

the parameters of the option model of (4.1) - as shown in Table 4.1. The economic

characteristics include the development (evolution) effort, schedule, and budget. We

assume that the risk-free interest rate is zero for the simplicity of exposition. We then

pursue (4.2) and (4.3) to valuation which we explore in next sections.

Figure 4.4. The ArchOptions model

 78

Table 4.1. Financial/real options/ArchOptions analogy

Option on stock Real option on
a project

ArchOptions

Stock price(S) Value of the
expected cash
flows

Value of the “architectural potential” in
addressing a change in requirements(xiV)

Exercise price(X) Investment cost Estimate of the likely cost to
accommodate the change (Cei)

Time-to-
expiration(T)

Time until
opportunity
disappears

Time indicating the decision to
implement the change (T)

Volatility(σ) Uncertainty of
the project
value

“Fluctuation” in the return of value of xiV
over a specified period of time (σ)

Risk-free interest
rate(r)

Risk-free
interest rate

Risk-free interest rate relative to budget
and schedule (r)

Stock price = xiV

In traditional applications, the real option analogy of stock price, S, corresponds to

the value of the cash flows of the investment in a particular project. In ArchOptions,

the S analogy corresponds to the value of the “architectural potential” in

accommodating the change. In this context, we consider the architecture as a

portfolio of assets (rather than a single asset). More specifically, we view the

architecture as a portfolio of requirements. We argue that the value of the

architecture is in the value of the requirements it supports during the software

system operation or tend to support as it evolves. In ArchOptions, the nature of the

change and the case determines the dimensions on which the value of the

architectural potential is to be realized. Let us return to the motivating example we

have highlighted in Section 4.2: the value of the architectural potential of inducing an

architecture with J2EE and not CORBA (and vice versa) is a relative value. This value

could span different dimensions including ease of future maintenance and relative

savings in deployment and configuration of the software system, if we choose to go

for J2EE and not a CORBA-induced architecture (and vice versa). This value is

realized, if the likely change in future load materializes, necessitating scaling the

system of the given architecture. Moreover, as we will see in Chapter 6, scalability is

often measured by the throughput or the capacity of the system. Throughput is a

generic performance criterion, which expresses the amount of work performed by

the system during a unit of time. This criterion is based on the observation that for a

 79

fixed system with a given throughput, there is an inverse relationship between the

response time and the number of clients. In other words, the more requests clients

submit, the longer are the delays. The value potentials of inducing the architecture

with either CORBA or J2EE in response to change in load can hence be measured

relative to throughput. In case of reengineering or designing for change, as it is the

case when restructuring or refactoring the architecture of a legacy system, the value

added is determined by the architectural potential realized by reengineering the

architecture versus not exercising the reengineering decision. Again, the realized

value may span several dimensions, such as ease of future maintainability,

extensibility, modularity, reusability, complexity, and efficiency. Alternatively, the

architecture could “pull” options by responding to changes in the market conditions,

either with minimal changes to the architecture, by leaving the architecture of the

software system intact, and/or by adapting new features and requirements with

shorter time-to-market and gaining a competitive opportunity. In this context, the

architectural potential relative to the change could have potential market value.

Product-line architectures fit under this category as it could be argued that

instantiating from the core architecture a new product is a trend towards “planned”

evolution in accommodating variability in requirements across products, while

respecting existing commonality, eventually with shorter time-to-market to gain a

competitive market opportunity.

Exercise price = Cei

The real option analogy of the exercise price corresponds to the investment cost in

realizing the said change. The nature of the case determines the dimensions on which

the cost needs to be assessed. Back to our motivating example, we can see that the

cost of realizing a scalability change could differ from one version to another (i.e., the

J2EE-induced or the CORBA-induced architecture) and with the architectural

mechanism that is responsible in accommodating the change. Let us suppose that we

take replication, as an architectural mechanism, to realize the load change.

Obviously, the J2EE induced architecture has embedded options due to the built-in

replication primitives. However, this flexibility comes with a cost, mostly on the

licensing dimension. As for the CORBA induced architecture, the middleware needs

to be modified and extra–functionalities need to implemented to realize scalability.

 80

However, what is the exercise price that an enterprise need to pay if the system

needs to scale to a high load in either structure? In general terms, the exercise price,

corresponds to the cost of realizing scalability on each structure, given by Cei for

requirement i. As the replicas may need to be run on different hosts, calculating Ce as

a function of the number of hosts, can be given by:

Cei = ∑ h=1…k (Cdev, Cconfig, Cdeploy, Clicesh, Chardw)h, (4.5)

where, h corresponds to the number of hosts. Cdev, Cconfig, and Cdeploy, respectively

corresponds to the cost of development(if any), configuration, and deployment for

the replica on host h. Clicesh and Chardw respectively correspond to licenses and

hardware costs, if any. All costs could be given in ($). Interested reader may refer to

Chapter 6 for a detailed case study, where we show how these parameters are

estimated on each structure.

In case of reengineering an architecture to facilitate future changes, as it is the case of

refactoring, the investment in reengineering may create future options. This is

because refactoring adapts flexibility into the architecture, making it more adaptable

to changes. The option is said to be exercised and benefits may be realized only if

some future changes need to be implemented on the given structure. The enterprise

still needs to pay a cost for implementing the change; however, this cost could be

relatively less expensive than the unrefactored structure. The cost could be measured

in terms of man-months and could be cast into a monetary value.

Estimating cost is a well-researched field in software engineering; it is outside the

scope of our work. In Chapter 5, we use well-established ways for estimating cost in

software engineering, ranging from coarse-grained to fine-grained and parametric

versus knowledge based.

 81

Volatility = σ

Volatility is a quantitative expression of risk. Volatility is often measured by

standard deviation of the rate of return on an asset price S (i.e., xiV) over time.

Unlike with financial options, in real options the volatility of the underlying asset’s

value cannot be observed and must be estimated. During the evaluation of

architectural stability, it is anticipated and even expected that stakeholders might

undervalue or overvalue the architectural potential relative xiV to the change in

requirement(s). In other words, stakeholders tend to be uncertain about such value.

For example, back to the motivating example of Section 4, suppose that the value of

the architectural potential of inducing an architecture with J2EE and not CORBA (or

perhaps vice versa) take the form of relative savings in development and

configuration effort, if the future change in scalability need to be exercised on the

induced structure: estimating such savings may vary from one architect to another

within the firm. It differs with the architect’s experience, the novelty of the situation;

consequently, it could be overvalued or undervalued. The variation in the future

savings, hence, determines the “cone of uncertainty” in the future value of the

architectural potential for embarking on a J2EE-induced architecture relative to the

CORBA one. Thus, it is reasonable to consider the uncertainty of the architectural

potential to correspond to the volatility of the stock price. In short, the volatility σ

tends to provide a measure of how uncertain the stakeholders are about the value of

the architectural potential relative to change; it tends to measure fluctuation in the

said value. In Chapter 5, we explore ways for estimating σ for our case.

Risk-free interest rate = r

The risk-free rate is a theoretical interest rate at which an investment may earn

interest without incurring any risk. An increase in the risk-free interest rate leads to

an increase in the value of the option. Finding the correspondence of this parameter

is not straightforward, for the concept of interest in the architectural context does not

hold strongly (as it is the case in the financial world) and is situation dependent. In

our analogy, we set the risk-free interest rate to zero assuming that value of the

architectural potential is not affected by factors that could lead to either earning or

depreciation in interest. That is, the value of architectural potential today is that of

the time of exercising the flexibility option. However, we note that it is still possible

 82

for the analyst to account for this value, when applicable. For example, if the

architectural platform is correlated in a way with the market, then the value of the

architectural potential may increase or decrease with the market performance of the

said platform. Similarly, suppose that development revolving around the said

platform might be using external resources to maintain- such as, extra developers,

money and/or tools borrowed from other projects- or might go beyond the assigned

schedule and out of budget (which is the norm in software development), then the

architecture is anticipated not to record any credits in interest, but rather a value

deprecation. In these cases, the free-risk interest rate can be estimated relative to the

budget and schedule.

Exercise time = T

The real option analogy of the exercise time (also referred to as time-to-expiration)

corresponds to the time until the investment opportunity disappears. The time that

the likely change(s) need to be exercised on the software system of the given

architecture correspond to the time to expiration of the option. Back to the

motivating example, the built-in replication primitives of J2EE continues to constitute

an “unutilized” opportunity for future investment in scaling the software system to

attain some future business benefits. Such an opportunity continues to hold until the

enterprise wishes to scale up the software system, say as a result of a sudden increase

in users, as it is the case of successful e-commerce systems. Alternatively, the time of

exercising the options might correspond to a milestone in the enterprise strategic

roadmap towards expansion of its services to new customer segments. The exercise

time might also be coined with the lifespan of the general technologies on which the

architecture is built (e.g., 20 years for databases, 10 years for middleware, and 2 years

for user interface toolkits). That is, the change might be attributed to the “decay” or

related “upgrades” in the exploited database, the underlying middleware, or the

interface toolkits. Throughout the thesis, we use fictitious numbers for the exercise

time.

 83

Interpretation

For a likely change in requirement k, we interpret (4.4):

The option is in–the- money

If xkV exceeds the exercise cost (i.e., E [max (xkV - Cek, 0)]>0), then the flexibility of

the architecture relative to the change is likely to payoff if the change is exercised.

This means that the architecture is said to be potentially stable with respect to k.

The more the option is in the money, the more valuable is the embedded

flexibility; hence, the better are the potentials for the architecture to be stable

relative to the change. In real situations, the architect/analyst is interested in

selecting an architecture that maximizes the yield in options relative to some

likely changes. An optimal selection could be when the option value approaches

the maximum, indicating an optimal payoff in an investment in flexibility. The

analyst may perform sensitivity analysis and analyze when such a situation is

likely to occur. Returning to our running example, as we will see in Chapter 6,

upon calculating the call options for the change in scalability on the J2EE-induced

architecture, S1, relative to that of the CORBA-induced architecture, S0, the

options are said to be in-the-money for S1. In particular, ArchOptions shows that

S1 is in the money relative to the development, configuration, and the

deployment, if the change in scalability need to be exercised in one year time. It is

worth pointing out that though S1 is flexible relative to the scalability change, it

might not necessarily mean that it might be flexible with respect to other changes.

Obviously, J2EE provide the primitives for scaling the software system, which

result in making the architecture of the software system more flexible in

accommodating the change in scalability, as when compared to the CORBA

version. As we will see in Chapter 6, the structural analysis has completed the

option analysis to verify the stability of S1 relative to the change and to quantify

the impact of the change on the architecture. The intuition is that complementing

the structural impact analysis with a value-based back-of-the-envelope

calculation, the combination provides the architect/analyst with a useful tool for

understanding the extent to which the software system tends to be flexible

relative to a likely change in requirements, a cost/value indictors of the impact of

 84

the change on the structure, the likely success (failure) of the software system

evolution, and consequently the potential stability of the software architecture

relative to the change.

The option is out –of- money

If the value of the call option sinks to zero (i.e., E [max (xkV - Cek, 0)]>0), then the

flexibility of the architecture in response to the change is not likely to add a

value. Two interpretations might be possible:

(i) The architecture is overly flexible in the sense that its response to the

change has not “pulled” the options. This implies that the embedded

flexibility (or the resources invested in implementing flexibility) are wasted

and unutilized to reveal the options relative to this change. In other words,

the degree of flexibility provided is much more than the flexibility demanded

for this change. This case has the prospect in providing an insight on how

much do we need to invest in flexibility to achieve stability relative to the

likely future changes, while not sacrificing much of the resources. In Chapter

6, the refactoring case provides a good example to illustrate this. We will see

that by refactoring the original structure, we have obtained a more flexible

one that has better prospect of accommodating the change. Though S1 is

flexible, refactoring has not “pulled” the options for one change. The

refactored structure is reported to be out of the money for one change. This

implies that the embedded flexibility (or the resources invested in

implementing flexibility) is wasted and unutilized to reveal the options

relative to one change. In other words, the degree of flexibility provided is

much more than the flexibility demanded for this change. We have repeated

the experiment, but stressing refactored structure with two, three, four, and

then five average changes at a time. Using two average likely changes, the

options reported zero values. Again, two likely average changes have not

“pulled” the options. Interestingly, the refactored structure was just about to

pull the options for three changes, as we will see in Chapter 6. For four, five,

and nine changes, the structure has revealed the options.

 85

(ii) The other case is when the architecture is inflexible relative to the change.

This is when the cost of accommodating the change is much more than the

cumulative expected value of the architecture responsiveness. Returning to

our running example, as we will see in Chapter 6, calculating the options on

the CORBA-induced architecture S0, relative to that of the J2EE-induced

architecture S1, we can see that S0 is said to be out of the money for the

scalability change. The CORBA version has not added value, relative to J2EE,

as the cost of implementing the services responsible for realizing the change

in scalability was relatively significant to “pull” the options. As we will see in

Chapter 6, the structural analysis has completed the option analysis to verify

the instability of S0 relative to the change in scalability.

Valuation Issues and Assumptions

In this subsection, we clarify some theoretical issues revolving around the valuation

of ArchOptions(4.4) and on estimating its parameters. The options model (4.4)

requires the estimation of several parameters. Most importantly are Cei, xiV, and σ

which respectively correspond to exercise cost of implementing the ith change in the

system of the given architecture, the value of the architectural potential relative to

the ith change, and the fluctuation of this value. Below, we briefly show how these

parameters could be estimated. In Chapter 5, we provide in depth treatment to the

estimation of the ArchOption’s parameters and inline with the proposed method.

The derived ArchOtions model is a general real-options model; it could be valued

using existing techniques to options valuation. We adopt model (4.3) of Black and

Scholes to the valuation of the constructed call options. Alternatively, we could have

cast the options model to use different options valuations (e.g., [Cox et al., 1979]).

However, the application of [Black and Scholes, 1973] offers a closed and an easy-to-

compute solution, for it assumes that xiV is lognormaly distributed, not requiring xiV

to be probability-adjusted for rise and drop in value, as when compared to [Cox et

al., 1979]. We note that it remains an open challenge to strongly justify precise

estimates for real options in software [Sullivan et al., 1999]. Following the argument

 86

of [Sullivan et al., 2001], such models need not be perfect: what is essential is that

they capture the most important terms; their assumptions and operation must be

known and understood so that the analyst can evaluate their predictions. Experts

may question our use of Black and Scholes [1973] to options valuation, as the

satisfaction of the spanning condition may be doubtful. Real options may be valued

similarly to financial options, though they are not traded [Schwartz and Trigeorgis

2000]. For a change in requirements, the call E [max (xiV - Cei, 0)] (4.6) at expiration is

valued using the above (4.2) and (4.3) of Black and Scholes and detailed as follows:

E [max (xiV - Cei, 0)] (4.6)

C = xiV N (d1) – Ceie –r (T) N (d2)

where,

d1 = ln(xiV/Cei) + (r+σ2/2)(T)

σ(T) ½

d2 = ln(xiV/ Cei) + (r-σ2/2)(T) = d1 -σ(T)1/2

 σ(T) ½

Finding a twin asset

Real options valuation based on Black and Scholes pricing technique determines the

value of an asset in question in span of the market value using a correlated twin asset

[Schwartz and Trigeorgis 2000]. The twin asset is an asset that has the same risks as

the asset in question will have when the investment has been completed [Schwartz

and Trigeorgis 2000]. The intuition is that to understand the behavior of the asset in

question, we can use a twin asset, also referred to as a replicated portfolio. The

assumption is that under similar conditions the twin asset and the asset in question

are interchangeable for all practical purposes and should be worth the same. That is,

if we know how much the twin asset is worth in the present, we can then determine

how much the option on the asset in question is worth in the present.

 87

Software architectures, however, are (non-traded) real assets. Real options may be

valued similarly to financial options, though they are not traded [Schwartz and

Trigeorgis 2000]. To facilitate valuation using the principle of a twin asset, we

consider the architecture as a portfolio of assets (rather than a single asset). More

specifically, we view the architecture as a portfolio of requirements. In this context,

we argue that the value of the architecture is in the value of the requirements it

supports during the software system operation or tend to support as it evolves. This

assumption facilitates valuing the architectural potential in supporting the change

based on a similar experience. It can also help in calibrating the architectural

potential in supporting the changes with the business or the market value, when

available. Consequently, valuing the architectural potential to the change requires

finding a twin asset with similar characteristics to the one at hand. We argue that

reusing a past development experience such as previous design and its

corresponding implementation to inform the valuation bear a resemblance to the

concept of a twin asset. We also argue that much of the valuation effort in software

engineering is based on person-months. Such valuation does implicitly hold market-

based data and is still done in relation with the market and based on similar

experience. Back to our motivating example, in chapter 6, we can see that in valuing

the architectural potential of the CORBA-induced version relative to that of J2EE, we

have used a previous design and development experience, where the scalability

change has been designed and implemented on a CORBA complaint middleware,

TAO (refer to Chapter 6). In this context, we argue that our use for the design and the

corresponding implementation of scalability on TAO as guidelines bears a

resemblance to the concept of a twin asset, for we are reusing a past development

experience to inform the valuation. In Chapter 6, we will also see how using

published performance benchmarks to value the architectural potential, relative to

likely changes in scalability requirements, resemble the twin asset.

Estimating xiV

In financial options, several proxies are available to predict the value of the financial

asset - the most obvious proxy is simply the historical values of the asset. In real

options, such proxies rarely exist and the analyst may need to rely on experience and

judgment in her/his estimations [Schwartz and Trigeorgis, 2000]. Real options

 88

valuation focuses on market value and uses the return on the twin asset as an input

to the valuation of the asset in question. If the asset value is not directly observable, it

is reasonable to use estimates of the revenues on the asset to estimate the market

value [Schwartz and Trigeorgis, 2000].

The architectural potential relative to the changes in requirement can be valued in

terms of the directly observable cash flows linked to future operational benefits or

the market value, making it easy to use the return on the twin asset to value the

options. In many others cases, the architectural potential may not be directly

observable through cash flows; the analyst(s) may then need to rely on experience for

estimation. If the analyst relies on experience and judgment in her/his estimation,

the estimates tend to be subjective but could make an implicit use of market

information. However, back-of-the-envelope calculations, which are based on value

estimates (rather than on market value), are yet informative [Sullivan et al., 2001].

As a compromise, we argue the valuation of xiV is a multi-perspective valuation

problem. That is, valuing the architectural potential to the change necessarily

requires a comprehensive solution that is flexible to incorporate multiple valuation

techniques; some with subjective estimates and others based on market data, when

available. The problem of how to guide valuation and introduce discipline in this

setting, we term as the multiple perspectives valuation problem. To address this problem,

Chapter 5 outlines a conceptual valuation points of view framework. The framework

aims at capturing and valuing the flexibility of the architecture to the change from

different perspectives. In Chapter 6, we exemplify the use of the framework for

capturing the options from different perspectives.

Estimating σ

The volatility of the stock price (σ) is a statistical measure of the stock price

fluctuation over a specific period of time; it is a measure of how uncertain we are

about the future of the stock price movements. Schwartz and Trigeorgis [2000]

describe three possible ways for calculating the volatility. The first way is to make an

educated guess. One approach is to examine a range of estimates from say 30% to

60% and guess which might be the most appropriate. A second approach is to gather

 89

historical data on investment returns in the same or related industries. Another

approach is to simulate. Projections of a project’s future cash flow, together with

Monte Carlo simulation techniques, for example, can be used to synthesize a

probability distribution for project returns and from this σ can be calculated.

The application of Black and Scholes [1973] assumes that the stock option is a

function of the stochastic variables underlying stock’s price and time. In

ArchOptions, volatility stands for the “fluctuation” in the value of the estimated

xiVs. Intuitively, it “aggregates” the “potential” values of the structure in response to

the change(s). In Chapter 5, we explore ways for estimating volatility inline with the

method. In some cases, we take modeling assumptions for volatility and based at the

information at hand. In other cases, we assume that value (xiV) moves stochastically

bounded to two extreme values: optimistic and pessimistic. This assumption appears

to be plausible: (i) it tends to account for all possible values within the bound,

yielding to a better approximation when opposed to an ad-hoc type of estimation; (ii)

the value of an (evolvable) architecture changes over time; it tends to change in

uncertain way due to changes in requirements. We estimate variation on these

values, explained in Chapter 5. We use the standard deviation of the variation of the

three xiVs estimates-the optimistic, likely, and pessimistic values, to calculate σ and

adhering with the real options principles to the valuation of σ.

Estimating Cei

As we mentioned before, cost estimation is a well-researched component in software

engineering; it is outside the scope of our work. For example, it is feasible to use

existing metrics to cost estimation (e.g., COCOMO-II [Boehm et al., 1995]). This is

due to the fact that a considerable part of the distributed applications

implementation could be already available, when the architecture is defined, for

example, during the Elaboration phase of the Unified Process. Another approach is

to build on architectural level dependency analysis (e.g., [Stafford and Wolf, 2001])

research to extract cost estimates of accommodating ii, guided by some structural

criteria.

 90

Generally speaking, ArchOptions is flexible to incorporate either coarse-grained or

fine-grained estimation of the cost of implementing the change in the model.

Generally, two extreme routes can be pursued for estimating the cost of the change in

software engineering: expert knowledge or parametric models to cost estimation.

When expert knowledge is combined with parametric knowledge, more precise

estimation are said to be realized. Note that the granularity of the estimation is

dependent on the case and the information available for the evaluation. In the next

Chapter, we sufficiently address how the cost could be estimated using parametric-

models and/or expert knowledge.

Sensitivity Analysis

Statistical questions on how the uncertainty of the input parameters propagates to

the model output often require sensitivity analysis. The objective is to provide an

understanding of how the model responds to changes in input parameters. For

example, the estimated parameters may be subject to uncertainty: parameters values

could have been overestimated or underestimated. Further, the estimated value may

be liable to further adjustment to reflect the time value. We support the model with

sensitivity analysis to increase the confidence in the model predictions and to

provide a basis for “what-if” analyses.

First derivative analysis is much used in the investment arena for analyzing the

sensitivity of the value of a financial option to changes in the variables. Delta and

Vega provide the investment analyst with a ready means to discover financial

option’s sensitivity to changes in the estimated value of the underlying asset; and

increases and decreases to the volatility of the underlying asset.

Table 4.2 provides a summary of the sensitivity parameters, their financial

explanation, mathematical formulation and the corresponding ArchOptions analogy.

 91

Table 4.2. Sensitivity parameters and ArchOptions
Parameter Financial Explanation ArchOptions Analogy Math-

formula

Delta (∆) Option price rate of change
w.r.t. the underlying asset (%)

Option value rate of change
w.r.t. xiV

∂c
∂(xiV)

Vega (ν) Option price rate of change
w.r.t. the volatility of the
underlying asset (%)

Option price rate of change
w.r.t. σ (%)

∂c
∂σ

The Delta (∆) of an option is defined as the rate of change of the option price with

respect to the underlying asset. Suppose that the delta of a call option is 0.6. This

means that when the underlying asset price changes by a small amount, the option

price change by about 60% of that amount. Mathematically, delta is the partial

derivative of the call price with respect to the underlying asset price given by ∆=

∂C/∂S. In practice, volatilities may change over time. This means that the value of the

option is liable to change because of the movement in volatility as well as because of

changes in the asset price and the passage of time. The Vega (ν) of an option is the

rate of change of the value of the option with respect to the volatility of the

underlying asset. If Vega is high, the option value is very sensitive to small changes

in volatility. If Vega is low, volatility changes have relatively little impact on the

value of the option.

4.4 Uses

ArchOptions could provide a basis for analyzing many architecture-centric evolution

problems, which place considerable emphasis on the flexibility of the architecture to

ease software evolution. The model can provide insights into the economics of

flexibility, the inflexibility, and the over-flexibility of the architecture and its

associated artifacts relative to the change. In this context, the model intends at

answering the following key question: how much worth is it “buying” flexibility to

facilitate future changes and support the development (evolution) of potentially

stable architectures? The model has the prospect of valuing the architectural

flexibility to various types of changes. These could be functional or non-functional.

 92

These changes could be preventive, adaptive, or perfective [IEEE Standard 610.12,

1993], with the assumption that the architecture guides the evaluation. For example,

preventive and perfective types of changes may aim at introducing further flexibility

into the architecture of the software system or its associated artifacts. For these

changes, the model provides the analyst/architect with a mean to value the

worthiness of investing in an architectural design decisions, which adapts flexibility

to facilitate future growth.

ArchOptions may aim at providing the analyst/architect with insights into

architectural stability and investment decisions related to the evolution of a software

architecture. In ArchOptions, the value of the constructed calls are indicative

measures of the “architectural potential” in unlocking future growth opportunities

(e.g., case of reuse, new market products), enhancing the upside potentials of the

architecture, generating value (e.g., savings in maintenance), or incurring loses (e.g.,

case of a disruptive changes), as a consequence of accommodating the change. The

value of the calls may assist the analyst/architect in strategic “what if” analyses, to

inform:

 the worthiness of designing or reengineering the architecture for change;

 the retiring and replacement decisions of either the architecture or its

associated design artifacts;

 the decisions of selecting an architecture, architectural style, middleware,

and/or design with desired stability requirements;

 the trade-off between the upfront cost of enabling the change on the

architecture of the software system and the long-term future benefits as a

result;

 the compromise between the architectural “intactness” and the cost-

effectiveness of amending the architecture to accommodate the change;

 the trade-offs between two or more candidate software architectures for

stability and the value added;

 93

 the strategic position of the enterprise- if the enterprise is highly centered on

the software architecture (e.g., the case in web-based service providers

companies);

 and/or the success (failure) of evolution.

Apart from the above architecture-centric evolution problems, it could be argued

that the incremental software processes, such as the unified process, are also ways to

structure the software’s evolution through prescribed steps [Jazayeri, 2000]. The

assumption is that evolution is helped by the feedback gained from releases of the

early increments. The construction of the first release of the system is only the first of

many milestones in this evolution [Jazayeri, 2000]. In the context of applying

ArchOptions, an iterative and intertwined phased development (process) is flexible

to allow the change in requirements to be exercised at the end of each iteration

(phase) to mitigate risks before proceeding to a next iteration (phase) and render a

more stable architecture. For instance, under RUP, the Life-Cycle Architectural

(LCA) milestone corresponds to the time where the detailed system objectives and

scope are examined, the choice of the architecture is (re) considered, and the major

risks are identified. Accordingly, the LCA could be the time where the options are

constructed and their payoffs are predicted- if exercised at a time in the future. In the

case of an iterative and intertwined development (evolution) process, the time to

expiration corresponds to the estimated time to deploy a successful software

generation. In the evolution context, a successful software generation is assumed to

have the change in requirements accommodated by that time.

In Chapter 6, we will explore how the ArchOptions model could be applied to reason

about two architecture-centric approaches to evolution. These are (i) valuing the

payoff of re-engineering the structure of the software system to facilitate future

changes in requirements and (ii) informing the selection of a more stable

middleware-induced software architecture, relative to future changes in scalability.

In Chapter 7, we will highlight some possible unexplored uses of the model to reason

about the worthwhile of investing in restructuring of systems to support aspect-

orientation, with the objective of facilitating future maintainability and better

stability.

 94

ArchOptions could benefit from tool support. The envisioned tool may automate the

model, provide basis for estimating its input parameters, and tailor the output based

on the objective of applying the model. The tool may automate or provide a support

for much of the activities to be discussed in Chapter 5. The tool may combine

spreadsheet capabilities to computation and visualization of the results with mining

of software repositories for storing, maintaining, and analyzing project’s versions

and potential twin assets.

4.5 Related Work

In this subsection, we provide a quick overview of closely related research on the use

of real options in software design and engineering. The use of real options has taken

two forms: (i) quantifying investments in software in relation to the market and (ii)

understanding the nature, role, and value in options with the objective of linking

structural design and engineering to value. The latter category aims at addressing

core issues in design and engineering of software by linking technical engineering

issues to value creation. We scope the review on this category, as our use of real

options theory fits under it.

Economics approaches to software design appeal to the concept of static Net Present

Value (NPV) as a mechanism for estimating value [Boehm and Sullivan, 2000]. These

techniques, however, are not readily suitable for strategic reasoning of software

development as they fail to account for flexibility [Boehm and Sullivan, 2000;

Erdogmus et al., 1999]. The use of strategic flexibility to value software design

decisions has been explored in, for example, [Erdogmus and Vandergraff, 1999;

Erdogmus and Favaro, 2002; Erdogmus 2000; Sullivan; 1996; Sullivan et al., 1999;

Sullivan 2001] and real options theory has been adopted to value the strategic

flexibility:

Baldwin and Clark [1993; 2001] pioneered the use of real options in systems design

and engineering. They were the first to study the flexibility created by modularity in

design of components (of computer hardware systems) connected through standard

 95

interfaces. Their theory accounts for the influence of modularity on the evolution of

computer system designs and the structure of the industry that creates them. In

particular, Baldwin and Clark’s theory is based on the idea that modularity (in

computer systems) adds value in the form of real options. They consider that

modularity in design multiplies and decentralizes real options that increase the value

of a design. A monolithic system can be replaced only as a whole. That is, there is

only one option to replace, and exercising it requires that both the good and the bad

parts of the new system be accepted. In a sense, the designer has one option on a

portfolio of assets. A key result in modern finance, however, shows that all else

remaining equal, a portfolio of options is worth more than an option on a portfolio.

In contrast, in ArchOptions consider the architecture as portfolio of options, where

the options are held on the architectural potential in supporting the change in

requirements.

Baldwin and Clark’s method has two main components, the Design Structure Matrix

(DSM) and the Net Option Value formula (NOV). DSM represents the design of a

system by a structure matrix, providing an intuitive, qualitative framework for

design. Example of a DSM is depicted in Figure 4.5. The rows and columns of a DSM

are labeled by the design parameters. A dependency between two design parameters

is represented by a mark (X). A mark in row B, column A means that an efficacious

choice for B depends on the choice for A. NOV quantifies the consequences of a

particular design, thus permitting a precise comparison of differing designs of the

same system. NOV reasons about the value added to a base system by modularity

upon applying a modular operator. Module operators include substitution, which

substitute a modular with an alternative, augmentation, which adds a module to a

system, exclusion, which removes a module, inversion, which standardizes a common

design element, and porting, which transports a module for use in another system.

The NOV model answers the following key question: “How much is it worth to be

able to substitute, augment, exclude, invert, or port modules?” For example, the

NOV for quantifying the options added as a result of substitution uses the following

reasoning: A module creates an opportunity to invest in k experiments to (a) create

candidate replacements, (b) each at a cost related to the complexity of the module,

and, (c) if any of the results are better than the existing choice, to substitute in the

best of them, (d) at a cost that related to the visibility of the module to other modules

 96

in the system. Baldwin and Clark acknowledge that designing modularizations is not

free; but, once done, the costs are amortized over future evolution. The NOV model

ignores those costs, though accounting for them is important.

Figure 4.5. Example of a Design Structure Matrix (DSM) [Baldwin and Clark,
2001]

Sullivan et al. [1996; 1999; 2001] pioneered the use of real options in software

engineering. Sullivan et al. [1996; 1999] suggested that real options analysis can

provide insights concerning modularity, phased projects structures, delaying of

decisions and other dynamic software design strategies. Sullivan et al. [1999] outline

an options-based interpretation of the spiral-model for software development.

Sullivan et al. [1999] view that the spiral-model provides flexibility in at least two

important dimensions. First, it imposes a phased structure on a project, where the

goal of each phase is to reduce a key uncertainty facing the project, with decisions

about whether or how to invest in subsequent phases based on information from

earlier phases. Second, within each phase it stresses the development of alternatives,

creating an option to pick the most promising one. In context of real options, Sullivan

et al. appeal to the use of options to defer decisions to invest until optimal to do so

[Dixit and Pindyck, 1994; Madj and Pindyck, 1987; Myers, 1977] and option to

explore from a development alternative mainly for mitigating risks upon selecting a

risky asset [Stulz, 1982].

Sullivan et al. [1999] approach to options pricing uses events trees. They note that the

first step for software engineering is to understand the nature and role of options.

They added that the next step is to develop option models. Sullivan et al. [1999]

address the first step. In contrast, our work covers both steps: we seek an

understanding for the architectural stability problem from an options perspective

(see Chapter 6). We develop a model that complements such an understanding.

Sullivan et al. [1999] formalized that option-based analysis, focusing in particular on

the flexibility to delay decision making. In particular, they addressed the timing of

 97

design decisions, where they discussed the role of options in decisions about time-to-

market under threat of competitive entry, and the engineering tradeoffs that are

appropriate in such circumstances. In contrast, ArchOptions is concerned about the

growth options an architecture can provide in the face of uncertainty attributed to

change.

Sullivan et al. [2001] extended Baldwin and Clark’s theory [2001] that is developed to

account for the influence of modularity on the evolution of the computer

industry(sufficiently described above). Sullivan et al. [2001] use the model developed

in [Baldwin and Clark, 2001] to treat the evolvability of software design using the

value of strategic flexibility. Specifically, they argued that the structure and value of

modularity in software design creates value in the form of real options. A module

creates an option to invest in a search for a superior replacement and to replace the

currently selected module with the best alternative discovered, or to keep the current

one if it is still the best choice. The value of such an option is the value that could be

realized by the optimal experiment-and-replace policy. Knowing this value can help

a designer to reason about both investment in modularity and how much to spend

searching for alternatives. Sullivan et al. [2001] apply Baldwin and Clark’s

substitution NOV model to compute quantitative values of the two modularizations,

using parameter values derived from information in the DSM’s combined with the

judgments of a designer. The results are back-of-the-envelope predictions, not

precise market valuations. Like in Baldwin and Clark, Sullivan et al.’s use of NOV

ignores the costs of designing modularizations. They assume that once

modularization is done, the costs are amortized over future evolution. Yet they

acknowledge that accounting for the costs is important. In contrast, ArchOptions

explicitly accounts for the cost of exercising the change on the structure of the

system. It uses either parametric models or expert judgment for estimating the cost.

When the cost, is an upfront cost for adapting flexibility into the system,

ArchOptions adjusts the model to account for the upfront costs (see Chapter 6).

Erdogums [1999] describes how strategic flexibility in software development,

involving COTS components, can be valued using real options. They apply two

quantitative valuation methods, NPV and real options, to the assessment of the

COTS-centric software development projects. The objective is to investigate the

 98

economic incentive of choosing COTS centric strategy in a project vis à vis the

alternative, the custom development. Real options is employed to investigate the

value of strategic flexibility inherent in COTS-centric development. The analysis

concentrates on the impact of the risk embedded in the COTS product and the

development time. The result shows that real options theory is preferred over NPV

analysis, as NPV ignores the value of the flexibility in COTS-centric projects making

it appear less attractive.

Bergey et al. [2001] proposes the Options Analysis technique for Reengineering

(OAR). OAR is a systematic, architecture-centric, decision-making method for

identifying and mining software components within large, complex software

systems. Mining involves rehabilitating parts of an old system for reuse. OAR

identifies potentially relevant architectural components and analyzes the changes

required to use them in a software product line or new software architecture. In

essence, OAR provides a set of mining options along with estimates of the cost,

effort, and risks associated with those options. OAR is motivated by the fact that

existing components are often poorly structured and poorly documented and they

differ in levels of granularity. There is no clear guidance on how to salvage

components. OAR’s five activities identify potential components, estimate the

mining cost, and evaluate the effort required to reuse legacy components. OAR

reveals implicit stakeholder assumptions, constraints, and other major drivers that

affect component mining, thereby giving managers insight into this complex task.

OAR aims at making the decisions required to cost-effectively and efficiently mine

legacy system components.

An interesting use of real options theory is that of [Erdogums and Favaro, 2002].

Erdogmus and Favaro use real options to value the inherent flexibility in Extreme

Programming (XP), where they have considered XP as a lightweight process that is

well positioned to respond to change and future opportunities; hence, creating more

value than a heavy-duty process that tends to freeze development decisions. They

use real options to reason about one of the most widely publicized principles of XP,

the You Aren’t Going to Need It principle (YAGNI). The YAGNI principle highlights

the value of delaying an investment decision in the face of uncertainty about the

return on the investment. In the context of XP, this implies delaying the

 99

implementation of fuzzy features until uncertainty about their value is resolved.

YAGNI is a typical example of option to delay. Erdogmus and Favaro observed that

the delay option underlying the YAGNI scenario is much akin to a financial options.

Their results reveal that under increasing future cost assumptions to the

implementations of the features, waiting does not make economic sense. This is

because delaying the implementation decision destroys value because the increase in

the cost of change overtakes the benefit of the flexibility to make the implementation

decision later. As a result, the longer we wait, the less value we create. When

uncertainty is high or it is expected to be resolved over the long term, decisions

about system features should be committed to as late as possible; otherwise, they

should be committed to now. Finally, under a constant cost function, commitment

should always be made later rather than sooner. Hence, Erdogmus and Favaro uses

real options theory to reason about the option to delay implementing features in

relation to XP. In contrast, ArchOptions is concerned about the growth options an

architecture can provide in the face of uncertainty attributed to change.

Plausible improvements of the existing Cost Benefit Analysis Method (CBAM)

[Kazman et al., 2001], sufficiently described in Chapter 2 of the thesis, include the

adoption of real options theory to reason about the value of postponing an

investment decisions in an architectural strategy. In the situation where many

architectural strategies are considered, CBAM attempted to apply real options theory

based upon the dependency structure of the strategies. For example, let AS2 and AS3

be two architectural strategies, where AS2 is low-cost, low-benefit, and AS3 is high-

cost, high benefit. Analysis of the dependency structure may show, for example, that

AS2 must be first be implemented, deferring the implementation of AS3. In other

word, CBAM uses real options theory to calculate the value of option to defer or delay

the investment into an architectural strategy (i.e. the options to defer the investment

until more information will be available).

As we have noticed from the above overview on related work, work on real options

has mainly focused on two types of options. These are the options to explore and

options to delay. The objective is to reason about core issues in software and design in

relation to timing as a way for treating uncertainty. In contrast, we have looked at a

special category of options, which is referred to as growth options. As we mentioned

 100

before, growth options are often embedded in platform-based applications. We use

real options to predict architectural stability in the face of likely evolutionary changes

in requirements. We value flexibility of the architecture to expand in the face of these

changes; henceforth, what we value are the created growth options. For likely

evolutionary change(s), we construct call options to value the flexibility of the

architecture to accommodate the change(s). The value of the constructed calls are

indicators of the ability of an architecture to unlock future growth opportunities and

enhance the upside potentials of the architecture. Knowing this value can assist in

predicting architectural stability.

It is worth noting that the use of economic models to assess the cost and value of

software requirements have been explored, for example, in [Karlsson et al., 1997;

Karlsson and Ryan, 1997; Sivzattian and Nuseibeh, 2001].

Karlsson and Ryan [1997] use a cost-value approach for prioritizing requirements.

Karlsson and Ryan defined requirements value as the ability of a requirement to

contribute to the customer satisfaction with the overall system, when successfully

implemented. A requirement’s cost is an estimate of the additional cost required to

meet that requirements alone. By relating requirements value to its cost, stakeholders

have a measure of that requirement’s ability to contribute to customer satisfaction.

Different stakeholders apply a ratio scale of intensity for pair-wise comparisons to

assess the relative value/cost of candidate requirements. Analytical Hierarchy

Process (AHP) [Saaty, 1980] is used to calculate each candidate requirement’s relative

value and cost of implementation. These are then plotted on a cost-value diagram

that serves as a conceptual map for analyses, discussion, and prioritization.

Sivzattian and Nuseibeh [2001] propose a market-driven approach to supplement the

prioritization and selection of requirements. Sivzattian and Nuseibeh argued that

portfolio-based reasoning is well suited to inform the objective selection of

requirements as it makes the connection between the selection decision and the

market explicit. Unlike Karlsson and Ryan’s approach, Sivzattian and Nuseibeh

focus on the market value of the requirement and ignore the cost of corresponding

implementation on the system, which is often crucial and must be considered in the

prioritization process.

 101

In contrast, in ArchOptions, the value is in the architectural potential in supporting a

change in requirements. The cost corresponds to the cost of accommodating the

change on the architecture of the software system and analogous to the cost of

exercising an options. Karlsson and Ryan [1997] acknowledge that assessment of

value and cost of implementation are based on decision makers’ “experience and

judgment that this could be supplemented by other methods”. In our assessment,

this could lead to a variation in possible value ascribed to the architecture in

supporting the change. The volatility parameter of ArchOptions provides a closed

solution for modeling such variation.

4.6 Summary

We have pursued an economics-driven approach to address the requirements for

evaluating architectural stability. We have motivated the use of real options theory

and have devised a real option model, referred to as ArchOptions, as a solution. We

have described the approach taken, which is based on a simple and intuitive analogy

with Black and Scholes[1973] options theory. We have reported on ArchOptions

formulation, its possible interpretation, and its sensitivity. We have discussed

valuation issues and assumptions under ArchOptions. We have highlighted possible

uses of ArchOptions in analyzing many architecture-centric evolution problems. We

have provided an overview of closely related work on the use of real options is

software engineering.

 102

Chapter 5

A Method for Applying ArchOptions

In the previous chapter, we have presented the ArchOptions model for predicting

architectural stability. In this chapter, we support the model with a three-phase

method for evaluating architectural stability. According to [Brinkkemper,1996], a

software engineering method is “is an approach to perform a system development project,

based on a specific way of thinking, consisting of directions and rules, structured in a

systematic way in development activities with corresponding development products”. The

method, which this Chapter describes, provides such directions and rules for

applying the ArchOptions model by describing possible ways for estimating the

model parameters. We describe phases for conducting an architectural evaluation for

stability using ArchOptions. We discuss issues related to conducting these phases, as

it was realized in its application (Chapter 6).

The method is structured in three phases. Figures 5.1 and 5.2 depict an overview of

the method phases. In the first phase, the method assists in eliciting the likely

changes in requirements. The method pursues scenarios to describe the likely future

changes in requirements that are critical to the evaluation. In reality, a scenario could

be further refined to correspond to one or more further changes that may need to be

realized or could impact the architecture of the software system. To link the likely

future change in the requirement to the architectural artifacts, Goal-Oriented

Requirements Engineering (GORE) paradigm (e.g., [Dardenne et al., 1993; Anton,

1996]) could be adopted. The objectives are (i) to provide a paradigm, which traces

the change in the requirement, exemplified by the scenario, into the architecture and

 103

(ii) to analyze changes that are necessary to be made to accommodate the change, so

we can quantify the flexibility of the software system in responding to the change.

In the second phase, we use a multi-perspective valuation points of view framework

for valuing the flexibility of an architecture to change. The valuation using

ArchOptions requires a comprehensive solution that incorporates multiple valuation

techniques, some with subjective estimates, and others based on market data, when

available. The solution shall be comprehensive enough to account for the economic

ramifications of the change, its “global” impact on the architecture, and on other

architectural qualities. We refer to the problem of how to guide the estimation in this

setting as a multiple perspectives valuation problem. We describe the problem from a

value-based software engineering perspective. To introduce discipline into this

setting and capture the value from different perspectives, we use valuation points of

view (e.g., market, structural, behavioral...) as a solution. The solution aims to

promote comprehensiveness in accounting for the “global” impact of the change on

one or more architectural quality. The solution also aims to promote flexibility

through incorporating both subjective estimates and/or explicit market value, when

available. For every valuation point of view, we construct call options for the given

change. We estimate the cost of accommodating the change. This cost corresponds to

the exercise price. We value the architectural potential in accommodating the change.

The value of the architectural potential may take the form of future savings in

maintainability, possible revenues due to the support of new services, new market

products, and so forth. At the end of the second phase, the major inputs of the

ArchOptions model would have been identified. In the third phase, we interpret the

call values relative to the set evaluation objective.

 104

Figure 5.1. Phase I of the method

Phase I. Eliciting and tracing the change to the architecture

Input:

An architecture and objective for evaluation
Process:

a) Set the objectives for evaluating architectural stability,
 E.g., valuing the cost-effectiveness of designing/re-engineering for change,
 software architecture trade-off analysis, etc.
b) Elicit the changes {i1, i2, …, in} that are critical to the set objectives,

Case of planned changes:
E.g., Use technology roadmap and the roadmapping process to elicit the
scenarios of planned changes

Case of extreme changes:
E.g., Use exploratory scenarios to check for extreme/unforeseen changes

c) Relate the change to the architecture
Identify goals from scenarios

E.g., Use heuristics and guidelines suggested by [Anton, 1997] to identify
the goals

Trace the goals to the architecture
For each goal,

Refine the goal using knowledge of the solution domain until a
trace is established with the associated architectural artifacts,
which implement or said to be impacted by the change.

Output:

A systematic trace (structural) of the change in requirements to the associated
architectural artifacts, which implement or said to be impacted by the change.

 105

Figure 5.2.Phase II of the method

Phase II. Valuing the flexibility of the architecture relative to the change

Input:

An architecture (and its associated artifacts); objective for evaluation; systematic
trace (structural) of the change in requirements to the associated architectural
artifacts

Process:

Using the valuation objectives, identify the valuation points of view

 For every valuation point of view, P Do

 Construct call options to value the architectural flexibility relative to the change:

a) Calculate Cep: Estimate the cost of the architectural strategy, mechanisms, and/or
the associated implementations, which realize the change- the cost corresponds to
the exercise price

E.g., Use expert knowledge to cost estimation Or Use parametric models to
cost estimation (e.g., COCOMO II [Boehm et al., 1995]) Alternatively,
Combine expert knowledge with parametric models.

b) Using the valuation objectives, identify the value of the architectural potential to
the change:

I. Calculate xiVp: Using the set objectives for valuation, value the

 architectural potential to the change and relative to this point
 of view:

E.g., Limit the valuation to three: optimistic, likely, and
pessimistic, or use valuation scenarios, etc.

II. Calculate σp:
E.g., Estimate the likely variation for the optimistic, likely,
and pessimistic values or estimate the likely variation in
valuation scenarios:

Compute the standard deviation of the elicited variations.

Alternatively, make a modeling assumption of σ or make
an educated guess of σp.

 Calculate the call options relative to change and the valuation points of view

Output:

 Call options relative to the valuation point of view:
Cases where the call options: in-the-money and/or out-of-the-money

 106

Figure 5.3. Phase III of the method

5.1 Phase I. Eliciting and Tracing the Change to the
Architecture

Step I-a. Setting the objectives for evaluating architectural stability

For this step, the application of ArchOptions entails identifying the objectives that

the stability evaluation needs to address. In the previous Chapter, we have

highlighted several uses of the ArchOptions model for addressing some

representative architecture-centric evolution problems. The objective for conducting

an evaluation for architectural stability is often tailored to the said problem.

Understanding what drives the evaluation is essential for:

(i) identifying changes that are critical for analyzing the said objectives, which

will be explored in this phase;

(ii) identifying both the value of the architectural potential relative to the change

and the valuation dimension(s) on which the architectural potential need to

be assessed, which will be explored in phase II; and

(iii) interpreting the valuation results relative to the said objectives, which will be

explored in Phase III.

Below are possible drivers for initiating the evaluation for architectural stability.

Phase III. Interpretations and Recommendations

 Input:
Call options relative to the valuation point of view:

Cases where the Call options: in-the-money and/or out-of-the-money
Process:

Interpret the results and give recommendations relative to the set objectives

 107

− Valuing the cost-effectiveness of designing/re-engineering for the change. Valuing the

worthiness of reengineering or designing the architecture of the given software

system to facilitate future changes in requirements,

− Architectural risk assessment. Risks could be due to the problematic architectural

decisions. These decisions may lack the flexibility in dealing with the likely

future changes in requirements. The evaluation may aim to identify the types of

change(s) for which the software architecture is likely to be inflexible and likely

to exhibit future threats on the stability of the architecture of the software system,

- Software architecture trade-off. Compare two or more candidate architectures and

select the more resilient candidate to the likely critical changes in requirements.

Step I-b. Eliciting the changes {i1, i2, …, in}

In this step, we identify likely changes, which are critical to the evaluation and to the

set objectives. A question of interest is: how can we elicit or predict the change?

Before we proceed in explaining the process, we define what a change is. We then

identify two categories of changes: these are anticipated and extreme changes. We

provide some tips from the literature for eliciting these changes.

Definition and nature of change

Change is a process that either introduces new requirements into an existing system;

modifies the system if the requirements were not correctly implemented; or moves

the system into a new operating environment [Yau et al., 1978; Bennett and Rajlich

2000]. Changes of requirements can be perfective, adaptive, preventive, or corrective

[Bennett and Rajlich 2000]. A perfective change involves enhancing, extending, or

adding/deleting the functionality of an existing system. An adaptive change requires

revising requirements to properly adapt to new operating environment such as

integration of a system with new hardware, peripherals, etc. A preventive change

occurs when requirements are revisited to improve future maintainability, reliability,

and portability or to provide a basis for future enhancements. This might include

 108

redesigning and restructuring for requirements to rationalize system services,

optimize, modularize, or create reusable components. A corrective change emerges

as inadequacies, incompleteness, contradictions, ambiguities, noises, or over

specification in requirements are encountered.

In software engineering, it has been known that focusing the change on program

code leads to loss of structure and maintainability [Bennett and Rajlich, 2000]. Upon

managing the change of requirements considerable emphasis is thus placed on the

architecture of the software system as the key artifact involved [Garlan, 2000].

Managing the change is a process which involves recognizing the change through

continued requirements elicitation, requirements evaluation of risk, and evaluation

of systems in their operational environments [Nuseibeh and Easterbrook, 2000].

Identifying and documenting possible future changes is important in order to

manage software evolution [Lehman, 1998] and evaluate architectural choices

[Nuseibeh and Easterbrook, 2000]. Eliciting and dealing with the change in

requirements, however, is still one of the major research challenges facing the

requirements engineering community [Finkelstein and Kramer, 2000]. Some

evolutionary changes could be planned. By planned evolutionary changes, we refer

to changes that belong to a defined (or a semi-defined) roadmap that the system

needs to accommodate in the future as part of its staged-evolution. However, other

changes are unforeseen. These changes are likely to surprise the architecture as the

change materializes. Below, we identify possible routes that an architect/analyst may

pursue for eliciting the likely change in requirements.

Eliciting Planned Changes

Using Technology Roadmapping

Technology roadmapping is an effective technology planning tool which help

identifying product needs, map them into technology alternatives, and develop

project plans to ensure that the required technologies will be available when needed

[Schaller, 1999]. Technology roadmapping, as a practice, emerged from industry as a

practical method of planning for new technology and product requirements.

According to [Schaller, 1999], a roadmap is not a prediction of future breakthroughs

 109

in the technology, but rather an articulation of requirements to support future

technical needs. A roadmap assumes a given future and provides a framework

toward realizing it. Often, a roadmap is part of the business and/or the product

strategy towards growth and evolution. Muller [2002] indicates that the roadmap

creation process has three phases. In the first phase, a meeting is conducted to share

vision on the market; and explore possible products as an answer to the market, the

technology status, and the people. In the second phase, the target is obtaining a

shared vision on the desired technology roadmap and analyzing a few scenarios for

products, technologies, people, and process. In the third phase, a shared roadmap is

created. Garcia and Bray [1997] mention an extra phase in the process, which is the

follow-up activity. For this phase, all key decision makers involved are to critique,

validate and accept the roadmap. An implementation plan has to be developed. This

plan has to be routinely reviewed and updated. The process is a joint effort of

different stakeholders, providing an opportunity for sharing information and

perspectives. Stakeholders could be the business manager, the marketing manager,

the technology manager, the operational manager, and the developer team including

the architect(s), the requirements engineers(s), etc.

Figure 5.3 is a product roadmapping of Company x, a mobile service provider.

Figure 5.3 shows how the mobile services are said to evolve as we transit from 2G to

3G networking. As the bandwidth is improved, an emerging number of content-

based services, ranging from voice, multi-media, data, and location-based services

might be possible. This, in turn, will translate into future requirements (functional

and non-functional), which need to be planned in advance so it can be

accommodated by the architecture responsible for delivering the services. Note that

many of the likely changes in the requirements are often derived from the

roadmapping process, rather than the roadmap itself.

As an example, M-banking is a service, which allows customers to check bank

balances, view statements, and carry bank transactions using mobile phones. A

distributed architecture of a banking system, which envisions providing such a

service as the bandwidth is improved, may need to anticipate changes due to

mobility like changes in security requirements, load, availability, etc. The architect

 110

may then need to anticipate relevant change scenarios and ways of accommodating

them on the architecture of the software system.

E.g., M-banking availability:

(Requirements) Loss of connectivity is the norm in mobility. The M-banking

service shall be available 99% of the time,

(Architecture) New caching mechanisms are then required.

Product-line architectures are systematic approaches for managing the change and

guiding the evolution of a software system. This is achieved through anticipating the

major evolutionary milestones in the development of the product, capturing the

properties that remain constant through the evolution and documenting the

variability points from which different family members may be created. The

approach gives a structure to the product’s evolution and possibly rules out some

unplanned evolutions, if the architecture is respected [Jazayeri, 2000]. Product-line

analysis, for example, can benefit from technology roadmapping to anticipate future

requirements, and likely future product variations (which may include combinations

of features not supported in current products).

 111

Source: http://www.3g-generation.com/

Figure 5.3. Company’s x technology road mapping showing the evolution of
its mobile services as it moves from 2G to 3G and its value to the end user

Companies (for example, in the new communication industries) plan and envision

possible paths for “perfecting” their services and offering, as the rapid advances in

the technology or the infrastructure enabling these enhancements materialize. This is

necessary for catching up with the market, generating wealth, and improving the

value of what is offered to the end users. Moreover, these companies are investing

part of their resources in envisioning the future of the stakeholders’ requirements

and the environment, the evolution of technology and its supporting infrastructure.

This is apparent through the related investments in research and development, the

increasing number of personnel recruited in technology roadmapping, and aligning

the company’s future performance with its ability to execute the set roadmap.

Change scenarios and change cases

The change may be exemplified using change scenario or change cases. The use of

change scenarios in the analysis of software architecture has been demonstrated in a

variety of evaluation methods and across a wide range of domains. In particular,

change scenarios have been used in the Architecture Tradeoff Analysis Method

(ATAM) [Kazman et al., 1996], the Software Architecture Analysis Method (SAAM)

 112

[Kazman et al., 1994], the Attribute-Based Architectural Styles (ABAS) [Klein et al.,

1999], the Cost Benefit Analysis Method (CBAM) [Kazman et al., 2001] and the

Software Performance Engineering (SPE) [Smith 1990; Smith and Williams, 2002].

Scenarios could illustrate the kinds of activities that the system must support. They

could also illustrate the kinds of changes that the client anticipates and that will be

made to the system. In developing these scenarios, it is crucial to capture all the

major uses of the system, and the qualities that a system must satisfy now and in the

foreseeable future. Thus, scenarios represent tasks relevant to different roles, such as

end users, customers, marketing specialists, system administrators, maintainers, and

developers. The scenarios elicitation process by itself is a brainstorming exercise. It

allows stakeholders to contribute to scenarios, in a criticism-free environment, that

reflect their concerns and understanding of how the architecture will accommodate

their needs. A single scenario may have implications for many stakeholders: for a

modification, one stakeholder may be concerned with the difficulty of a change and

its performance impact, while another may be interested in how the change will

affect the integrability of the architecture.

A scenario in ArchOptions, like other architectural evaluation methods, is a brief

description of some anticipated or desired use of a system. The architecture may

directly support that scenario, meaning that the anticipated use requires no

modifications to the architecture for the scenario to be accommodated. This would

usually be determined by demonstrating how the existing architecture would behave

in performing the scenario. Note that such scenarios could correspond to

requirements previously addressed in the design process; hence, not “surprising” the

architecture. Such scenarios may increase our understanding of the architecture,

allowing systematic investigation of other architectural qualities such as performance

and reliability.

ArchOptions is more concerned with scenarios that require changes to the

architecture. Growth scenarios represent ways in which the architecture is expected to

accommodate growth and change in the moderate near term. These may include

 113

expected modifications, changes in performance or availability, porting to other

platforms, integration with other software, and so forth. Growth scenarios provide a

way to show the strength and the weakness of the architecture with respect to

anticipated changes.

If the scenario requires modification to the architecture; these changes could be

related to how one or more components perform an assigned activity; the addition of

a component to perform some activity; the addition of a relation between existing

components; the removal of a component or a relation; a change to an interface; or a

combination of these. These types of scenarios are often referred to as indirect

scenarios. An indirect scenario is a one that requires a modification to the architecture

to be satisfied. Indirect scenarios are central to the measurement of the degree to

which an architecture can accommodate evolutionary changes. The cumulative

impact of indirect scenarios on an architecture measures its suitability for ongoing

use throughout the lifetime of the family of related systems. Directed scenarios are

similar to use cases in UML notation and indirect scenarios are sometimes known as

change cases.

Note Use cases of the Unified Modeling Language (UML) may provide an alternative

for representing the change. For example, we may build on use cases to integrate

both time and “variability” information. The overall outcome may “visualize” the

change and facilitate communicating it to the concerned parties.

Dealing with the extreme changes

If changes can be predicted, then they can be anticipated in the design. The hard

problem, thus, is coping with extreme changes. As for this category of changes, we

acknowledge the fact that there are no silver bullets for precisely and efficiently

eliciting these changes, their variation over the lifetime of the software system, and

their likelihood. We rely on exploratory scenarios [Kazman et al., 1996] for predicting

classes of possible changes. Exploratory scenarios exemplify “dramatic” changes,

which if they occur, may stress and surprise the architecture of the software system.

These changes may take the form of extreme growth that are likely to “stress” the

 114

system, such as dramatic changes in scalability, performance, availability

requirements, and major changes in non-functional requirements.

Exploratory scenarios attempt to find sensitivity points that appear to stress the

architecture. The identification of these points helps assess the limits of the

architecture, hence optimizing the chances of surfacing the architectural decisions to

risks.

Step I-c. Trace the change to the architecture

This step constitutes of the following activities:

The output of the previous step is likely change(s) that need to be accommodated or

could surprise the architecture. The changes are said to be exemplified using

scenarios. In this step, we want to understand how the changes relate, are realized, or

could impact the architecture of the software system. The objective is to quantify the

cost of the change and value the architectural flexibility relative to the change, which

we will explore in Phase II.

A scenario could hold a rich description of the likely change(s) to the software

system. A brief scenario, however, could be further refined to correspond to one or

more further changes that may need to be realized or could impact the architecture

of the software system. Note that ArchOptions is more concerned about how the goals

of a given scenario are “operationalized” or could affect the architecture of the

software system. The objectives are (i) to provide a paradigm, which traces the

change in the requirement, exemplified by the scenario, into its architectural

Identify goals from scenarios

E.g., Use heuristics and guidelines suggested by [Anton, 1997] to identify
the goals

Trace the goals to the architecture

Refine the goal using knowledge of the solution domain until a trace with
the associated architectural artifacts, which implement or said to be
impacted by the change, is established.

 115

elements, and (ii) to quantify the flexibility of the software system in responding to

the scenario exemplifying the change. Though existing architectural evaluation make

use of scenarios, they lack the support for systematically analyzing and

approximately tracking scenarios into the architecture of the software system. In

existing architectural evaluation methods, the architect explains how relevant

architectural decisions contribute to realizing a particular scenario. Ideally, this

activity is dominated by the architect in explaining how the architecture generally

addresses a particular scenario.

One possible strategy for tracing the change in requirements to the architecture of the

software system is to build on Goal-Oriented approaches to Requirements

Engineering (GORE) [e.g., van Lamsweerde, 2000]. According to [van Lamsweerde,

2000], goals are prescriptive statements of intent whose satisfaction requires the

cooperation of agents (or active components) in the software and its environment.

Goals may be organized in structures that capture how they are being refined or

abstracted. Such structures form the skeleton of goal models: goals there range from

high-level, strategic objectives to fine-grained, technical prescriptions that can be

assigned as responsibilities of single agents. Goals may refer to functional concerns or

quality attributes. A functional goal typically captures some maximal set of desired

scenarios. A quality goal typically captures some preferred behaviors among those

captured by functional goals. An appreciated feature of GORE models is their built-

in vertical traceability – from strategic business objectives to technical requirements

to precise specifications to architectural design choices. The ability to capture

multiple system versions within the same model through multiple paths of the goal

graph (e.g., the system as-is, to-be, and likely-to-be-next) are helpful in case of tracing

the high-level goals into the corresponding architectural elements.

Briefly, our use of the goal-oriented approach is general. We adopt a goal-oriented

approach to refine the requirements (e.g., [Dardenne et al., 1993; Anton, 1996]). We

derive goals from scenarios (e.g., using some heuristics suggested in [Anton, 1997]).

We then refine the goals using knowledge of the solution domain until a trace with

the associated architectural artifacts, which implement or are said to be impacted by

the change, is established. The process is fairly simple and involves following two

major steps:

 116

Identifying goals from scenarios

We analyze the scenarios to identify goals that need to be met by the software

system’s architecture. Goal analysis began by identifying goals in the scenarios

[Anton, 1997]. Anton [1997] provides a methodology and heuristics for identifying

goals from scenarios. Representative examples can be found in Table 5.1.

Table 5.1. Some useful heuristics for identifying goals from scenarios – Anton [1997]

No. Heuristic
H1 Key action words such as: track, monitor, provide, supply, find out, know, avoid,

ensure, keep, satisfy, complete, allocate, increase, speedup, improve, make, and
achieve are useful for pointing to candidate goals

H2 Action words that point to some state that is or can be achieved once the action is
completed as candidates for goals. They are identified by considering each statement
in the scenario by asking: Does this behavior or action denote a state that has been
achieved, or a desired state to be achieved? If the answer is yes, then express the
answer to these questions as goals, which represent a state that is desired or achieved
within the system

H3 An effective way to uncover hidden goals is to consider each action word and every
description of behavior and persistent ask “why?” until all the goal have been
“treated” and the analyst is confident that the rationale for each action is understood
and expressed as a goal. The action words should be restated so that they denote a
state that has been achieved or a desired state.

H4 If a statement seems to guide decisions at various levels within the system or
organization, express it as a goal

H5 Stakeholders tend to express their requirements in terms of operations and actions
rather than goals. Thus, when given an interview transcript, it is beneficial to trace
action word strategy to extract goals from stakeholders’ descriptions

H6 Customers tend to express their goals within the context of their application domain,
not in terms of an existing or desired system. Analysts should first seek to understand
the stakeholders’ application domain and goals before concentrating on the actual or
the current system so that the system requirements may be adequately specified.

We shall not go into much detail, as the process is intuitive and outside the scope of

the thesis.

Trace the goals to the architecture

In this step, we refine the goals and identify the sub-goals. In the refinement process,

the goals are decomposed into more concrete subgoals, which correspond to richer

and more tangible representation of the parent goals. In ArchOptions the refinement

is done using guidance on how it could be operationalized by the architecture. In

 117

more abstract terms, the guidance is given by the knowledge of the domain, vendor’s

specification, related design and implementation experience, related design patterns,

etc., and in association with the solution domain (e.g., the underlying middleware).

Another objective of the refinement process is to make goals corresponding to the

change as measurable as possible to quantify the costs and benefits associated with

the change. The refinement of goals continues until they can relate the change to

architectural components, strategies/mechanism (i.e., the architectural element that

said to operationalize the change) and until we will be able to measure its

corresponding impact on the architecture of the software system.

The refinement process could result in: (i) identifying the architectural elements

responsible for operationalizing the goals; or (ii) identifying architectural elements

which might be impacted by the change. Note, treating goals which represent

changes in a functional nature is obviously less demanding than goals of non-

functional nature, as the change is often localized in a set of architectural elements.

Goals of a non-functional nature are more critical as they can have a global impact on

the architecture.

The goal refinement graph could capture relationships among goals using and

AND/OR refinement links. AND refinement relates to goals that are satisfied when

all its subgaols are satisfied. OR refinement relates to a goal which is sufficiently

satisfied if at least one of its subgoals are satisfied. Note that different architectural

mechanisms may operationalize a given goal, which may be captured in the

AND/OR graph or by a general graph.

Back to our running example, obviously the goal that could be extracted from the

scenario narration is maintaining scalability. Figure 5.3 shows the goal-oriented graph

refinement corresponding to the change in scalability. In Chapter 6, we will see that

the refinement was guided by the knowledge of the domain (i.e., the middleware

primitives); vendor’s specification, such as [Object Management Group, 1999-2000;

Sun Microsystems Inc., 2002]; related design and implementation experience, mainly

that of [Othman et al., 2001a; Othman et al., 2001b]. The scalability goal was refined

into two major sub-goals: these are achieving load-balancing and fault tolerance on

 118

the architecture of the software system. Note that different architectural mechanisms

may operationalize the scalability goal and its corresponding refinements. As an

operationalization choice, we use replication as way for achieving scalability. The

reason is due to the fact that both CORBA and J2EE provide the primitives or

guidelines for scaling a software system using replication. We have relaxed the use

of AND/OR representation as we are modeling the system as-is with one

operationalization choice.

Consider the Fault Tolerance sub-goal of Figure 5.3: the requirements for

implementing Fault Tolerance and their CORBA architectural realization are

depicted in Table 5.2. They are refined based on the CORBA fault tolerance

specification of the OMG [Object Management Group, 1999]. Detailing the

refinement and the operationalization of the goal can be found in Chapter 6 with the

complete case study.

 119

Scalability
M

aintenance
(R

eplication)

Load Balancing

Fault Tolerance

Logging and
R

ecovery
M

ana gem
ent

Fault M
anagem

ent

R
eplication

M
anagem

ent

Server
Transparency

C
lient Transparency

Support D
ynam

ic
O

perations

Equalize D
ynam

ic
Load D

istribution

Increase System

D
ependability

Support
Adm

inistrative
Tasks

Incur M
inim

al
O

verhead

Load M
etrics and

B
alancing Policies

Interoperability and
Portability

Figure 5.3. The goal-oriented refinement for achieving scalability through
replication

 120

Table 5.2. The refinement of the fault tolerance subgoal (CORBA)

Sub goals Architectural

Elements
Description

Property Manager Provide operations that set properties for
object groups

Object Group
Manager

provide operations that allow an application
to exercise control over addition, removal, and
obtaining the current reference and identifier
locations of members of an object group

Replication
Management

Generic Factory Issues requests for replicating objects (object
groups), creating replicas (members of object
groups), and unreplicating objects

Fault detection The Fault detection component detects the
presence of a fault in the system and generates
a fault report

Fault notification The fault notification component propagates
fault reports to entities that have registered for
such notifications

Fault Management

Fault analysis The fault analysis component analyses a
(potentially large) number of related fault
reports to generate a condensed diagnosed
report

Logging The Logging records the state and actions of a
member of an object group in a log

Logging and
Recovery
Management Recovery The Recovery Mechanism sets the state of a

member, either after a fault when a backup
member of an object group is promoted to the
primary member, or alternatively when a new
member is introduced into an object group

 121

5.2 Phase II. Valuing the Flexibility of the Architecture
to the Change

The problem of valuing the flexibility of an architecture to likely changes in

requirements needs a comprehensive solution that is flexible enough to incorporate

multiple valuation techniques; some with subjective estimates and others based on

market data, when available. This is because of the following reasons:

First, the valuation activity is a human-centered activity. The participants in the

valuation activity may include developers, architects, project mangers, market

analysts, product analysts etc. Interviews, meetings, or surveys could be conducted

to gather qualitative and quantitative costs and benefits information. The

participants often rely on experience and subjective judgments in valuation.

Describing the valuation as human-centered activity implies subjectivity and

introduces different perspectives to the valuation problem.

Second, the change may impact one or more architectural qualities, such as

performance, maintainability, availability and so forth when need to be

accommodated by the system of a given architecture. For example, Chapter 6

demonstrates a case where a change in scalability requirements affects both

behavioral and structural qualities of an architecture. Linking the impact of the

change to value, as a way for valuing flexibility, requires a valuation solution that is

comprehensive enough to account for the economic ramifications of the change and

its global impact on the architecture including how the change could affect one or

more architectural qualities. The aim is to provide the architect/analyst with a

comprehensive tool for understanding the extent to which the change can “ripple” to

impact other qualities and its economic implications.

Third, technically speaking, real options valuation uses twin asset to the valuation of

the asset in question. If the twin asset is not directly observable, it is reasonable to

use estimates of return on the asset in question to estimate value or market-calibrated

value [Schwartz and Trigeorgis, 2000]. In some cases, the flexibility of the

architecture to change in requirements can be valued in terms of directly observable

 122

cash flows linked to future operational benefits or market value, making it easy to

use the return to value the options. In other cases, the flexibility of an architecture to

the change may not be directly observable through cash flows. Consequently, the

analyst may then need to rely on experience for estimation. If the analyst relies on

experience and judgment in his/her estimation, the estimates tend to be subjective

but could make an implicit use of market information. Note that back-of-the-

envelope calculations, which are based on value estimates (rather than on market

value), continue to be acceptable and revealing [Sullivan et al., 2001]. It is often the

case that both market and subjective value estimates are available. That is, in real

options, values are often estimated by inspecting a relevant experience or by using

subjective estimates. Hence, this brings a need for a solution that comprises both

value and accounts to the different perspectives to the valuation.

Fourth, the valuation is relative to the evaluation objectives, set in Phase I and the

primary drivers motivating the change. The drivers could be, for example, future

cost savings, shorter time-to-market, entry to new markets, service enhancements,

etc. It is often the case that there is more than one driver behind the change. This

necessitates a valuation solution that is flexible enough to capture the value relative

to the said drivers.

As a compromise, the problem of valuing the flexibility of an architecture to a likely

change necessarily requires a comprehensive solution that is flexible enough to

capture the options from different perspectives and to incorporate multiple valuation

techniques; some with subjective estimates and others based on market data, when

available. The problem of how to guide valuation and introduce discipline in this

setting, we term as the multiple perspectives valuation problem. To address this problem,

we outline a conceptual valuation points of view framework. The framework aims to

capture and value the flexibility of the architecture to change from different points of

views. A point of view, P, is a perspective used by an analyst/architect to assess the

architectural potential to the change. The perspective could be either technically

related (e.g., structural such as development, configuration, deployment; behavioral

such as performance, availability, reliability etc.), market-related (e.g., market

potential of a product), and/or related to the organization business objectives.

Therefore, the corresponding value of an architectural potential to a change may be

 123

relative to the market, to one or more technical dimension of the system, or to the

organization, as sketched in Figure 5.4. The purpose is to reach a comprehensive

value of options from different perspectives. In addition, the aim is to promote

flexibility through incorporating both subjective estimates, which may implicitly use

market information and/or explicit market value, when available. Furthermore, it

remains an open challenge to strongly justify precise estimates for real options in

software [Sullivan et al., 2000]. Part of the problem stems in the absence of

frameworks that capture the options on the software from different perspectives. The

outlined valuation point of view framework is promising to address these

shortcomings.

Steps II-b develops on how we can value an architectural potential to change relative

to a point of view. We define and discuss two valuation points of view: these are

technical and market valuation points of view.

For a valuation point of view pj and a change i, the constructed call options could be

re-expressed in (5.1), where xiVpj corresponds to the value of the architectural

potential of the change relative to pj, with an exercise cost of Ceipj:.

E [max (xiVpj - Ceipj, 0)] (5.1)

 124

Figure 5.4. Valuing the options using valuation points of view for changes {i1,
i2,…, in} on architecture A

In context of architectural stability, a potentially stable architecture has to maximize

the value added relative to some valuation points of view. In Chapter 6, we will see

how the decision of selecting an architecture which tends to be more accommodating

for changes in scalability requirements has taken into account both the value added

relative to two valuation points of views. These are maintainability (structural) and

throughput (behavioral) (Section 6.3).

Phase II constitutes the heart of the ArchOptions model. In this phase, we identify

the valuation points of view on which the options will be computed. For a valuation

point of view pj: we analyze and list the changes that are necessary to be performed

on the architecture. We estimate the cost of accommodating the change. This cost

corresponds to the exercise price. We value the potential of the architecture to

withstand the change. We analyze ways for computing the fluctuation in the

estimated value. At the end of Phase II, the major inputs of the ArchOptions model

would have been identified. These are xiVpj (i.e., Value of the “architectural potential”

in supporting the change), σpj (i.e., the “fluctuation” in the return of value of xiVpj),

Options? (Enhancement of QoS
performance, availability,
reliability, etc.)

{i1, i2,…, in}

 A

Options? (e.g., generation of new
products, reuse, ect.) Added Value?

Market point of view

Options? (e.g.
Savings in
Development
Effort, maintenance,
regression testing, ect.)

Behavioral
point of view

Structural point
of view

 125

and Cepj (i.e., the estimate of the likely cost to accommodate the change) and relative

to the valuation point of view pj. Having these parameters, we can then construct

calls to value the flexibility of the architecture to the change.

The steps below constitute phase II, which we detail in the following subsections.

Step II-a. Estimate Ceipj

Estimate the cost of the architectural strategy, mechanisms, and/or the associated
implementations, which realize the change- the cost corresponds to the exercise
price

Let us return to our running example: The cost of realizing scalability with the

CORBA-induced architecture, translates to the cost of building a replication

mechanism, responsible for realizing the changes in the scalability goal. In concrete

terms, the cost materializes to the cost of implementing load balancing and fault

tolerance services, configuration of these services, and deployment of the replicas

running these services on hosts. These may translate into development cost (i.e.,

person-months), hardware, licensing costs (if any), etc. In abstract terms, the change

materializes to an architectural strategy or mechanism responsible for realizing the

said goal. Moreover, the change may affect the existing architectural components,

connectors, and/or the underlying infrastructure requiring modification to the

associated software artifacts. Generally speaking, ArchOptions is flexible to

incorporate either coarse-grained or fine-grained cost estimation. Note that the

ArchOptions model is complementary to expert estimation, where expert estimates

of the change can be fed into our model. To help experts come up with estimates

that are more precise, they can inspect relevant effort, past projects, associated design

patterns, and so forth. Alternatively, techniques such as COCOMO II [Boehm et al.,

1995] may be used if the key predictors, such as size of the change can be reliably

estimated. As with expert-based estimation, the estimates for change could be fed

into the model. Note that by inspecting a previous valuation experience to satisfy the

concept of “twin asset” and by identifying the key predictors to COCOMO II, we end

up applying a “composite” approach to cost estimation. An approach which

combines both expert knowledge and parametric estimation is said to be more

precise than approaches which solely rely on either expert knowledge or parametric

models to estimation [Briand and Wieczorek, 2002].

 126

For example, Table 5.3 shows how the Fault Tolerance subgoal refinement relates to

the JAVA classes implementing the change. Table 5.3 estimates that SLOC required

to implement the change using an analogy with a previous development experience.

Using the SLOC, we can then estimate the cost using models like COCOMO II

[Boehm et al., 1995]. However, the real-world usefulness of models such as

COCOMO II has been questioned for constant and unexplained calibration, which

often leads to inaccuracy in the prediction. It could be also argued that in iterative

development, when estimations are continuously recalibrated (e.g., in the Unified

Process), it is possible to come up with estimations that are more accurate than

COCOMO II, as they will take into account factors, such as the skills of the

developers, the project maturity, and other organizational factors.

 127

Table 5.3. Implementing the fault tolerance service on CORBA

Generally speaking, for estimating the exercise cost, three possible routes can be

pursued:

(i) Use expert knowledge to cost estimation, or

(ii) use parametric models to cost estimation, or

(iii) combine expert knowledge with parametric models for better estimation.

Note that in [Briand and Wieczorek, 2002], the prediction accuracy of

several cost estimation models has been reviewed. Examples include the

Constructive Cost Model COCOMO [Boehm, 1980], Ordinary Least

Squares (OLS) regression [Subramanian and Breslawski, 1993], and

ANALOGY [Walkerden and Jeffery, 1999]. The review examines the

File Name File
Type

SLOC Description

CosFaultTolerance IDL 242 Interface description of remote
methods

PropertyManagerImpl Java 273 Implementation of the
PropertyManager interface

ObjectGroupManagerImpl Java 672 Implementation of the
ObjectGroupManager interface

GenericFactoryImpl Java 523 Implementation of the
GenericFactory interface

ReplicationManagerImpl Java 865 Implementation of the
ReplicationManager interface

FaultNotifier Java 611 Implementation of the
FaultNotifier interface

ClientPolicy Java 155 Implementations of the
RequestDurationPolicy interface

ServerPolicy Java 61 Implementation of the
HeartbeatEnabledPolicy

FTPolicy Java 207 Implementation of the
HeartbeatPolicy interface

FaultDetector Java 149 Class defining the component
illustrated above

DefaultFaultAnalyzer Java 113 The default fault analyzer
ReplicationManagerFaultAnalyzer Java 865 Replication Manager's fault

analyzer
FaultConsumer Java 200 Connect to the fault notifier
PropertyValidator Java 29 Class providing static methods to

validate properties
MemberInfo Java 50 Structure that contains all

member-specific information
PropertyUtils Java 53 Provides some methods used to

manipulate properties
Operators Java 23 Class providing static methods

related to operators
ReplicationManagerServer Java 13 Class running the Replication

Manager server
FaultNotifierServer Java 13 Class running the Fault Notifier

server
Total 5117

 128

results of several empirical studies done in the last fifteen years to

evaluate the prediction effectiveness of the subject models. The result

shows that the estimation using these models could be improved if their

parameters are adjusted using expert knowledge.

Expert knowledge to cost estimation

Expert knowledge, also referred to as non-model based estimation methods,

consists of one or more estimation techniques together with a specification on

how to apply them in a certain context. These methods do not involve models

but rely on direct estimation. Obviously, they require heavy involvements of

experts, their previous experience, and judgment to generate an estimate of

the cost for implementing the change. Using solely non-model based methods

may lead to very inaccurate results. Developers may tend to underestimate

the time required to do small changes, yet they tend to overestimate the time

for larger ones [Briand and Wieczorek, 2002]. Expert based techniques are

typically best suited for projects that are not too different from the projects

completed in the past. The analyst may have developed an extensive

experience in similar situations, which makes it easier to estimate. The main

drawback, however, is the subjective and the non-transparent nature of the

estimation process that make it harder to justify the estimates. Often it is

difficult to find analysts with the appropriate experience in the application

and the environment in which the change needs to be developed.

Parametric models to cost estimation

 Software development costs continue to increase and practitioners

continually express their concerns over their inability to accurately predict

the costs involved. As a result, the software engineering community has been

concerned with the development of models that constructively explain the

development life-cycle and predict the cost of developing a software product

since the early 1960s. The field of software engineering cost models, however,

has had its own pitfalls: the fast changing nature of software development

has made it very difficult to develop parametric models that yield high

accuracy for software development in all domains. Model-based or

 129

parametric-based estimation is usually dependent on a number of inputs

(e.g., a size estimate, cost factors) and outputs an effort point estimate or

distribution.

Throughout the thesis, we use COCOMO II [Boehm et al., 1995], as a

parametric model to estimate cost. Appendix A provides the interested reader

with a quick overview on COCOMO II.

Step II-b. Estimate XiVpj

Using the valuation objectives, identify the value of the architectural
potential with respect to the change

Upon the application of the model, the problem that the analyst/architect faces is

that the cost is often tangible, but the value is hard to grasp. For example, refactoring

a system of a given architecture incurs up-front design costs; but the value is so

elusive and long-term. Part of the value may materialize if the refactoring exercise is

planned so the structure can be utilized to create future value such as future savings

in maintenance and regression testing. Such a value may span several dimensions

such as ease of future maintainability, extensibility, modularity, reusability,

complexity, and efficiency. Returning to our running example we have highlighted

in Chapter 4, the value of the architectural potential of inducing an architecture with

J2EE and not CORBA (and vice versa) is a relative value. The value could span

different dimensions including ease of future maintenance and relative savings in

deployment and configuration of the software system if we choose to go for J2EE and

not a CORBA-induced architecture (and vice versa). This value is realized only if the

change in future load materializes. Alternatively, the architectural potential could be

valued in relation to the market, as it is the case with product line-architectures. For

example, the architecture could “pull” the options by responding to changes in the

market requirements, while leaving the architecture of the software system intact or

by requiring minimal changes to the architecture. In many cases, the value crosscuts

many dimensions ranging from market to technical leading to both technical and

market benefits.

 130

Hence, the valuation is relative to the evaluation objectives, set in Phase I and the

primary business drivers motivating the change. The business driver could be for

example, future cost savings, shorter time-to-market, entry to new markets, service

enhancements, and so forth. In many cases, we consider that the right to claim future

cost savings as a result of the architecture supporting the change is a value. In other

cases, the value of the architectural potential is a consequence of an upfront

investment to facilitate future changes, which in turn will create value. The payoff

occurs in the future, contingent on uncertain future conditions. It is worth noting that

valuing the architectural potential is case dependent and there is no generic off-the-

shelf solution to such valuation. The valuation activity is a human-centered activity.

Ideally, the valuation is done in connection with the product, strategy, and/or the

marketing team.

We discuss how we can value an architectural potential to change relative to a point

of view. We discuss two valuation points of view: these are technical and market

valuation points of view.

Valuation using technical point of view

By using a technical point of view to assess the architectural potential to the change, we

may aim at assessing the architectural potential of an architecture to the change

relative to some structural or behavioural properties of the system of a given

architecture. As an example of the structural properties, we may aim at assessing the

expected savings (if-any) in development, configuration, and deployment efforts to

be realised upon accommodating the change on the system of a given architecture.

We may also be interested in assessing savings in licenses and hardware. For the

behavioural properties, we may for example, aim at understanding the economics

implication of the change on one or more architectural qualities such as performance,

reliability, availability, and so forth. Chapter 6 provides an extensive example on

how both structural and behavioural valuation points of view are used. In many

other cases, the enterprise could focus the analysis on one technical dimension. For

example, by using development point of view to assess the architectural potential to the

change, we may aim at understanding the savings in development effort (if any) to

be realised upon accommodating the change on the system of a given architecture.

 131

Therefore, the value of the architectural potential to the change could be realized in

relation to one or more technical dimension. In fact, the choice of the dimensions is

dependent on how the enterprise defines its value proposition. As a result, there is

no generic off-the-shelf formula. A range of metrics can be used. Typical measures

may include cost savings; risk and losses avoidance; increased productivity;

reduction in personnel required for integration; reduction in time-to-market; savings

in regression testing effort; and/or enumeration of short-term (e.g., quarterly cycle)

and long-term (e.g., two-years or more) benefits and so forth. Our assumption here is

that the resulting value is cast into monetary value.

Valuing the architectural potential to the change requires finding a twin asset with

the similar risk characteristic of the one at hand. We have argued that reusing a past

development experience such as previous design and its corresponding

implementation to inform the valuation bear a resemblance to the concept of a “twin

asset” [Bahsoon et al., 2005; Bahsoon and Emmerich, 2004a; Bahsoon and Emmerich

2004b]. Note that much of the valuation in software engineering is based effort

measured in person-months. Such valuation is based on similar experience and may

hold similar risk characteristics to the case in hand. The valuation does implicitly

hold market information as effort valuation if often priced relative to the market.

Back to our motivating example, as we will see in Chapter 6, that in valuing the

architectural potential of the CORBA-induced version relative to that of J2EE, we

have used a previous design and development experience, where the scalability

change has been designed and implemented on a CORBA compliant middleware,

TAO (refer to Chapter 6). In this context, our use for the design and the

corresponding implementation of scalability on TAO bears a resemblance to the

concept of a “twin asset”, for we are reusing a past development experience to

inform the valuation. To value the xiV of the J2EE induced-architecture, S1, relative to

the CORBA induced-architecture, S0, in responding to the change in load, we take a

technical point of view to valuation. The valuation uses the expected savings (if-any) in

development, configuration, and deployment efforts, when the change in load needs

to be accommodated on S1 relative to S0, and respectively denoted as ∆S1/S0Cdev, ∆

S1/S0Cconfig, ∆ S1/S0Cdeploy. Relative savings in licenses and hardware may also be

considered and respectively denoted by ∆Clicesh, ∆Chardw. Below is a model for

 132

calculating xiVS1/S0 relative to the change, expressed in cumulative savings for h

hosts:

Alternatively, the analyst/architect may break down the valuation relative to one

point of view at a time. Table 6.11a of Chapter 6 provides an example on using the

technical point of view and breakdowns of the calculations relative to a particular

point of view as expressed below:

In the refactoring case of Chapter 6, we restrict the valuation to one point of view, the

development point of view. The objective is to value the improved architectural

potential as a result of investing in a refactoring exercise. The architectural potential

was assessed relative to likely savings if twenty changes, ch, of adaptive nature may

need to be accommodated on the refactored version.

Valuation using the market point of view

The value of the architectural potential could be realized in relation to the market or

the enterprise business objectives. This is true when the change is driven by purely

market needs: this could be in response to market differentiators, assimilating and

exploiting new technologies, in response to changes in standards, customer

xiVS1/S0 technical point of view = ∑ h=1…k (∆S1/S0Cdev, ∆ S1/S0Cconfig, ∆ S1/S0Cdeploy, ∆ S1/S0

Clicesh, ∆ S1/S0Chardw)h

xiVS1/S0 Development point of view = ∑ h=1…k (∆S1/S0Cdev)h;

 xiVS1/S0 Configuration point of view = ∑ h=1…k (∆ S1/S0Cconfig)h;

xiVS1/S0 Deployment point of view = ∑ h=1…k (∆ S1/S0Cdeploy)h.

xiVS1/S0 Deployment point of view = ∑ ch=1…20 (∆ S1/S0Cdev)ch

 133

demands, and market competition. By using a market point of view to valuation, we

may aim at assessing the market potential of the architecture upon supporting the

change leading to new products, new services, etc. The market point of view may

provide an insight on the profitability of evolution and consequently the success

(failure) of evolution relative to the market upon accommodating the change.

The analysis may highlight the role of the architectural flexibility in instantiating

from the core architecture new market products. This gives the analyst/architect a

way to think about this flexibility as being tangible. The analysis may provide an

answer to when the payback will be realized upon investing in the change.

We have exemplified the use of the market valuation point of view to value the

flexibility of a small product-line suite, xlinkit [www.systemwire.com], in

responding to changes in the market requirements. The change is driven by a need to

accommodate a new market standard. In summary, the xlinkit suite provides

capabilities for checking the consistency of distributed and heterogeneous

documents. xlinkit uses a built-in grammar-based Extensible Markup Language

(XML) validation language, referred to as CliX, to the consistency checking and the

validation of these documents. Being a grammar-based validation language, CliX has

some limitations when validating complex documents, which are inconvenient and

difficult to represent using grammar-based languages. Example of this category of

documents is patterns of graph-structured data of scholarly research. Schematron

[Jelliffe, 2000; Miloslav, 2000] is a unique grammar-free validation language that is

suitable for validating this category of documents. The current xlinkit

implementation does not support Schematron. As Schematron is undergoing ISO

certification, Schematron is likely to become one of the most used XML validation

languages in the market. For xlinkit, the support of Schematron is likely to enhance

the product potentials for the capability of CLiX and Schematron are complementary.

This is in turn may translate into long-term revenues for the enterprise due to likely

penetration of new markets. We have shown how ArchOptions can value the

flexibility of the core xlinkit architecture in integrating Schematron. The objective of

the case is to exemplify the use of the valuation points of views framework. Upon

valuation, we have appealed to the use of two valuation points of views: the

maintenance and market valuation points of views. The analysis has shown a

 134

possible way of using ArchOptions to provide insights into the likely success

(failure) of the software evolution and its implication on the software system. The

case has provided an idea on how ArchOptions can be employed to quantify the

value of the architectural potential in supporting new market product while

achieving a net benefit. The interested reader may refer to [Bahsoon and Emmerich,

2005] for more details.

Using the market point of view to value the architectural potential has some

shortcomings

Limited applicability. The only time where an architectural potential can be

assigned a market value is when the resulting product due to introducing
new feature can be sold, create market revenues, or be correlated with the

market.

The valuation is subject to manipulation and fairly subjective. This is because the
valuation could be affected by variation in the market conditions such as

supply and demand, market competition, contractual agreements etc. This
often leads to subjectivity upon assigning a market value.

A question of interest, however, how could we capture such value? In real options,

values are often estimated by inspecting a previous relevant experience or by using

subjective estimates. The participant in the valuation activities may include the

developers, the architects, the project mangers, the market analysts, and other

stakeholders. Interviews, meetings, or surveys are often conducted to gather benefit

information. It is the norm that enterprises construct business cases for justifying the

upfront investment in a particular architecture. In some cases, a business case may

include some probable evolutionary milestones in the lifetime of the architecture,

forecast of possible revenues, enumeration of some benefits, risks, and so forth. The

business case may also include estimates of costs and valuation scenarios for

probable payback upon realizing the evolutionary milestones, such as instantiating

from the core architecture a new market product. If this is the case, the use of

valuation scenarios to capture the possible value of the architectural potential upon

accommodating the change over a period of interest becomes feasible. The scenario

 135

valuation preserves the dynamisms entailed by the options approach and accounts

for various possible and foreseen values.

Figure 5.4, For example, depicts an extract from Company Y’s valuation of the

probable payback upon instantiating from the core architecture a simplified new

market product and in response to market requirements. The valuation uses five

scenarios showing a likely payback value ranging from £-15,028(Scenario 3),

£14,025(Scenario 1), £37,472(Scenario2), £40,472(Scenario 4), to £55,153(Scenario 5).

Note that these values correspond to the present value:

 xiVmarket point of view (scenario 1) = £14,025;

xiVmarket point of view (scenario2) = £37,472;

xiVmarket point of view (scenario 3) = £-15,028;

xiVmarket point of view (scenario4) = £40,472;

xiVmarket point of view (scenario 5) = £55,153.

 136

Figure 5.4. An extract from Company Y’s valuation of the probable payback upon
instantiating from the core architecture a simplified new market product

Another simplified solution would be using value estimates representing pessimistic,

optimistic, and likely [Gilb, 1998] values of the architectural potential, over a specified

period of interest. We demonstrate the use of such a solution in the evaluation

section of the thesis.

Business Case for PAML

Income
FTB Amex Bank EFG PAML1 Co-op

Licence $250,000 $243,000 $447,100 $250,000 £360,000
PS charge to customer $100,000 $50,000 $300,900 $100,000 £460,000
PS income after costs (cost = $59,500 assuming 100 man day deployment) $41,500 -$9,500 $241,400 $41,500 £400,500
Maintenance $54,000 $52,488 $96,574 $54,000 £77,760

% Income FTB Amex EFG PAML 1 Co-op

Product Marketing Licence 10.2% $25,500 $24,786 $45,604 $25,500 £36,720
PS 35.2% $14,608 -$3,344 $84,973 $14,608 £140,976
Corp-License 36.0% $90,000 $87,480 $160,956 $90,000 £129,600
Corp-Services 9.5% $3,943 -$903 $22,933 $3,943 £38,048
Corp-Maintenance 8.5% $4,590 $4,461 $8,209 $4,590 £6,610

TOTAL INCOME$ $138,641 $112,481 $322,675 $138,641
TOTAL INCOME£ £81,553 £66,165 £189,809 £81,553 £351,953

Expenditure

Goal total Man Days 848
Daily Internal Charge Rate £350

Total Expenditure £296,800

Income

Payback Scenario 1
FTB+AMEX £147,719
PAML1 £81,553
PAML2 £81,553
Total income £310,825 Profit = £14,025

Payback Scenario 2
FTB+AMEX £147,719
PAML1 £81,553
2 AMLE deals £105,000
Total income £334,272 Profit = £37,472

Payback Scenario 3
FTB+AMEX £147,719
PAML1 £81,553
1 AMLE deal £52,500
Total income £281,772 Profit = -£15,028

Payback Scenario 4
FTB+AMEX £147,719
EFG £189,809
Total income £337,527 Profit = £40,727

Payback Scenario 5
Co-op £351,953
Total income £351,953 Profit = £55,153

 137

Calculate σpj:

In short, the volatility σpj tends to provide a measure of how the stakeholders are

uncertain about the future value of the architectural potential relative to the change

and relative to pj; it tends to measure a fluctuation in value. In financial options,

practitioners often rely on historical data of investment returns to estimate the

volatility of the stock price. This is feasible because the valuation is done in span of

the market where high volume of historical data is available. Yet, this is not the case

in valuing software. For example, the case of valuing the architectural potential to

the change may hint that the uncertainty and the fluctuation in value are private to

the given project. Further, such case often occur in low volumes, therefore getting

valid data, treating them consistently, and dealing with the non-quantifiable effects

makes the valuation and estimating volatility different from market-traded options.

Hence, unlike financial options where richly traded-market information on values

and uncertainty are available, it is hard to provide reliable and justified estimates of

volatility in real options. Note that real options practitioners often rely on subjective

opinion to estimate the volatility. In many cases, real options practitioners make

simplified assumptions by either using modeling assumptions or making educated

guess. For example, one approach is to examine a range of estimates from say 30% to

60% and guess which might be the most appropriate. When the estimates are poorly

justified, performing sensitivity analysis to verify the choice becomes essential.

In modeling volatility, in some cases we adopt a simplistic solution to the problem.

We use stakeholder judgment variation of the estimated xiVpj’s as a way for

estimating volatility. The evaluation team is asked to record their judgment of

possible variation, ± % var, of the previously estimated xiVpj’s. A +%var corresponds

to an anticipated percentage increase in the xiVpj. A -%var corresponds to an

anticipated percentage decrease in the xiVpj. Possible %var values may be then

 E.g., Estimate the likely variation in the optimistic, likely, and pessimistic value,

 Alternatively, Estimate the likely variation in valuation scenarios,

 Compute the standard deviation of the elicited variations

Alternatively make a modeling assumption of σ OR make an educated guess of σ

 138

available for the optimistic, the pessimistic, and likely xiVpj’s respectively given by

Optimistic xiVpj ± %varo, Likely xiVpj ± %varl, Pessimistic xiVpj ± %varp. In real options, σ

calculates to the standard deviation of the rate of return on the asset. Intuitively, the

%var is analogous to the rate of return on the architectural potential. Accordingly, we

take the percentage of the standard deviation of the xiVpj variation estimates-the

optimistic, likely, and pessimistic values to calculate σpj.

Construct call options to calculate the option relative to this valuation point of
view

Having estimated the major parameters of the model, it is now possible to compute

the call options using (5.2) and (5.3) on the architecture in supporting change i. As we

have noticed, several estimates for Ceipj and xiVpj, ranging from optimistic to

pessimistic or representing possible valuation scenarios, would have been computed

at the end of the valuation and relevant to a valuation point of view Pj. Examples are

depicted in Table 5.4. Based on the case and the evaluation objectives, the analyst

may then compute optimistic, pessimistic, or likely options.

Table 5.4. Example of estimated parameters at the end of the valuation

Variable Estimated Parameters

Optimistic Ceipj

Likely Ceipj

Ceipj

Pessimistic Ceipj

Optimistic xiVpj

Likely xiVpj

xiVpj

Pessimistic xiVpj

Optimistic xiVpj ± varo

Likely xiVpj ± varl

σpj

Pessimistic xiVpj ± varp

 139

For numerical examples, we refer the interested reader to Chapter 6, mainly to

Sections 6.2.3, 6.2.4, 6.3.6.2, 6.3.6.3, and 6.3.7 where we show how (5.2) can be applied

and how the relevant parameters could be estimated in the context of use.

5.3 Phase III. Interpretations and Recommendations

The final stage of the method is the evaluation and the interpretation of the results

relative to the set objectives. The supporting method is open and flexible enough to

address many evolution-related objectives. The method does not define rigorous or

prescribed actions to follow. Although the steps are numbered suggesting linearity,

this is not a strict waterfall process. There were be times when an analyst will return

briefly to an earlier step; will jump forward to a later step; or will iterate among

steps, as the need dictates. Furthermore, the analyst may amend the steps, based on

the available information at hand, the case itself, and the set evaluation objective(s).

Accordingly, the nature of the decisions due to the application of the model

fundamentally varies with the nature of the problem, across projects, and

organizations. As a result, such decisions are subject to the objective for which the

model/method is applied. In chapter 6, we will explore how the computed options

value (i.e., the options-in-the-money or the options-out-of-the-money) may be used

to provide insights into architectural stability and investment decisions related to the

E [max (xiVpj - Ceipj, 0)] (5.2)

C = xiVpj N (d1) – Ceipje –r (T) N (d2) (5.3)

where,

 d1 = ln(xiVpj / Ceipj) + (r +σpj 2/2)(T)

 σpj (T) ½

 d2 = ln(xiVpj / Ceipj) + (r-σpj 2/2)(T) = d1 -σpj (T)1/2

 σpj (T) ½

 140

evolution of the software. In a nutshell, the recommendations are tailored to the set

evaluation objective(s). The computed options values guide the recommendations.

Below, we explore some dimensions that the recommendations may address:

 Trade-off analysis. The evaluation may aim at comparing two or more

architectures and select one, which is likely to be stable in the face of some

probable critical future changes in requirements. In this context, the

application of the model has to explore points where the candidate

architectures is in-the-money or out-of-the-money to inform the trade-off

analysis and steer subsequent recommendations. Interested reader may refer

to the case of selecting a “more” stable induced-middleware architecture,

presented in chapter 6, for an example.

 The worthiness of reengineering or designing the architecture for change

and its stability implications. The evaluation may aim at assessing the

worthiness of investing in reengineering or designing the architecture for the

change and its stability implications. In this context, the application of the

model has to explore situations where investing in such an exercise may add

a value to the software system and/or the enterprise owning the architecture.

Again, the value of the computed calls provide the analyst with insights into

when it might be cost-effective to invest in such an exercise, while not

sacrificing the available resources. Accordingly, related recommendations on

the cost-effectiveness of such an exercise, its long-term value, and its stability

implications may follow. Interested reader may refer to the refactoring case of

chapter 6, for an example.

 Flexibility of the architecture relative to critical changes in requirements

and its stability implications. The evaluation may aim at identifying critical

change(s) for which the software architecture is likely to be inflexible. These

changes may exhibit future threats on the stability of the architecture of the

software system. In this context, the computed call options may provide

insights into probable risks, technical risks or investment-related, that could

confront the architecture during its lifetime. The risk could be attributed, for

example, to the problematic architectural decisions, the limitations of the

 141

existing infrastructure, and/or the inflexibility of the architectural style in

accommodating the likely future critical change in requirements.

 Others: Strategic “performance” of the architecture over time: Success

(failure) of evolution. The evaluation may aim at examining the extent to

which the architecture can support future growth and unlock future

opportunities, such as extending the range of services while leaving the

architecture intact, or instantiating from the core architecture new market

products. In this context, the architecture is the appropriate level of

abstraction at which to think of strategic software decisions and guide the

evolution of the software system. The computed call options may provide an

insight into the success (failure) of evolution and the “performance” of the

architecture over time through sustaining evolution and generating value.

Recall, software evolution need to seek and create value relative to the

resources invested [Bahsoon and Emmerich, 2004b]. As such, the costs of

evolving software should not outweigh the returns from the process to

achieve a net benefit. The future net benefits are very much correlated to the

extent to which the architecture can “pull” the options. When the call options

are in-the-money, then this is a suitable measure for the “resilience” of the

architecture to change and the success of evolution. When the call options are

out-of-the-money, then this is indicative to either the over flexibility of the

architecture (e.g., waste of recourses), unutilized flexibility, or inflexibility of

the architecture while achieving its evolutionary milestones. Accordingly, the

situation and the options results may steer subsequent strategic

recommendations.

5.4. Summary

In this chapter, we have described a three-phase method for conducting an

architectural evaluation for stability using ArchOptions. We have discussed issues

related to conducting these steps, as it was realized in the application of

ArchOptions. The method does not prescribe rigorous steps to follow upon using

ArchOptions; it aims to discuss issues and provide ways for estimating the

ArchOptions parameters.

 142

We have provided guidelines on eliciting the likely changes in requirements and

relating the change to architecture. For valuing the flexibility of an architecture to

change, we have outlined a valuation points of view framework. The framework is

flexible enough to account for the economic ramifications of the change on the

structural (e.g., maintainability) and behavioral (e.g., throughput) qualities of an

architecture and the associated business goals (i.e., market). The framework can

incorporate multiple valuation techniques, some with subjective estimates, and

others based on market data, when available. We have explored ways for estimating

the ArchOptions parameters in the context of use.

In chapter 6, we will explore cases that highlight possible application of the model

and its supporting method.

 143

Chapter 6

Evaluation – Applying ArchOptions

In previous chapters, we have described a model for predicting architectural

stability. We have supported the model with a three-phase method. In this chapter,

we report on our experience in using the model and its supporting method on two

case studies.

6.1 The Evaluation Method in Brief

Case studies have been extensively used to empirically assess software engineering

approaches [Maciaaszek and Liong, 2004]. When performed in real situations, case

studies provide practical and empirical evidence that a method is appropriate to

solve a particular class of problems. According to Dawson [Dawson et al., 2003],

conducting controlled and repeatable experiments in software engineering is quite

difficult, if not impossible to accomplish. This is mainly because the way software

engineering methods are applied varies across different contexts and involve

variables that cannot be fully controlled. Nonetheless, we consider that case studies

are the most appropriate approach to evaluate “soft” methods like ArchOptions. The

DESMET methodology [Kitchenham et al., 1997] provides hints for guiding the

evaluation of software engineering methods. The authors state that the first decision

to make when undertaking a case study is to determine what the study aims to

investigate and evaluate. For evaluating ArchOptions with case studies, we aim at

evaluating the thesis in the large and in the small, as detailed below:

 144

Evaluation of the thesis in the large aims at exploring the approach “fitness” in

addressing representative architecture-centric evolution problems, with desired

stability requirements. The evaluation aims at demonstrating the approach’s

applicability, simulating the model’s application, evaluating the maturity of the

model’s interpretations, and highlighting possible insights that could derive from the

model’s application to said problems. In the first case study, we explore how

ArchOptions can be used to assess the worthiness of re-engineering a “more” stable

architecture in the face of likely future changes in future requirements. We take

refactoring as a representative example of reengineering. In the second case study,

we show how ArchOptions can inform the selection of a “more” stable middleware-

induced software architecture in the face of future changes in non-functional

requirements, such as changes in scalability requirements. As part of the evaluation,

we argue that ArchOptions is well suited to address these architecture-centric to

evolution problems.

Evaluation of the thesis in the small aims at extending the confidence in the

following specific claims:

− The uncertainty, attributed to the likelihood of change(s), makes real options

theory superior to other valuation techniques, which fall short in dealing with the

value of architectural flexibility under uncertainty. For some examples, we

compare the options results to other valuation techniques.

− The flexibility of an architecture in face of likely changes in requirements creates

values in the form of real options.

− The problem of finding a potentially stable architecture requires finding an

architecture that maximizes the yield in the added value, relative to some likely

future changes in requirements. If we assume that the added value is attributed

to flexibility, the problem becomes maximizing the yield in the embedded or

adapted flexibility in a software architecture relative to these changes.

− The decision of selecting a potentially stable architecture has to maximize the

value added relative to some valuation points of view: we demonstrate the use of

the valuation points of view framework in capturing the options on an evolving

architecture from different perspectives and informing the selection.

 145

We use representative examples from the above-mentioned case studies to

empirically extend the confidence in these claims. Though some of these examples

are conducted in controlled environments, they are adequately representative of

analysis and decisions taken in real small to medium scale projects.

We evaluate ArchOptions on some qualitative characteristics including simplicity of

use, prediction effectiveness, computation correctness, openness, and

comprehensiveness. We reflect on ArchOptions strengths and limitations upon

conducting the case studies.

When sufficient information is available, we relate the conducted case studies steps

to that of the method sketched in Chapter 5. Nevertheless, the case studies are

structured in a way that could ease future replication.

We discuss some observations and conclusions that have derived from the case

studies. These could either relate to the application of the approach itself and/or

reflect on the practical and proactive understanding of the architectural stability

problem as observed when conducting these cases.

6.2 Applying ArchOptions to Value the Payoff of
Refactoring

In this section, we use ArchOptions to value the payoff of investing in a refactoring

exercise [Bahsoon and Emmerich, 2004a; Bahsoon and Emmerich, 2004b]. The

valuation is based on a tradeoff between the upfront investment in refactoring and

the future benefits, due to the enhanced structural flexibility resulting from this

exercise.

In subsequent sections, we motivate the need for valuing the payoff of refactoring

using ArchOptions, in the absence of suitable models for such a valuation. We apply

ArchOptions to a refactoring case study from the literature [Leitch and Stroulia,

2003]. We discuss the rationale of the case study. We report on the results of the

ArchOptions application. In more abstract terms, the case study shows how

 146

ArchOptions can be applied to assess the worthiness of re-engineering to obtain a

“more” flexible structure, which has better prospect in accommodating likely future

changes in requirements. Research wise, the case demonstrates a novel application of

real options theory to the valuation of the payoff of refactoring [Bahsoon and

Emmerich, 2004b].

6.2.1 Motivation

As software is enhanced, modified, or adapted to new requirements, the software

becomes more complex and drifts away from its original design. To reduce

complexity, there is a need for techniques that incrementally improve the internal

software quality. The research domain that addresses this problem is referred to as

restructuring, or in the case of object-oriented and agile development, as refactoring

[Mens and Tourwe, 2004]. In the context of software evolution, restructuring and

refactoring are used to improve the quality of the software such as extensibility,

modularity, reusability, complexity, and efficiency. Refactoring refers to the process

of changing an (object-oriented) software system in such a way that it does not alter

the external behavior of the code, yet improves its internal structure [Mens and

Tourwe, 2004]. In refactoring, the key idea is to redistribute classes, variables, and

methods across the class hierarchy in order to facilitate future adaptations and

extensions. This in turn will result in a modified structure (compared to the original)

with different qualitative measures and value potentials.

Numerical measures can be used before refactoring, to measure the quality of

software, or after the refactoring, to measure improvements of the quality. For

example, Simon et al. [2001] use distance-based cohesion metrics to detect where in a

given piece of software there is a need for refactoring. Kataoka et al. [2002] use

coupling metrics to evaluate the effect of refactoring on maintainability. Coleman et

al. [1994] use a polynomial of multiple measures to define a maintainability index by

means of which the effect of refactoring can be evaluated. However, little work has

been done on understanding the economics of refactoring. For example, when is it

cost-effective to invest in a refactoring exercise? How can we value the payoff due to

refactoring, prior to investing in such an exercise? How can we reason about this

payoff in connection with changes in the structure and at correspondingly higher

 147

level of abstractions than code? These questions translate into a need for economic

models that quantify the payoffs of refactoring. Such models inform the decision in

investing in refactoring through a tradeoff between the up-front cost and the

expected added value to the system as a result. The added value may be strategic or

operational; it may take the form of expected savings in maintenance and/or returns

due to the enhancement of some qualities such as reusability or efficiency. A

characteristic of these benefits, whether strategic or operational, is that their payoffs

are uncertain and may not be immediate.

Notable effort on understanding the economics of restructuring and refactoring

includes [Leitch and Stroulia, 2003; Sullivan et al., 1999]. Leitch and Stroulia [2003]

have proposed a framework for predicting the return on investment (ROI) for a

planned refactoring using cost-benefit analysis. Sullivan et al. [1999] have shown

how options thinking can be used to value software design decisions including

restructuring. They have developed an option model that borrows from decision

analysis to value the payoff of the decision to restructure legacy systems and its

optimal exercise time.

6.2.2 The Case Study Rationale

Refactoring a system enhance the flexibility of the system’s structure/architecture.

Yet, this incurs an upfront cost to investment. It is worth investing in refactoring, if

the refactored system could lead to an architecture/structure that is more flexible

and adds a value to the system or the enterprise following this exercise. We use the

expected benefits, due to the enhanced flexibility in the structure, as a way to value

the payoff of refactoring. As the added value is attributed to the enhanced flexibility

in the structure, the decision to refactor is driven by the motivation to maximize the

payoffs in the adapted architectural flexibility that results from refactoring. We use

future savings in maintenance costs, relative to some likely future changes, as a way

to quantity the added value.

 148

We apply ArchOptions to a refactoring case study from the literature [Leitch and

Stroulia, 2003]. The objective of the study is to empirically simulate the applicability

of the model and validate its interpretations. We summarize the simulation rationale

as follows: (a) refactor and observe its effect on the flexibility of the structure (b)

observe the potential of the structure to some random changes in requirements; (c)

quantify flexibility relative to likely future changes as a way for understanding the

payoff of refactoring. Particularly, we seek an understanding for the following: Are

the model interpretations valid? When does refactoring, as an adapted flexibility,

add to the system a value? How valuable is it investing in a refactoring?

Figure 6.1. Sketch of the simulation rationale

To achieve the simulation rationale, we use the refactoring case study of a traffic light

system published in [Leitch and Stroulia, 2003]. Leitch and Stroulia [2003] propose a

framework to predict the return on investment (ROI) for a planned refactoring using

cost-benefit analysis. We recast the problem into an option problem: we consider the

benefits of refactoring to be uncertain as the demand for future changes -following

refactoring- are uncertain. We restrict architectural information to data and control

dependency for this case. Table 6.1 summarizes the structural changes upon evolving

S0 (the initial structure) to S1 (the refactored structure) of the traffic light system.

Table 6.1 shows that refactoring has transformed the structure into a more flexible

state through the decrease of both control and data dependencies. The decrease in

dependencies in S1 means less complexity, better prospects for accommodating

 {Ci1, Ci2, …, Ci20}

S0 S1

Options?

(a)

 (b)

(c)

Refactor

 149

future changes, and better potential for maintenance savings [Mansour and Bahsoon,

2002].

Table 6.1. Aggregate results: the change (%) - evolving S0 to S1

 S0 S1 Change (%)
Size in SLOC 740 602 -19%
No. of Modules 29 38 31%
Avg. SLOC Per Module 26 16 -38%
Data Dependency 147 112 -23.60%
Control Dependency 101 73 -19.40%

6.2.3. Valuing the Payoff of Refactoring

Refactoring, a preventive change, can be seen as an investment to embed flexibility.

The objective is to “clear up” much of the degraded system structure and enhance its

upside potentials by making it more accommodating for future changes. In this

context, refactoring can be seen as an investment to purchase growth options that

enhance the upside potentials of the structure, paying an upfront cost Ie, which

corresponds to the cost of refactoring. We build on the ArchOptions model to value

whether it is worthwhile to invest into refactoring, as shown in (6.1):

 n

payoff = VDev- Ie + ∑ E [max (xiV - Cei, 0)] (6.1)
 i=0

Let us assume that S1 is a structure of the software obtained by refactoring S0. We

assume that refactoring is an economical choice, if it adds value to S1 relative to S0.

We attribute the added value to the enhanced flexibility of S1 over S0. If we are

considering savings in maintenance as a criteria for understanding the value added

to the system, then future changes in requirements following refactoring will tell us

how valuable S1 is relative to S0. But the added value due to refactoring is uncertain,

as the demand on future changes are uncertain. This makes refactoring a good

candidate to reason using option “thinking”.

The decision to refactor has to be guided by the expected payoff in (- Ie + ∑ i=1…n E

[max (xiV - Cei, 0]) S1 relative to that of S0. That is, if (- Ie + ∑ i=1…n E [max (xiV - Cei, 0)] S1

 150

> ∑ i=1…n E [max (xiV - Cei, 0)] S0) for some likely changes, then it is worth investing in

refactoring, as the investment is likely to generate more growth options for S1 than

for S0. As we assume that xiV is the expected saving in S1 over S0 due to refactoring, it

is reasonable to consider that if (- Ie + ∑ i=1…n E [max (xiV - Cei, 0)] S1 >=0), then

investing in refactoring is said to payoff. An optimal payoff could be when the

option value (i.e., ∑ i=1…n E [max (xiV - Cei, 0)] approaches the maximum relative to

some changes in requirements, indicating an optimal payoff in an investment in

flexibility provided that (- Ie + ∑ i=1…n E [max (xiV - Cei, 0)] S1 >= 0). The analyst may

conduct sensitivity analysis to manipulate the model variables and analyze when

such a situation is likely to occur.

For a requirement change k, if the (- Ie + E [max (xkV - Cek, 0)]) <0, then refactoring is

not likely to payoff as the flexibility of the architecture in response to the change is

not likely to add a value if the change need to be exercised. Two interpretations

might be possible: (i) the architecture is overly flexible in the sense that its response

to the change(s) has not “pulled” the options. This implies that the embedded

flexibility (or the resources invested in implementing flexibility) are wasted and

unutilized to reveal the options relative to the changes. In other words, the degree of

flexibility provided is much more than the flexibility demanded for the change. This

case has the prospect in providing an insight on how much we need to invest in

refactoring relative to the likely future changes, while not sacrificing much of the

resources; (ii) the other case is when the architecture is inflexible relative to the

change. This is when the cost of accommodating the change is much more than the

cumulative expected value of the architecture potential relative to the changes.

We apply the model: we construct a call option for the likely changes following

refactoring. To capture and estimate xiV, we restrict the valuation to the development

perspective. We use the expected savings in development effort for likely futures

changes due to refactoring. When necessary, we use $2000 for man-month to cast the

effort into cost. We show how we have estimated the parameters:

 151

Estimating (Ie). Table 6.3 reports the refactoring effort (man-month), cost ($), and

schedule (month) based on the refactoring plan presented in [Leitch and Stroulia,

2003] and given in Table 6.2. Table 6.3 provides three values: optimistic, likely, and

pessimistic for each parameter. All are calculated using COCOMO II.

Table 6.2. The proposed refactoring plan and its design impact [Leitch and Stroulia,
2003]

Pr
oc

.
N

o.

R
ef

ac
to

ri
ng

A
dd

 S
LO

C

D
el

.
SL

O
C

Pr

oc
.

N
o.

R
ef

ac
to

ri
ng

A
dd

.

D
el

.

1
Extract
Method 24 225 33

Extract
Method 27 0

2
Extract
Method 4 28 34

Extract
Method 81 0

10
Move

Method 4 49 35
Extract
Method 17 0

11
Extract
Method 4 56 36

Extract
Method 9 0

30
Extract
Method 4 0 37

Move
Method 13 0

31
Extract
Method 9 0 38

Extract
Method 14 0

32
Extract
Method 10 0 - - - -

 SUBTOTAL: 59 358 SUBTOTAL: 161 0
 TOTAL: 220 358

Table 6.3. Refactoring effort, schedule, and cost

 Effort Schedule Iei
Op Lik Pes Op Lik Pes Op Lik Pes

Refactoring 0.9 1.2 1.5 3.6 3.9 4.2 1893 2366 2958

Estimating (xiV). To value the architectural potential of S1 due to refactoring, we use

twenty changes to stress S1 with cost given as Cei. The twenty changes are of an

adaptive nature; they are generated based on percentage estimates of design,

integration, and code to be modified per change. Examples of these changes includes

 152

adding/deleting a functionality in the Traffic Light system, integrating with other

systems, enhancing the functionality, etc. The same likely changes were used to

stress S0. The objective is to calculate the difference (i.e., savings-if any) in effort/cost

of S1 over S0. The aim is to quantify the architectural potential due to the embedded

flexibility, from the development perspective. We use COCOMO II to estimate the

effort/cost for the twenty changes on each structure. xiV corresponds to the

difference- as reported in Table 6.4. Expected savings, due to refactoring, are in the

range of $12806 (optimistic) to $7433 (pessimistic) for the twenty changes.

Calculating volatility (σ). The volatility of the stock price (σ) is a statistical measure

of the stock price fluctuation over a specific period of time; it is a measure of how

uncertain we are about the future of the stock price movements. Volatility stands for

the “fluctuation” in the value of the estimated xiV. Intuitively, it “aggregates” the

“potential” values of the structure in response to the change(s). To calculate σ, we

follow the real options principles to calculation taking the percentage of the standard

deviation of some representative estimates of xiVs over a period of interest. In some

cases and for the sake of simplicity, we use three estimates of the xiVs: these are

optimistic, likely, and pessimistic values.

Exercise time (t) and free risk interest rate(r). As a simulation assumption, we set

the exercise time to three years. We set the free risk interest rate to zero (i.e.,

assuming that the value of money today is the same as that in three years time).

 153

6.2.4 Results and Discussion

Below, we discuss the results of applying ArchOptions to value the payoff of

refactoring.

Observation 1. Flexibility creates real options: S1 is more flexible than S0 (due

to decrease in dependencies as a result of refactoring); S1 has created more

real options when compared to S0.

Tables 6.4 and 6.5 shows that S1 is in the money in response to the twenty

random changes- relative to the development perspective. The results indicate

that refactoring (i.e. as the embedded flexibility in S1) is likely to enhance the

option value by $5979 (pessimistic) to $10593 (optimistic) over S0, if the

twenty changes need to be exercised following refactoring. Thus, as flexibility

is improved, S1 is likely to add value in the form of options in response to the

twenty changes.

Table 6.4. Options on S1 relative to S0 ($) for the twenty likely changes
(Maintenance valuation point of view)

 Pessimistic Likely Optimistic

Cei T xiV Cei T xiV Cei T xiV
 1454 3 7433 1817 3 9292 2212 3 12806
Option 5979.09 7474.6 10593

Table 6.5. Options on S1 for one to ten changes at a time

xiV Options
Changes σ Pes. Lik. Op. Pes. Lik. Op.
1Req.Ch. 1.4 371.7 464.6 640.3 0 0 0
2 Req.Ch. 2.7 743.3 929.2 1280.6 0 0 0
3 Req.Ch. 4.1 1115.0 1393.8 1920.9 0+ 0+ 1.2
4 Req.Ch. 5.5 1486.6 1858.4 2561.2 73.6 92.45 334.9
5 Req.Ch. 6.8 1858.3 2323.0 3201.5 405.6 507.6 989.07
9 Req. Ch. 12.2 3339 4181.4 5760 1885 2364 3547
10 Req.Ch. 13.6 3717 4640 6400 2263 2823 4188

 154

Observation 2. How valuable is refactoring?

Let us take the average value of the twenty changes. The objective is to

simulate the responsiveness of S1 to one likely average change. The result of

Table 6.5 implies that though S1 is flexible, refactoring has not “pulled” the

options for one change. S1 is said to be out of the money for this change. This

implies that the embedded flexibility (or the resources invested in

implementing flexibility) are wasted and unutilized to reveal the options

relative to this change. In other words, the degree of flexibility provided is

much more than the flexibility demanded for this change. We repeat the

above experiment, but stressing S1 with two, three, four, and then five

average changes at a time. Using two average likely changes, the options

reported zero values. Again, two likely average changes have not “pulled”

the options. Interestingly, S1 has just about pulled the options for three

changes. For four, five, and nine changes, S1 reveals the options; however,

refactoring is not likely to payoff as (- Ie + ∑ i=1…n E [max (xiV - Cei, 0)] S1 < 0).

For ten changes, refactoring is expected to payoff as (- Ie + ∑ i=1…n E [max (xiV -

Cei, 0)] S1 >0). Thus, refactoring is likely to add to the system a value, if ten or

more changes need to be exercised during the next three years.

This case study has the prospect of providing an insight into how much we

have to invest in flexibility to achieve stability relative to the likely future

changes, while not scarifying much of our resources. In real situations, an

optimal stability could be when the option value approaches the maximum,

indicating an optimal payoff in an investment in flexibility. The analyst may

make use of the sensitivity estimates to manipulate the model variables and

analyze when such a state is likely to occur.

6.2.5 Concluding Remarks

In Table 6.6a and Table 6.6b, we relate the case study to the phases of the method

described in Chapter 5. We have amended some of the steps and based on the

available information at hand and the evaluation objectives. We have relaxed

applying phase I, as it is assumed that the likely changes following refactoring are

 155

provided and need not be elicited. Upon applying Phase II, we have restricted the

valuation to one valuation point of view, which is the development perspective. We

have appealed to the use of maintenance savings as a way to value the options due to

refactoring. Needless to say, the valuation could have incorporated other valuation

points of view (e.g., extensibility, reusability, efficiency) to value the options due to

refactoring. Future work may entail investigating ways for valuing the payoff of

refactoring relevant to other points of views. The objective is to have a

comprehensive value of options from different perspectives. As for Phase III, we

have reported on some observations derived from the model simulation. These are

mainly on the worthiness of refactoring, as a mean for introducing flexibility into the

structure. In reality, the analyst may use a similar argument to justify a case for

investing in refactoring. The analyst/architect may explore situations where

investing in such an exercise may add a value to the software system and/or the

enterprise owing the architecture. Again, the value of the computed calls provide the

analyst with insights into when it might be cost-effective to invest in such an

exercise, while not sacrificing the available resources. Accordingly, related

recommendations on the cost-effectiveness of such an exercise, its long-term value,

and its stability implications may then follow.

Table 6.6a. Relating the refactoring case to Phase I of the method

Phase I Case 1

Setting the objectives for

evaluating architectural stability

Objective:

Valuing the payoff of the adapted architectural

flexibility due to refactoring

Eliciting the change {i1, i2, …, in}

that are critical to the set

objectives

Twenty changes of adaptive type are used

Tracing the change to the

architecture and its associated

design decisions

Control/data flow is taken as the architectural

artifacts on which the decision of the cost-

effectiveness is made

 156

Table 6.6b. Relating the refactoring case to Phase II of the method

Phase II Case 1

Estimate the cost of

accommodating the change

An estimate of the cost of implementing the

twenty changes

Identify the value of the

architectural potentials with

respect to the change

By reducing the complexity of the

control/dataflow structure following

refactoring, future savings in maintenance

could be claimed

Identify valuation points of view Maintainability

Volatility Using optimistic, likely, and pessimistic

The purpose of the case study is to simulate the model steps and the maturity of its

interpretations. The results demonstrate the fitness of the approach in addressing the

problem of valuing the payoff of refactoring in relation to likely future changes in

requirements. The observations verify that the model interpretations are reasonable.

As a satisfaction of the spanning condition entailed by Black and Scholes [1973], we

argue that valuation based on person-month does implicitly hold market-based data

and is done in relation with the market. Alternatively, we could have cast the options

model to use different options valuation (e.g., [Cox and Rubinstein, 1979]). However,

the application of Black and Scholes [1973] offers a closed and an easy-to-compute

solution, for it assumes that xiV is lognormaly distributed, not requiring xiV to be

probability-adjusted for rise and drop in value, as when compared to [Cox and

Rubinstein, 1979].

6.3 Applying ArchOptions to Select Stable Middleware-
Induced Software Architectures

The current trend is to build distributed systems using middleware, which provide

the application developer with primitives for managing the complexity of

distribution and for realizing many of the non-functional requirements such as

scalability and performance requirements. As non-functional requirements

evolve, the “coupling” between the middleware and architecture becomes the

 157

focal point for understanding the stability of the distributed software system

architecture in face of change. In this case, we hypothesize that the choice of a

stable distributed software architecture depends on the choice of the underlying

middleware and its flexibility in responding to future changes in non-functional

requirements. We motivate the need for an economics-driven approach to the

selection of a candidate middleware that will then induce a given architecture. We

draw on a case study that adequately represents a medium-size component-based

distributed architecture: we report on how a likely future change in scalability

requirements could impact the architectural structure of two versions, each

induced with a distinct middleware: one with the Common Object Request Broker

Architecture (CORBA) [Object Management Group, 2000] and the other with Java

2 Enterprise Edition (J2EE) [Sun Microsystems Inc., 2002]. We appeal to the use of

two valuation points of views upon valuing the potentials of the induced-

architetures in relation to likely future changes in scalability requirements. We

show how we can apply ArchOptions to value the flexibility of the induced-

architectures, relative to the valuation points of view, and to consequently guide

the selection of a more “stable” architecture. Our hypothesis is verified to be true

for the given change. We conclude the case with some observations that could

stimulate future research in the area of relating requirements to software

architectures.

The case study demonstrates a novel application of real options theory for informing

the selection of a more “stable” middleware-induced architectures [Bahsoon et al.,

2005; Bahsoon and Emmerich, 2005]. Furthermore, the observations derived upon

conducting the case are likely to advance our understanding to the architectural

stability problem, when addressed from practical and proactive perspective.

6.3.1 Motivation

The requirements that drive the decision towards building a distributed system

architecture are usually of a non-functional and global nature [Emmerich, 2000a].

Scalability, openness, heterogeneity, and fault-tolerance are just examples. The

current trend is to build distributed systems architectures with middleware

technologies such as Java 2 Enterprise Edition (J2EE) [Sun Microsystems Inc., 2002]

 158

and the Common Object Request Broker Architecture (CORBA) [Object Management

Group, 2000]. Middleware simplifies the construction of distributed systems by

providing high-level primitives, which shield the application engineers from the

distribution complexities, managing systems resources, and implementing low-level

details, such as concurrency control, transaction management, and network

communication. These primitives are often responsible for realizing many of the non-

functional requirements in the architecture of the software system induced. Despite

the fact that architectures and middleware address different phases of software

development, the usage of middleware can influence the architecture of the system

being developed. Conversely, specific architectural choices constrain the selection of

the underlying middleware [Di Nitto and Rosenblum, 1999]. Once a particular

middleware system has been chosen for a software architecture, it is extremely

expensive to revert that choice and adopt a different middleware or a different

architecture. The choice is influenced by the non-functional requirements.

Unfortunately, the requirements tend to be unstable and evolve over time. Non-

functional requirements often change with the setting in which the system is

embedded, for example when new hardware or operating system platforms are

added as a result of a merger, or when scalability requirements change due to

sudden increase in users, as it is the case of successful e-commerce systems

[Emmerich, 2000b]. Moreover, changes in non-functional requirements are critical;

they can stress an architecture considerably, leading to architectural “breakdown”.

The ranges in which non-functional requirements change may need to inform the

selection of distributed components technology, and subsequently the selection of

application server products. For example, a CORBA-based solution might meet the

functional requirements of a system in the same way as a distributed component-

based solution that is based on a J2EE application server. A notable difference

between these two architectures will be that increasing scalability demands might be

easily accommodated in the J2EE architecture because J2EE primitives for replication

of Enterprise Java Beans can be used, while the CORBA-based architecture may not

easily scale. The choice is not straightforward as the J2EE-based infrastructures

usually incur significant upfront license costs. Thus, when selecting an architecture,

the question arises whether an organization wants to invest into an J2EE application

server and its implementation within an organization, or whether it would be better

off implementing a CORBA solution. Answering this question without taking into

 159

account the flexibility that the J2EE solution provides and how valuable this flexibility

will be in the future relative to the likely change in load might lead to making the

wrong choice. This gives rise to value the flexibility of the middleware-induced

architecture relative to likely changes in requirements so we can understand its

stability implications, as the non-functional requirements of the software system

evolve.

We argue that the problem of selecting a particular middleware to induce a given

architecture is an option problem. From the evolution perspective, the flexibility of

the middleware induced-architecture in coping with changes in non-functional

requirements has a value that can assist in predicting the stability of software

architectures. More specifically, flexibility adds to the architecture values in the form

of real options that give the right but not a symmetric obligation- to evolve the

software system and enhance the opportunities for strategic growth. The added

value is strategic in essence, uncertain as the demand on the future changes are

uncertain, and may not be immediate. The added value may take the form of (i)

accumulated savings through coping with the change without “breaking” the

architecture, mostly these are changes in non-functional requirements; (ii) extending

the range of services while leaving the architecture intact; and (iii) the ability to

respond to competitive forces and changing market conditions that may pose higher

Quality of Service (QoS) requirements, such as the demands for higher availability,

scalability, reliability and so forth. From an early development perspective, given

several middleware candidates, the architect has the right without the symmetric

obligation to embark on a selection for inducing an architecture. A “wise” selection

could be regarded as an investment to buy flexibility, which could be valued as

future growth options [Schwartz and Trigeorgis, 2000] on the architecture of the

software system. These options differ from one middleware to another.

ArchOptions has the prospect of valuing the architectural flexibility due to various

types of changes in requirements. These could be functional or non-functional.

However, changes in non-functional requirements are often critical and more

revealing for understanding architectural stability. As the middleware realizes much

of the non-functionalities, analyzing for architectural stability in the face of changes

in non-functional requirements cannot be done in isolation of the middleware, for

 160

the category of distributed system built using middleware. In this context, we tailor

ArchOptions to value the growth options on the architecture to be induced relative

to likely changes in non-functional requirements.

In the next sections, we describe the case study rationale. We describe how

ArchOptions can be employed for understanding the value added by inducing the

architecture by EJB relative to CORBA, if the change in scalability, as a representative

critical change in non-functional requirements, needs to be applied.

6.3.2 The Case Study Rationale

We hypothesize that the choice of a stable distributed software architecture depends

on the choice of the underlying middleware and its flexibility in responding to future

changes in non-functional requirements. This is necessary to facilitate the evolution

of the software system, to avoid unnecessary future investments (e.g., maintenance

overhead, hardware, reverting the choice of the middleware etc.), and to ensure that

future resources will be used efficiently as the requirements evolve (e.g., new servers

are purchased or cycles are leased, only when necessary).

We use Duke’s Bank application, an online banking application provided by Sun

[Sun Microsystems Inc., http://java.sun.com], as part of the J2EE reference

application. Though the study is conducted in a controlled environment, we regard

the Duke’s bank application to be adequately representative of a medium-size

component-based distributed application. Given the software architecture of the

Duke’s Bank, we have instantiated from the core architecture two versions, each

induced by a distinct middleware: one with CORBA and the other with J2EE. We

observe how a likely future change in scalability, a representative critical change in

non-functional requirements, could impact the architecture of each version.

Scalability is frequently thought of in terms of numbers of users that can be

supported on either a single node or collectively on all nodes in a system; it denotes

the ability to accommodate a growing future load. The exact method of analyzing

scalability is subject to some debate: First, the change in load demands is critical as it

could impact the architecture at its various levels: structure, topology, and

 161

infrastructure. For example, the challenge of building a scalable system is to support

changes in the allocation of components to hosts without breaking the architecture of

the software system, or changing the design and code of a component [Emmerich,

2000b]. Second, the change in load could impact other non-functional requirements

such as performance, reliability, and availability, when the change is poorly

accommodated by the middleware-induced architecture. As a result, this debate is

appealing to the use of the multi-perspective valuation point of view framework we

have highlighted in Chapter 5. It is appealing to the use of both the structural and

behavioral valuation points of view, as depicted in Figure 6.2 and detailed below:

− On the structural point of view: we observe how the architecture of the given

system, when induced by a particular middleware, is ready to cope or need to be

maintained for supporting the change in scalability. We analyze the impact of the

change by looking at the structural changes and the source lines of code (SLOC)

that need to be modified/added for implementing the change, configuring, and

deploying the software system. We quantify the options by looking at the cost of

change on the structure of each version and by valuing the savings in

maintenance, deployment, and configuration costs (if any), upon accommodating

the change. We refer to this valuation point of view as the maintainability valuation

point of view.

− On the behavioral point of view: we use throughput or the capacity of the system to

measure scalability. Throughput is a performance criterion, which expresses the

amount of work performed by the system under test during a unit of time. We

refer to this valuation point of view as the throughput valuation point of view.

 162

Figure 6.2. The use of structural and behavioral valuation points of view to
capture the options on the induced-architecture, A, for a likely change in
scalability

Hence, the ability to scale the software of a given architecture is rich for analyzing

the architectural stability problem, as the change have both structural and behavioral

impacts. The objective of the case is to demonstrate how structural and behavioral

impact analysis on a system of a given architecture can be complemented with

options “thinking”. The rationale is that by complementing structural and behavioral

impact analysis with value-based calculation, the combination could provide the

architect/analyst with a useful tool for understanding the extent to which the

software system is flexible to accommodate likely future change in scalability

requirements. The combination can provide insights on the likely success (failure) of

software evolution, and consequently on the potential stability of the architecture to

change. This combination can also provide cost and value indictors of the impact of

the change on the structure and the behavior of the system. For example, throughput

and performance are correlated with value. That is, the more business transactions

can be performed on a system of a given architecture, the more value is said to be

created for the enterprise. Therefore, “hurting” the performance of the software,

upon accommodating the change in scalability requirements, implies “hurting”

value.

Change in
Scalability requirements

 A

Maintainability valuation point
of view:
Options on development,
configuration, and deployment

Added Value?

Structural point of
view

Throughput valuation
point of view:
Options on throughput

Behavioral point of view

 163

We describe how ArchOptions can be used to inform the selection of potentially

more stable middleware-induced software architectures and relative to the two

valuation points of view. ArchOptions is applied to account for both the long-term

value and cost of the architectural potential to the change on each valuation point of

view. Given several middleware candidates, the application of ArchOptions aims at

informing the trade-offs and consequently the selection of a middleware-induced

architecture through a simple and intuitive calculation. Questions of interest,

however, are: how valuable is the flexibility of either alternative, relative to the

valuation point of view, will be in the long-run? How can we decide which solution

is of a better long-term value? How can we inform the selection of a “more” stable

middleware-induced infrastructure, which maximizes the yield in the added value

relative to the change and the valuation points of view? For instance, the ranges in

which the throughput requirements change and their value implications may need to

inform the selection. At the same time, the cost-effectiveness of maintaining the

structure to realize the change is another important factor. Hence, the economic

interplay between evolving requirements, relative to the valuation points of view,

and architectural stability needs to be addressed.

6.3.3 Setting

The architecture of the Duke’s Bank application is given in Figure 6.3. The Duke’s

Bank has two clients: an application client used by administrators to manage

customers and accounts and a Web client used by customers to access account

statements and perform transactions. The server-side components perform the

business methods: these include managing customers, managing accounts, and

managing transactions. The clients access the customer, account, and transaction

information maintained in a database.

The CORBA version of the Duke’s Bank is a straightforward implementation of the

above description. In the J2EE, the application consists of six EJB (Enterprise Java

Beans) components that handle operations issued by the users of a hypothetic bank.

The six components can be associated with classes of operations that are related to

bank accounts, customers and transactions, respectively. For each of these classes of

operations, a pair of session bean and entity bean is provided. Session beans are

 164

responsible for the interface towards the users and the entity beans handle the

mapping of stateful components to underlying database table. The EJBs that

constitute the business components are deployed in a single container within the

application server, which is part of the middleware.

DB

Customer

Accounts

Transaction

Servers

Account

Customer

Transaction

W eb Client

Application

Figure 6.3. The architecture of the Duke’s Bank

For the J2EE version, we use JBoss application server [http://www.jboss.org], an

open source. In one of the studies, we use WebLogic server [http://www.bea.com/]

with an average upfront payable license cost equal to $25000/host. We use JacORB,

version 2.0 to implement the CORBA version. JacORB, is a CORBA implementation

written in Java; it allows the communication of Java objects. Our choice of JacORB

makes the comparison between the two versions feasible and meaningful, as both

will be implemented in JAVA.

We assume that the Duke’s Bank system is likely to “scale up” to accommodate a

growing number of clients in a year time. As we have mentioned before, we observe

how a likely future change in scalability requirements, a representative critical

change in non-functional requirements, could impact the architecture of the

middleware-induced architectures. We look at two valuation points of view to

understand the likely impact on the architecture. For the maintainability point of view,

we elicit the scalability “primitives” which need to be implemented or need to be

maintained for scaling the structure. We analyze the impact of the change on each

middleware-induced architecture. For the throughput point of view, we elicit the likely

ranges in future load. We then discuss the impact of likely change in future load on

 165

the behavior (throughput) of the system. In next sections, we deal with each of the

above views separately.

6.3.4 The Maintainability Valuation Point of View

We consider the Maintaining the structure for scalability as a goal that needs to be

achieved by the architecture of the software system to be induced. Following the

method of Chapter 5, we adopt a goal-oriented approach to refining requirements

(e.g., [Dardenne et al., 1993; Anton, 1996]). We refine the goal, using guidance on

how it could be operationalized by the architecture, when induced by a particular

middleware. In more abstract terms, the guidance was given through the knowledge

of the domain; vendor’s specification, such as [Object Management Group, 1999-

2000; Sun Microsystems Inc., 2002]; related design and implementation experience,

mainly that of [Othman et al., 2001a; Othman et al., 2001b]. We note that different

architectural mechanisms may operationalize the this goal. As an operationalization

alternative, we use replication as way for maintaining scalability on the structures.

The reason is due to the fact that both CORBA and J2EE do provide the primitives or

guidelines for scaling a software system using replication, which make the

comparison between the two versions feasible. In particular, the Object Management

Group’s CORBA specification [Object Management Group, 1999-2001] defines a fault

tolerance and a load balancing support, both when combined provide the core

capability for implementing scalability through replication. Similarly, J2EE provides

the primitives for scaling the software system through replication. Hence, the

refinement and its corresponding operationalization are guided by the solution

domain (i.e., the middleware). Refinement of the scalability goal is depicted in Figure

6.4. Detailing the refinements and the operationalization of the goal is given in

subsequent sections.

 166

Scalability
M

aintenance
(R

eplication)

Load Balancing

Fault Tolerance

Logging and
R

ecovery
M

ana gem
ent

Fault M
anagem

ent

R
eplication

M
anagem

ent

Server
Transparency

C
lient Transparency

Support D
ynam

ic
O

perations

Equalize D
ynam

ic
Load D

istribution

Increase System

D
ependability

Support
Adm

inistrative
Tasks

Incur M
inim

al
O

verhead

Load M
etrics and

Balancing Policies

Interoperability and
Portability

Figure 6.4. The Goal-oriented (high-level) refinement for achieving scalability
through replication

6.3.4.1 Scaling the CORBA-Induced Architecture

In this subsection, we investigate how scalability could be achieved in the CORBA-

induced version through replication mechanisms. The objective of this subsection is

to detail the refinement of the goal (Maintaining the structure for scalability) and in

relation to the structure to be induced.

CORBA’s object model [Object Management Group, 2000] relies to a large degree on

the semantics of object references. An object reference uniquely identifies a local or

remote object instance- clients can only invoke an operation on an object if they hold

a reference to the object. Managing scalability in CORBA, through replication, is not

straightforward, for object referencing makes it demanding. If several replicas of a

server object are available, providing an object reference to the client is uneasy task.

A CORBA implementation to the management of scalability, through replication, has

to incorporate the following: (i) Replication management (i.e., create, remove,

 167

manage objects state in case of state retention, etc); (ii) balancing load among replicas

(i.e., when a client invokes a request, it needs to get the object reference of the least

loaded replica) and (iii) a fault tolerance (i.e., when a server object fails to handle a

request, the request has to be forwarded to a replica).

The Object Management Group’s CORBA specification defines a fault tolerance

support, which provides replication management. The specification also provides the

core capabilities needed to support load balancing. Othman et al. [2001] introduces a

CORBA load-balancing service, designed on TAO- the ACE (Adaptive

Communication Environment) ORB [Schmidt et al., 1998]. The TAO-ORB is a

CORBA-compliant ORB that supports applications with stringent Quality of Service

(QoS) requirements. The designed CORBA load-balancing service takes advantages

of the request forwarding mechanism the CORBA specification mandates [Object

Management Group, 1999]. A CORBA server application can use this mechanism to

forward client requests to other servers transparently, portably, and interoperably.

The combination of the CORBA fault tolerance support and Othman’s CORBA load-

balancing service provides a strong example of implementing scalability in CORBA.

We use both the Object Management Group’s CORBA specification and the TAO’s

design and implementation of the services as guidelines for understanding the

structural impact of the change on the Duke’s Bank architecture and the

corresponding effort/cost required to scale the system.

In the below subsections, we describe the requirements and the architecture for

implementing fault-tolerance in CORBA, based on the OMG specification [Object

Management Group, 1999]. We describe the requirements and the architecture for

implementing the load-balancing support in CORBA, based on [Othman et al., 2001a;

Othman et al., 2001b]. We analyze the structural impact, when the fault-tolerance and

the load-balancing services need to be implemented to scale the CORBA-induced

Duke’s Bank architecture.

 168

Maintaining fault tolerance support and replication management

This subsection relates to how the Maintaining Fault Tolerance (subgoal of Figure 6.4)

is refined and operationalized.

The Fault Tolerant CORBA standard provides robust support for applications that

require a high level of reliability, beyond the level provided by single backup server.

To render an object fault-tolerant, several replicas of the object are created and

managed as an object group. Because of the object group abstraction, the client objects

are not aware that the server objects are replicated (replication transparency) and are

not aware of faults in the server replicas or of recovery from faults (failure

transparency). The standard provides support for fault detection, notification, and

analysis for the object replicas. The standard also supports a range of fault tolerance

strategies, including automatic check pointing; logging and recovery from faults;

request retry, and redirection to an alternative server.

The requirements for implementing Fault Tolerance in CORBA are depicted in Table

6.7 and detailed in the CORBA fault tolerance specification of the OMG [Object

Management Group, 1999].

 169

Table 6.7. The requirements for implementing fault tolerance in CORBA

Sub goals Description

Property Manager Provide operations that set properties for
object groups

Object Group
Manager

provide operations that allow an application
to exercise control over addition, removal, and
obtaining the current reference and identifier
locations of members of an object group

Replication
Management

Generic Factory Issues requests for replicating objects (object
groups), creating replicas (members of object
groups), and unreplicating objects

Fault detection The Fault detection component detects the
presence of a fault in the system and generates
a fault report

Fault notification The fault notification component propagates
fault reports to entities that have registered for
such notifications

Fault Management

Fault analysis The fault analysis component analyses a
(potentially large) number of related fault
reports to generate a condensed diagnosed
report

Logging The Logging records the state and actions of a
member of an object group in a log

Logging and
Recovery
Management Recovery The Recovery Mechanism sets the state of a

member, either after a fault when a backup
member of an object group is promoted to the
primary member, or alternatively when a new
member is introduced into an object group

Figure 6.5 presents an architectural strategy that realizes these requirements and

fully documented in [Object Management Group, 1999]. The architecture defines

minimal modifications to the application programs, existing ORBs, and for

transparency to both replication and faults. These modifications allow non-replicated

clients to derive fault tolerance benefits upon invoking replicated server objects. The

basic blocks of the architecture are three: Replication management; Fault Management;

and Logging and Recovery Management. Components of the Fault Tolerance

Infrastructure are shown on the top of Figure 6.5. These include Replication Manager,

Fault Notifier, and Fault Detector. Interested reader may refer to the Appendix B, for

further details on the architecture.

 170

Figure 6.5. The CORBA fault-tolerance architecture [Object Management
Group, 1999]

Maintaining load balancing

This subsection relates to how the maintaining load-balancing (subgoal of Figure 6.4) is

refined and operationalized.

Load balancing helps improve system scalability by ensuring that client application

requests are distributed and processed equitably across a group of servers. Likewise,

it helps improve system dependability by adapting dynamically to system

configuration changes that arise from hardware or software failures. According to

[Othman et al., 2001a], the design of an effective CORBA load balancing service

should be based on the following requirements, as depicted in Table 6.8.

 171

Table 6.8. The requirements for Implementing load balancing in CORBA [Othman et
al., 2001b]

Sub goals Description
Enable client application
transparency

A CORBA load balancing service should be as
transparent as possible to clients and servers; it
should require no changes to clients whose requests it
balances

Enable server application
transparency

Implementing a server object’s servant (a
programming language entity that implements object
functionality in a server application) should require
no changes to support load balancing. Yet changes to
the server application might still be required under
certain conditions

Support dynamic client
operation request patterns

The CORBA load balancer, however, shall focus on
load balancing techniques that do not require a priori
scheduling information, where client operation
request patterns are dynamic and the duration of each
request might not be known in advance- which is the
case of the Duke’s Bank

Maximize scalability and
equalize dynamic load
distribution

CORBA load balancing service must enhance system
scalability by maximizing dynamic resource
utilization in a group of servers that otherwise would
be underutilized

Increase system
dependability

Load balancer should provide mechanisms to handle
failures efficiently when detected by administrators or
other system components. For example, the load
balancer should migrate crashed or failing servers to
other servers until the failure is resolved

Support administrative
tasks

A good CORBA load balancing service should have
facilities for dynamic addition/removal/upgrading of
new replicas and should adjust to the new load
conditions rapidly, without disrupting or suspending
service for existing clients

Incur minimal overhead A CORBA load balancing service should not
introduce undue latency or networking, which may
reduce the overall system performance

Support application-
defined load metrics and
balancing policies

A CORBA load balancing service should let
applications specify the semantics of metrics used to
measure load, such as CPU, I/O resources,
communication bandwidth, or memory load

Rely on CORBA
interoperability and
portability

A CORBA load balancer should not restrict the
application developers to single ORB providers

Othman et al. [2001b] suggest a CORBA adaptive balancing built on TAO to realize

the above stated requirements. The TAO’s load balancing solution is entirely based

on standard features in CORBA, without requiring severe extensions to the ORB or

its communication protocols. The suggested load balancing solution is based on the

 172

patterns [Schmidt et. al., 2000] of the CORBA component model (CCM) [BEA

Systems, 1999] for minimizing the changes on the application layer. In particular, the

following patterns are utilized to achieve the above stated transparency

requirements: these are the Portable Interceptors pattern, Component Configuration

pattern, Component Configurator pattern, and the Asynchronous Completion Token

pattern [Schmidt et. al., 2000]. The architecture is given in Figure 6.6. Interested

reader may refer to Appendix B for technical details on the load balancing

architecture.

 Figure 6.6. TAO load balancing [Othman et al., 2001b]

Change impact analysis

The combination of the CORBA fault tolerance support and Othman’s CORBA load-

balancing service provides an example on how scalability could be achieved in the

CORBA-induced architectures of the Duke’s Bank. In this section, we analyze the

impact of the change on the Duke’s Bank by looking at the structural changes and the

source lines of code (SLOC) that need to be modified/added for implementing the

change, configuring, and deploying the software system. We use the design and the

implementation of both services (i.e., fault tolerance and load balancing) on TAO as a

guide to estimate the design impact and the effort required to realize the scalability

requirements in the Duke’s Bank. The TAO design of these services is based on the

 173

CORBA specification. We note that the TAO’s implementation of both services is in

C++. We list all the JAVA classes and files necessary to build the equivalent JAVA

implementation of both services. A List of classes and files necessary to implement

the fault tolerant service into the Duke’s Bank architecture is depicted in Table B-1 of

the appendix. Table B-2 of the appendix reports on the effort necessary to develop

and integrate the load balancing service into the middleware. Table 6.9 provides an

aggregated summary of the overall SLOC that need to be implemented.

Considering the CORBA-induced architecture of the Duke’s Bank, supporting

scalability through replication does not leave the middleware infrastructure and the

application layer intact. Though the use of both CORBA specification and design

patterns, has simplified the task of realizing the requirements for achieving fault

tolerance and load balancing, implementation and integration overhead have not

been abandoned. In a nutshell, the fault tolerance and load balancing services need to

be implemented. The implementation needs to be integrated into the used

middleware. The server application needs to be updated, so that it will be able to

support object group. The client has to undergo slight changes.

To elaborate, the middleware and the application need to be modified to support

load balancing. The modifications include the implementation of the Load Balancing

Service and integrating the service into the existing middleware infrastructure. The

server-side application, the main CORBA services (mainly, the naming service and

the transaction Service), and the client-side needs to be updated. The binding

mechanism needs to be modified to support the introduction of the object groups.

The server application, which initially binds instances of server implementation to

the naming service, has to be changed. Instead, the client’s requests need to be bound

to the replica the load balancer selects. Hence, this requires modifications to the

standard CORBA services through introducing protocols and interface that abides to

the OMG standards. In an environment where several hosts are used to store the

server objects, different object groups need to be created. The server application

needs to be modified to populate servant instances. Additional interfaces need to be

introduced in the IDL (Tables B-1 and B-2). ORB interceptors and initializers have to

be implemented. On the client side, the client application needs to be modified to

look up the load balancer instead of the naming service to get a replica object

 174

reference. The load balancer will be then able to send an object reference by using the

CORBA ForwardRequest exception that the client can catch. To configure, all the

instances of JacORB over the different hosts have to be shutdown. To compile and

package the developed services, an Ant script has to be updated for each service.

This introduces additional 200 lines of code. The properties file (i.e.,

jacorb.properties) has to be updated on each host. These updates concern the

ORBInitRef property and the interceptors ORBInitializer. All the JacORB instances

then need to be restarted. Interested reader may refer to the appendix B for further

details.

Table 6.9. Scalability in the CORBA-induced architecture: aggregate results

Task SLOC

Fault Tolerant implementation 5117
Load Balancing implementation 3943
Server-side application (Server
objects Implementation and Server
application- on each host)

170

Client-side application 30
Configuration on each host Stop/restart, 200

SLOC+ 13/host

6.3.4.2 Scaling the J2EE-Induced Architecture

In subsequent sections, we investigate how scalability could be achieved in the J2EE–

induced version through replication mechanisms. We analyze the impact of the

scalability change on the J2EE-induced architecture of the Duke’s Bank.

Scalability in J2EE through replication

Figure 6.7 depicts a common J2EE [Sun Microsystems Inc., 2002] cluster architecture.

Clustering enables a group of (typically loosely coupled) servers to operate logically

as a single server. The advantages of clustering include the elimination of a single

point of failure; the high service availability if multiple servers in the cluster can

handle the same service; and load balancing by diverting requests to the least loaded

server hosting the same service. We use JBoss 3.0[http://www.jboss.org/], an open

source J2EE application server. JBoss clustering aims at improving scalability and

high availability using replication techniques. JBoss relies on Jgroups

 175

[http://www.jgroups.org/] for the clustering of its naming registry face- Java Nam-

ing and Directory Inter (JNDI)-and its EJB container. JGroups is an open source

group communication middleware fully written in Java. JGroups provides the

following main features: group creation and deletion, where group members can be

spread across LANs or WANs; joining and leaving of groups; membership detection

and notification including joined/left/crashed members; detection and removal of

crashed members; sending and receiving of member-to-group messages (point-to-

multipoint); and sending and receiving of member-to-member messages (point-to-

point).

B u s in e s s T ie r

C lu s te re d S e rv e rs

D B

D a ta

D a ta

P re s e n ta t io n
T ie r

C lie n ts

Figure 6.7. Example of J2EE cluster architecture

 176

JBoss uses a layered architecture to manage clustering. The architecture relies on

JGroups for clustering, which is abstracted. Figure 6.8 describes the architecture

using two nodes. The term partition is used to refer to a cluster. A node can be part

of several partitions.

Figure 6.8. Clustering Architecture

The HAPartition (i.e., High Availability Partition) abstracts the communication

framework; it provides access to a set of communication primitives. Services need to

register with the HAPartition to use the HAPartition services. The Distributed

Replicant Manager manages the replicas by providing methods to add or remove

replicas from a partition. The HASession-State is used to manage the state of Stateful

Session Beans. The state of all Stateful Session Beans are replicated and syn-

chronised across the cluster each time the state of a bean changes. The Distributed

State stores settings or parameters that should be used by the containers in the

cluster. Clients can use either the local JNDI service or the HA-JNDI service to look

up objects. If the local JNDI service is used, the local JNDI namespace is used to

locate objects. HA-JNDI delegates the lookup to the local JNDI, if it fails to find the

object within global the cluster-wide context. EJB homes are bound to the local JNDI

of the server on which the particular EJB is deployed. HA-RMI provides load-

balancing and fail-over facilities for RMI servers. HA-EJB allows selecting the load-

balancing policy to apply (e.g., Round Robin, First Available), when deciding on a

replica that will respond to the client request. The load-balancing policy is not

adaptive. JBoss provides clustering for the two main types of EJB: Entity Bean and

Session Bean (Stateful and Stateless). Clustering for Message-Driven Bean is not

Partition

Node 1 Node 2

JGroups JGroups

Distributed
Replicant
Manager

HASession
State

Distributed
State

Distributed
Replicant
Manager

HASession
State

Distributed
State

HA-JNDI HA-RMI HA-EJB HA-JNDI HA-RMI HA-EJB

 177

provided yet. Also, JBoss comes with a farming feature. Farming manages cluster

hot-deployment. Hot-deploying an application (EAR, WAR or JAR application) on a

machine causes the application to be hot deployed on all instances within the cluster.

Change impact analysis

An observable advantage of scaling the software architecture induced by J2EE, using

JBoss, is that no development effort is required to realize the scalability requirements

through replication, as when compared to the CORBA version. The clustered

environment, which mainly includes the HA-JNDI, the HA-EJB for Entity Bean and

Stateful Session Bean, and the farming do provide the primitives for scaling the

software system. That is, no development effort is required to provide a clustering

environment. However, configuring and deploying the application in the clustered

environment are still required.

In brief, configuration includes the following: configuring clusters, HA-JNDI, HA-

EJB, and farming. By default, one partition exists. When adding a partition, the

cluster needs to be configured. This simply requires updating the cluster ser-vice file

(i.e., cluster-service.xml). Eleven lines of code are necessary to map a partition with a

HA-JNDI service. The property file (jndi.properties) on the client-side has to be

updated to enable the client to auto-discover the HA-JNDI servers. One line of code

is necessary to update this file.

To cluster the EJBs, a special XML tag (clustered) has to be added to the Jboss.xml. To

specify the partition(s) to be used, the (clusterconfig) tag needs to be added to the

same file. More, the load-balancing mechanism may need to be up-dated in the JBoss

deployment descriptor. All of these changes involve 10 lines/bean. For stateful

session beans, the cluster service file, cluster-service.xml, need to be updated to add a

partition to the HASessionState service, involving 7 SLOC. Therefore, we need 39

SLOC to enable farming for all our partitions. The file farm-service.xml file, by

default, enables the farming for one partition. To enable the farming for all the

partitions, farm-service.xml file need to be updated; a link will need to be added

between the FarmMemberService and a partition. For the Duke’s Bank architecture,

we use four partitions: two for the Account beans (Entity and Session) and two for

 178

the Transactions beans (Entity and Session). Thirty-two SLOC need to be added for

configuring a partition. This results in 128 SLOC. Other 33 lines of code are necessary

to map a partition with the HA-JNDI service. Because four kinds of beans exist in the

system, configuring the HA-EJB requires 40 lines to update the JBoss deployment

descriptor of the beans. Thirteen SLOC are required. We note that Farming is not

enabled by default, requiring the developer’s intervention. Table 6.10 aggregates the

above description.

Table 6.10. Scalability in the J2EE version

Changes to make 4 partitions Source

Lines of code (SLOC)

Install Jboss 1

Configuring clusters 96

Configuring HA-JNDI 34

Configuring HA-EJB 47

Configuring farming 39

Total for one host 217

6.3.5 The Throughput Valuation Point of View

A possible way to treat scalability is to assume that scalability can be measured by

throughput or capacity of the system. Throughput is a generic performance criterion,

which expresses the amount of work performed by the system under test during a

unit of time. This criterion is based on the observation that for a fixed system with a

given throughput (e.g., a single host), there is an inverse relationship between the

response time and the number of clients. In other words, the more clients submitting

requests, the longer are the delays.

A well-known throughput metric is the Total Operations per Second (TOPS)

completed during the measurement interval, referred to as TOPS

[http://www.spec.org/]. TOPS is composed of the total number of business

transactions completed in the customer domain, added to the total number of work

 179

orders completed in the manufacturing domain, normalized per

second[http://www.spec.org/].

To understand how Duke’s architecture may behave once induced with J2EE or

CORBA, we have screened relevant performance benchmarks (e.g., Denaro et al.,

2004; http://www.spec.org/jAppServer2005/; Shipping et al., 2005). We appeal to

the use of published benchmarks, because the system of the given architecture need

not be implemented during the evaluation. Thus, performance measures may not be

available. Benchmarks are revealing on the performance dimension because, for

example, if multiple benchmarks are conducted with a suitable mix of relevant

factors, it may be possible to obtain a set of basic scalability results that can be used

for estimating the throughput of possible configurations of the architecture.

Depending on the benchmarking algorithm, the relevant scalability factors can be,

for example, the number of objects, the number of clients, or the number of nodes in

the system etc. supported in response to growing load. A major problem in

comparing benchmark results, however, is that different hardware platforms and

configurations (e.g., memory, disk drives etc) often produce different results making

the comparisons difficult. Further, vendors often try many different ways to optimize

performance, including adding cache memory and putting cache buffers on disk

arrays. Therefore, we only use benchmarks, which are close to the case at hand. We

then normalize the screened benchmarks for easing the comparison. It could be also

argued that in iterative development (e.g., in the Unified Process) partial

implementations might be available at the end of each phase. In this context, it is

possible to create benchmarks from the partial implementations and to use them to

recalibrate the screened ones. The intention is to have more meaningful figures

which we could use for understanding the impact of likely change in future load on

the behavior (throughput) of the system(i.e., relevant to the throughput valuation point

of view).

In the context of ArchOptions, our use of benchmarks resembles the use of a twin

asset. We argue that using benchmarks satisfies the concept of the twin asset as we

are relying on historical information showing possible variations in performance in

connection to change in load and relative to the candidate implementations. These

benchmarks often hint that the throughput is dependent on and can be estimated

 180

from the middle-tier “processing power” of the architecture. Such variation, we

believe, is a wealth as it reveals pros and cons of the Duke’s Bank execution under

possible operating environments and/or in relation to other participating

applications. This is advantageous because scalability is also a factor of the number

of independently developed applications that might share an execution platform.

The advantage of this approach is that the published benchmarks could reveal risks

of the operating environment on the choice.

Figure 6.9 shows the likely throughput trend that the J2EE-induced architecture may

exhibit relative to the CORBA-induced one, upon varying the TOPS and the number

of hosts. For the J2EE-induced architecture, we provide throughput estimations for

two possible implementations: one with JBoss and the other with WLS. For the

CORBA-induced architecture, we provide estimates upon the use of JacORB to

induce the architecture. Table 6.11 depicts the upper limit of TOPS supported per

host for each of WLS, JBOSS, JacORB induced architectures for 1 to 4 hosts.

Throughput of WLS, JBOSS, and JacORB upon
varying the load and hosts

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

1 2 3 4

No of hosts

TO
P

S WLS
JBOSS
JacORB

Figure 6.9. Plotting the TOPS per host for each of WLS, JBOSS, JacORB for 1
to 4 hosts

 181

Table 6.11. Upper limit of TOPS per host for each of WLS, JBOSS, JacORB

 Hosts WLS JBOSS JacORB
1 732.00 400.26 546.80
2 918.36 502.16 686.01
3 1395.44 763.03 1042.39
4 2640.96 1444.08 1972.79

Figure 6.10 shows the likely cost-trend upon inducing the Duke’s bank architecture

with J2EE (using either WLS or JBOSS) and with CORBA (using JacORB). The likely

cost is plotted against the number of hosts (1 to 4). The cost refers to the lifecycle cost

of the System Under Test (SUT). The cost includes Application Servers/Containers,

Database Servers, network connections, etc. Assuming, for example, a five-year

lifecycle, cost would include all hardware (purchase price), software including

license charges, and hardware maintenance. For the CORBA version, it assumed that

the investment incurs an upfront cost to the development of the replication

mechanism to support fault-tolerance and load-balancing services for high load

scenarios. For the J2EE version of WLS, a license cost is incurred per host.

WLS, JBOSS, and JacORB Costs for 1-4 hosts

0.00
50000.00

100000.00
150000.00

200000.00
250000.00
300000.00
350000.00

1 2 3 4

No of hosts

$

WLS

JBOSS

JacORB

Figure 6.10. The likely cost-trend upon inducing the Duke’s bank architecture
with J2EE-(WLS or JBOSS) and with CORBA (JacORB).

 182

6.3.6 Applying ArchOptions

In previous sections, we have seen that to scale the architecture of the Duke’s Bank,

the requirements depicted in Figure 6.4 need to be maintained. We have estimated

their structural impact on both the CORBA and the J2EE versions. We have

estimated the SLOC to be added for implementing the change on both versions, as

depicted in Tables B-1, B-2, Table 6.9, and Table 6.10. From the structural valuation

point of view, an observable advantage of scaling the software architecture induced

by EJB is that no development effort is required to realize the scalability

requirements through replication, as when compared to the CORBA version. J2EE

provides the primitives for scaling the software system, which result in making the

architecture of the software system more flexible in accommodating the change in

scalability requirements, as when compared to the CORBA version. Though the

structural analysis appears to be in favor of the J2EE-induced architecture, the

throughput analysis may reveal a different trend. From the throughput valuation

point of view, Figure 6.9 shows that when the Duke’s architecture will be induced

with JBoss, a J2EE implementation, the system is likely to be slower than that of the

JacORB one. This is because JBOSS uses reflection [http://www.jboss.org]. This also

implies that there are some chances for the JBoss-induced architecture to require

more hardware for addressing this deficiency. When inducing the Duke’s

architecture with WLS, another J2EE implementation, the system is very likely to be

faster than that of the JacORB implementation. WLS, however, comes with

significant licenses costs; this cost grows with the number of hosts, as the load

increases. Coining the TOPS with their associated costs, Figure 6.9, Figure 6.10 and

Table 6.11, hint that there might be a case for JacORB in certain throughput range.

Moreover, note that once the services for realizing scalability (i.e., the fault-tolerance

and load balancing service) are implemented, the cost is incurred once and

amortized across the hosts. Hence, as the load grows, the analysis becomes complex.

The case is appealing to ArchOptions for the following major reasons: First, there is

cone of uncertainty associated with the growing load and consequently in the value

added as result of our choice. Moreover, the TOPS are of straightforward

contribution to value. That is, the more operations are completed per second, the

 183

more value is added to the enterprise. However, TOPS incur a price upon executing

the operations. The price again is dependent on several factors such as the number of

hosts, the hardware, the license cost, and any additional costs that are necessary for

making the middleware adaptable to the growing load. In the context of the Duke’s

Bank, the TOPS range is often uncertain as it is dependent on the customers’

behavior at a time. The uncertainty in the likely range (i.e., TOPS), the associated costs

for executing the TOPS, and the “fluctuation” in the value added as a result make the

case very appealing to the use of ArchOptions. For the throughput valuation point

of view, the analysis using ArchOptions aims at complementing the behavioral

analysis to understand the trend in the added value upon embarking on either J2EE

(Jboss or WLS) or CORBA(JacORB) to induce the architecture of a given system.

6.3.6.1 Formulation and Interpretation

In this section, we describe how ArchOptions can be tailored to understand the value

added as a result of inducing the architecture by EJB relative to CORBA, if the

change in scalability requirements materializes and relative to the two valuation

points of view.

As we have noted in [Bahsoon and Emmerich, 2003a; Bahsoon 2003; Bahsoon and

Emmerich 2004a; Bahsoon and Emmerich 2004b], the search for a potentially stable

architecture requires finding an architecture that maximizes the yield in the added

value, relative to some future changes in requirements. As we are assuming that the

added value is attributed to flexibility, the problem becomes maximizing the yield in

the embedded or adapted flexibility in a software architecture relative to these

changes. For this case study, given the choice of two or more middleware candidates,

the selection has to maximize the yield in the embedded or adapted flexibility in

response to likely changes in scalability requirements. In particular, a proper

selection has to maximize the value added relative to the two valuation points of

view. That is, the decision to select potentially stable–middleware architecture has to

provide a compromise between the payoff on the structural and the behavioral

valuation points of view, as we will see in the subsequent Sections.

 184

Let us assume that we are given the choice of two middleware M0 and M1 to induce

the architecture of a particular system. Let us assume that S0 and S1 are the

architectures obtained from inducing M0 and M1 respectively. Say, inducing M1 is an

economical choice, if it adds value to S1 relative to S0. We attribute the added value to

the enhanced flexibility of S1 over S0. If we are considering stability as a criteria for

understanding the value added on the system, then future changes in non-functional

requirements will tell us how valuable S1 is relative to S0, as we are performing a

tradeoff between the architecture induced by M0 and M1. However, the added value

is uncertain, as the demand and the nature of the future changes are uncertain.

Hence, using option theory is a promising approach to inform the selection.

Choosing a particular middleware to induce the architecture of the software system

can be seen as an investment to purchase flexibility in the induced software

architecture. The non-functional requirements and the range in which they change

influence the choice. In this context, deciding on a particular middleware to induce

the software system architecture can be seen as an investment to purchase future

growth options that enhance the upside potentials of the structure when the non-

functional requirements change. That is, S1 is said to be more accommodating to the

change than S0, if S1 holds more growth options than S0. For a valuation point of view

p, we focus the analysis on the calls of the ArchOptions model for valuing the growth

options, as given in (6.2).

 ∑ i=1…n E [max (xiVp - Ceip, 0)] (6.2)

The selection has to be guided by the expected payoff in (∑ i=1…n E [max (xiVp - Ceip,

0])S1 relative to that of (∑ i=1…n E [max (xiVp - Ceip, 0])S0. That is, if (- Ie + ∑ i=1…n E [max

(xiVp - Ceip, 0)] S1 > ∑ i=1…n E [max (xiVp - Ceip, 0)] S0) for some likely changes, then it is

worth investing in M1, as the investment in M1 is likely to generate more growth

options for S1 than for S0 and relative to the p valuation point of view.

 185

If (E [max (xkVp - Cepk, 0)])S1=0), then M1 is not likely to payoff, relative to M0, as the

flexibility of the architecture to the change is not likely to add a value for S1 on p, if

the change need to be exercised. Two interpretations might be possible: (i) the

architecture is overly flexible in the sense that its response to the change(s) has not

“pulled” the options relative to p. This implies that the embedded flexibility (or the

resources invested in implementing flexibility- if any) are wasted and unutilized to

reveal the options relative to the changes and relative to p (ii) the other case is when

the architecture is inflexible relative to the change. This is when the cost of

accommodating the change on S1 is much more than the cumulative expected value

of the architecture responsiveness to the change.

For the maintainability valuation point of view, PM, we appeal to the use of future

savings in maintenance effort as a way to quantify the value added due to a

selection. If we assume that xiVPMS1 is the expected savings in S1 over S0 due to

selection, then if (∑ i=1…n E [max (xiVPM- CeiPM, 0)] S1 >∑ i=1…n E [max (xiVPM- CeiPM, 0)] S0),

then investing in M1 is said have better value with respect to PM. For the throughput

valuation point of view, Pthro, an additional operation is said to “buy” an

architectural potential paying an exercise price. In terms of throughput, the

architectural potential is a performance measure. That is, the more TOPS are said to

be completed at a host (or for a configuration), the more value is said to be added to

the enterprise. The more valuable is said the architectural potential relative to the

TOPS. The exercise price is price/TOPS (see relevant section for more details). If we

assume that xiVPthroS1 is the value added in S1 over S0 due to the support of more

TOPS, it is reasonable to consider that if (∑ i=1…n E [max (xiVPthro - CeiPthro, 0)] S1 > ∑ i=1…n

E [max (xiVPthro - CeiPthro, 0)] S0), then investing in M1 is said to payoff relative to

throughput valuation point of view.

 186

6.3.6.2 Options on the Maintainability Valuation Point of View

For this valuation point of view, we aim at understanding the value added upon

inducing the architecture with EJB relative to CORBA, if the change in scalability

requirements materializes. We use future savings in maintenance, deployment, and

configuration costs (if any), upon accommodating the likely change in scalability, as

a way to quantify the value added. Below, we show how we estimate the parameters

relative to this valuation point of view.

Upon applying ArchOptions, we focus our attention on the payoff of the call options

(i.e., ∑ i=1…n E [max (xiVPM - CeiPM, 0)] S1 relative to ∑ i=1…n E [max (xiVPM - CeiPM, 0)] S0), as

they are revealing for the flexibility of the architecture-induced in responding to the

likely future changes. We construct a call option for the future scalability goal, where

the change is analogues to buying an “architectural potential”, paying an exercise

price. The exercise price corresponds to the likely price to accommodate the change

in load on the structure. When necessary, we use $6000 for man-month to cast the

effort into cost. We show how we have estimated the parameters.

Table 6.12. Scaling the system using replication (1 Host): development,
configuration, and deployment costs

Estimating (CeiPM). The exercise price corresponds to the cost of implementing

scalability on each structure, given by CeiPM for requirement i. As the replicas may

 CORBA (JacORB) EJB (JBOSS)
 Optimistic Most Likely Pessimistic Optimistic Most Likely Pessimistic

Effort 24.1 30.2 37.7 0 0 0

Cost, CeiPM 96481 120602 150753 0 0 0

D
ev

el
op

m
en

t

SLOC 9240 0

Effort 0.4 0.5 0.6 0.4 0.5 0.6

Cost, CeiPM 1527 1909 2386 1558 1948 2435

C
on

fig
ur

at
io

n
&

D

ep
lo

ym
en

t

SLOC 213 217

 187

need to be run on different hosts, we devise a general model for calculating Ce as a

function of the number of hosts, given by:

CeiPM = ∑ h=1…k (Cdev, Cconfig, Cdeploy, Clicesh)h, (6.3)

where, h corresponds to the number of hosts. Cdev, Cconfig, and Cdeploy, respectively

corresponds to the cost of development (if any), configuration, and deployment for

the replica on host h. Clicesh corresponds to licenses and hardware costs, if any. All

costs are given in ($). We provide three values: optimistic, likely, and pessimistic for

each parameter. All are calculated using COCOMO II – post architectural model

[Boehm et al., 1995], as depicted in Table 6.12. Upon varying the number of hosts, we

only report on pessimistic values for this study, as they are revealing.

Estimating (xiVPM). To value the architectural potential of S1 relative to S0 given by

(xiVPMS1/S0), we take a structural approach to valuation. We use the expected savings

(if-any) in development, configuration, and deployment efforts, when the scalability

change needs to be accommodated on S1 relative to S0, and respectively denoted as

∆S1/S0Cdev, ∆ S1/S0Cconfig, ∆ S1/S0Cdeploy. Relative savings in licenses may also be considered

and denoted by ∆Clicesh. Below is a model for calculating xiVS1/S0, for the change in

requirement i.

xiVPM S1/S0= ∑ h=1…k (∆S1/S0Cdev, ∆ S1/S0Cconfig, ∆ S1/S0Cdeploy, ∆ S1/S0 Clicesh)h (6.4)

Similar description applies for (xiVPMS0/S1). The savings (if any), however, are

uncertain and differ with the number of hosts, as the replicas may need to be run on

different hosts. Such uncertainty makes it even more appealing to use of “options

thinking”.

Estimating volatility (σPM). The volatility of the stock price is a statistical measure of

the stock price fluctuation over a specific period of time; it is a measure of how

 188

uncertain we are about the future of the stock price movements. Volatility stands for

the fluctuation in the value of the estimated xiVPM. Intuitively, it aggregates the

“potential” values of the structure in response to the change(s). We adhere to the real

options principles in estimating σPM. We take the percentage of the standard

deviation of the xiVPMs estimates-the optimistic, likely, and pessimistic values to

calculate σPM.

Exercise time (tPM) and free risk interest rate(rPM). As a simulation assumption, we

set the exercise time to one year, assuming that the Duke’s Bank needs to

accommodate the change in one year time. We set the free risk interest rate to zero

(i.e., assuming that the value of money today is the same as that in one year’s time).

6.3.6.3 Options on the Throughput Valuation Point of View

We take throughput as a measure for analyzing the payoff on the behavioral point of

view. We construct call options for a likely change in load-range. The objective is to

analyze the architectural potential in supporting a likely growth of TOPS. Below, we

show how we estimate the parameters relative to this valuation point of view.

Estimating (CeiPthro). A change in a load-range is said to buy an architectural

potential paying an exercise price. As we mentioned before, TOPS denotes the Total

Operations completed per Second. For the simplicity of explanation, let us assume

that the system of the induced architecture needs to scale up to support an additional

operation per unit-time. An additional operation is said to buy an architectural

potential paying an exercise price. In terms of throughput, the architectural potential

is a performance measure. Hence, what an extra operation pays, if materializes, is a

bandwidth for performing that operation. Inducing the Duke’s bank with either J2EE

or CORBA provide different bandwidth capabilities for performing the operation at

different price. If the implementation of either happens to hold embedded growth

options in supporting the extra operation, then the operation is said to pay an

exercise price to buy options on the architecture. To estimate the exercise price, we

use a well-known normalization factor, which is the price/performance

[http://www.spec.org/jAppServer2005/] (i.e., the lifecycle cost of the System Under

 189

Test (SUT) as configured for the benchmark divided by the throughput). As an

example, assuming five-year lifecycle, the cost would include all hardware (purchase

price), software including license charges, and hardware/software maintenance. If

the total price is $5,734,417 and the reported throughput is 105.12 TOPS, then the

price/performance is $54,551.16/TOPS (54,551.151 rounded up).

Estimating (xiVPthro). For simplicity, we estimate xiVPthro relevant to the business

domain. For every completed on-line operation, Duke’s would not need to have to

serve a customer in person at a branch. That is, the Duke’s savings are in the manual-

effort for serving the clients at a branch. For example, let us assume a scenario where

a clerk needs one minute for completing a business operation: if we assume an

overhead cost of $100,000/year for each clerk, then an online operation saves about a

dollar per operation in a minute: $100000/ (220day * 8hours * 60minutes).

Computing the savings per second is then straightforward. We use scenarios of 8 and

20 clerks for computing xiVPthro.

Estimating volatility (σPthro). Volatility represents uncertainty attributed to the likely

growing of load. For some computation, we abide to the real options principles in

computing volatility: we use the standard deviation of xiVPthros due supporting extra

operations for a range of load at a particular host (as the range is said to be revealing

to the fluctuation in the value). For some computations, we use modeling estimates

for volatility, representing uncertainty, with the objective of demonstrating how

volatility is said to influence the options results.

Exercise time (t Pthro) and free risk interest rate(r Pthro). As a simulation assumption,

we set the exercise time to one year, assuming that the Duke’s Bank needs to

accommodate the change in one-year time. We set the free risk interest rate to zero

(i.e., assuming that the value of money today is the same as that in one year’s time).

6.3.7 Options Analysis: Results and Discussion

In this Section, we report on some selective results and observations upon the

application of the model. As part of this evaluation, the objective of this section is to

 190

extend the confidence in some of the claims that ArchOptions makes and to simulate

the application of the model. These claims are sufficiently described in Section 6.1 of

this Chapter. In particular, We verify that the choice of a stable distributed software

architecture has to be guided by the choice of the underlying middleware and its

flexibility in responding to future changes in non-functional requirements. We verify

the hypothesis that flexibility creates real options in the structure relative to likely

changes in requirements. We exemplify the use of valuation point of view for

capturing the options from different perspectives. We demonstrate how uncertainty

impacts value and consequently the decision of selecting a stable architecture. We

show how the options results are compared to other valuation techniques, which fall

short in dealing with the value of flexibility under uncertainty. In line of previous

discussion, CORBA and J2EE correspond to M0 and M1 respectively. We refer to the

architecture of the Duke’s Bank as S0 when induced by M0 and S1 when induced M1.

Observation 1. Flexibility creates real options: S1 is more flexible than S0 (due to the

primitives in J2EE); S1 has created more real options than S0.

Let us first focus the analysis on the maintainability valuation point of view, PM.

Let us consider the scenario where we consider one host. For this scenario, we

assume that the license cost (Clicesh) is zero for M1 (e.g., the usage of JBoss an

open source). Table 6.12 reports on the effort (man-month) and cost in ($); it

provides three values: optimistic, likely, and pessimistic for each parameter.

The xiVPMS1/S0 correspond to the difference- as reported in Table 13a. The

overall expected savings of inducing the structure with S1 relative to S0 are in

the range of $96450(pessimistic) to $150704(optimistic). As far as the

development effort is concerned, expected savings are in the range of

$96481(pessimistic) to $150753(optimistic) for realizing the scalability

requirements. As far as configuration effort is concerned, S1 has not reported

any expected savings relative to S0. However, these figures are insignificant.

As far as the effort of deployment is concerned, both are comparable when it

comes to SLOC. We note that these figures are based on COCOMO II: the

number of man-months is different from the time that will take for

completing a project, termed as the development schedule. For example, a

 191

project could be estimated to require 50 man-months of effort but have a

schedule of 11 months. Accordingly, the cost and relative savings, maybe

adjusted relative to the schedule. We have relaxed this, as the aim of the

exercise is to simulate the applicability of the model. The xiVs will be used to

quantify the added value, taking the form of options, due to the embedded

flexibility on S1 relative to S0.

Table 6.13a shows that S1 is in the money in response to the change in

scalability, when compared to S0. Table 6.11a shows that S1 is in the money

relative to the development, configuration, and the deployment. The results

of table 6.13a read that inducing the architecture with M1 is likely to enhance

the option value by an excess of $96450(pessimistic) to $150704(optimistic)

over S0, if the change in scalability need to be exercised in one year time.

Thus, the results show that S1 induced by M1 is likely to add more value in the

form of options in response to the change, when compared to S0. It is worth

pointing out that though S1 is flexible relative to the scalability change, it

might not necessarily mean that it might be flexible with respect to other

changes. Obviously, JBoss does provide the primitives for scaling the

software system, which result in making the architecture of the software

system more flexible in accommodating the change in scalability, as when

compared to the CORBA version. This has lead to a notable savings in

maintenance cost. Calculating the options of S0 relative to S1, we can see that

S0 is said to be out of the money for this change. The CORBA version has not

added value, relative to J2EE, as the cost of implementing the change was

relatively significant to “pull” the options, as reported in Table 6.13b. The

very low value of Vega means that possible changes in volatility have

relatively little impact on the value of the options. The high value of Delta in

Tables 13a and Table 6.13b roughly means that changes in xiVPM could have

high impact on the on the calculated options.

 192

Table 6.13a. The options in ($) on the architecture induced by S1 relative to S0 for one
host, with S1 license cost (Clicesh) =zero for the maintainability valuation point of view

Table 6.13b. The options in ($) on the architecture induced by S0 relative to S1 for one
host, with (Clicesh) =zero for the maintainability valuation point of view

Table 6.13c. Options in ($) on S0 relative to S1 with (Clicesh) = $25000 and σPM=22.7 and
pessimistic CeiPM for the maintainability valuation point of view

 CeiPM xiVPM OptionsPM

Adjusted
Options

Concurrent
Users

1 2386 25049 2343 0 U1S0 vs U1S1
2 4772 50049 4772 0 U2S0 vs U2S1
3 7158 75049 67891 0 U3S0 vs U3S1
4 9544 100049 90505 0 U4S0 vs U4S1
5 11930 125049 113119 0 U5S0 vs U5S1
6 14316 150049 135733 0 U6S0 vs U6S1
7 16702 175049 158347 7643 U7S0 vs U7S1

Let now us inspect another form of flexibility that S1 provides over S0, relative

to the throughput valuation point of view, Pthro:

Consider a scenario, where the likely load is 1042 TOPS. Table 6.14a shows

that 1042 TOPS can be supported by three hosts, if the Duke’s architecture is

induced with either M1 (WLS) or M0 (JacORB). Table 6.14a shows that for

three hosts, supporting 1042 TOPS costs $1488.88 for S1 when induced with

WLS but $243.05 for S0 when induced with JacORB. The cost is denoted by

 CeiPM xiVPM σPM TPM OptionsPM Delta Vega
Optimistic 1158 96450 94892 1 9.1149E-71

Likely 1948 120563 118615 1 1.1628E-70 Overall
Pessimistic 2435 150704

22.7 1
148269 1 1.4533E-70

Optimistic 0 96481 96481 1 0
Likely 0 120602 120602 1 0 Development

Pessimistic 0 150753
22.7 1

150753 1 0
Optimistic 1558 -31 0 0 0

Likely 1948 -39 0 0 0 Configuration
and Deployment

Pessimistic 2435 -49
22.7 1

0 0 0

 CeiPM xiVPM σPM TPM OptionsPM Delta Vega
Optimistic 96450 31 0 0 0

Likely 120563 39 0 0 0 Overall
Pessimistic 150704 49

22.7 1
0 0 0

 193

CeiPthro. Supporting 1042 TOPS online is assumed to eliminate manual-

overhead and create xiVs, as explained in Section 6.3.6 and computed using

eight clerks scenario. Using high volatility modeling assumptions for σPthro=

100% for simplicity, Table 6.14a shows that S1 adds more value than So for

three hosts. This is because the cost of implementing both load balancing and

fault-tolerance is far from breaking even on S0 for three hosts.

Let us now suppose that Duke’s can only afford to invest in three hosts and

the investment is to be made. Let us now assume that the load is likely to

grow from 1042 TOPS to the range of 1250-1395 TOPS, as a result of

accommodating more customers in one year time:

According to Table 6.14b, as the load increases over 1042 TOPS, M1 continues

to be of a better value for flexibility as when compared to M0 for the following

reasons: First, S0 will be inflexible to support an extra operation beyond 1042

TOPS for three hosts (Table 6.11). That is, the growing load requires an

additional host; henceforth, incurring hardware costs. Second, the cost of

implementing both load balancing and fault-tolerance is far from breaking

even on S0 for three hosts. As a result, S0 ceases to create real options on three

hosts if the load exceeds the expected 1024 TOPS. Conversely, for the range of

1250-1395 TOPS, S1 tends to carry growth options on three hosts. This is

because at threshold, S1 can support around 1395 TOPS (Table 6.11). That is,

S1 when induced with WLS, tends to create value for an additional 371 TOPS

on three hosts.

Formalizing this thinking,

The architectural potential of S1 (WLS) = value in supporting 1042

TOPS now + growth options in supporting an additional 371 TOPS;

The architectural potential of S0 (JacORB) = value in supporting 1042

TOPS now + zero growth options beyond 1042 TOPS.

 194

Table 6.14a. Supporting 1042 TOPS with three hosts and their options value,
if the Duke’s architecture is induced with either M1 (WLS) or M0 (JacORB),
σPthro= 100%

Hence, for three hosts and with the likely growing load in the range of 1250-

1390 TOPS, S1 exhibits that it has flexibility under uncertainty. This flexibility

takes the form of growth options held on S1. The value of these options is in

supporting an additional 371 TOPS. The more uncertain we are about the

likely growth in load (i.e., beyond 1024 TOPS and in the range of 1250-1390

TOPS), the more valuable is the flexibility in S1 relative to S0.

Table 6.14b. Supporting 1395 TOPS with three hosts and their options value,
if the Duke’s architecture is induced with either M1 (WLS) or M0 (JacORB)
σPthro= 100%

Observation 2. How worth is the embedded flexibility in S1 when induced with M1,

relative to that of S0 when induced with M0?

Consider the case where we use WLS as M1 with an average upfront payable

license cost Clicesh= $25000/host. As an upfront license fee is incurred,

increasing the number of hosts may carry unnecessary expenditures that

could be avoided, if we use M0 instead. Let us first analyze the case from the

structural point of view: M0 does also incur costs upon scaling the software

system through the development of both the load balancing and the fault

tolerance services. Such a cost, however, maybe “diluted” as the number of

hosts increases. The cost is said to be distributed across the hosts and

incurred once, as the developed services can be reused across other hosts. For

1042
TOPS

No
Hosts

CeiPthro XiVPthro OptionsPthro

S1(WLS) 3 148.88 131.61 45.44
S1(JBOSS) 4 126.96 131.61 51.86
S0(JacORB) 3 243.05 131.61 27.59

1250-1395
TOPS

No
Hosts

CeiPthro XiVPthro OptionsPthro Growth Options

S1(WLS) 3 148.88 176.61 77.05 31.61
S1(JBOSS) 4 126.96 176.1 85.79 33.93 for 4 hosts
S0(JacORB) 3 243.05 131.61 27.59 0

 195

this experiment, we assume that developing the fault tolerance and load

services are upfront investments to buy growth options on the structure. An

additional configuration and deployment cost materializes per host and sum

up to the exercise price, CeiPM as in equation (6.3), when an additional host is

needed to scale the software. xiVPMS0/S1 is calculated based on equation (6.4).

We calculate the options of S0 relative to S1. We adjust the options by

subtracting the upfront expenditure of developing both services on M0, as

reported in Table 6.13c. The adjusted options reveal situations in which S0 is

likely to add value relative to S1, when the upfront cost is considered. These

results may provide us with insights on the cost effectiveness of

implementing fault tolerance and load balancing support to scale the

software system relative to S1, where a licensing cost is incurred per host.

Therefore, a question of interest is: when is it cost effective to use M0 instead

of M1 relative to the structural point of view (maintainability)? In other

words, when the flexibility of M1 cease to create value relative to M0. We

assume that for any k hosts, S0 and S1 are said to support UkS0 and UkS1

concurrent users, respectively; where UkS0 could be different or equal to UkS1.

For the non-adjusted options results of Table 6.13c shows that inducing the

architecture with M0 is likely to enhance the option value of S0 relative to S1

(pessimistic) for the case of n hosts for n>0, under the condition that UnS0

>>=UnS1 and under the assumption that the upfront cost of developing fault

tolerance and load balancing is relaxed. However, if we benchmark these

options values against the cost of developing the load balancing and fault

tolerance services (i.e., the upfront cost), we can see that payoff following

developing these services is far from breaking even for less than seven hosts,

as depicted in Figure 6.11.

 196

Options on S0 relative to S1

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 2 3 4 5 6 7

No of hosts

O
pt

io
ns

 ($
) Options on S0

Cost for achieving
Scalability

Figure 6.11. Maintainability valuation point of view: Options on S0 relative S1
prior to adjustment

Options of S0 and S1 in ($)

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7

No of Hosts

O
pt

io
ns

 ($
)

S1
S0

Figure 6.12. Maintainability valuation point of view: Options on S0 and S1

upon varying the number of hosts

 197

Hence, once we adjust the options to take care of the upfront cost of investing

to implement the both services, the adjusted options for S0 relative to S1

reports values in the money for the case of seven or more hosts, as shown in

Table 6.13c and sketched in Figure 6.12. For the case of seven or more hosts,

the M0 appears to be a better choice under the condition that UnS0 >>=UnS1.

These is due to the fact the expenditures in M1 licenses increases with the

number of hosts, henceforth, the savings in adopting M1 cease to exist. For

less than seven hosts, M1 has better potentials and appears to be more cost-

effective under the condition that UnS1 >>=UnS0. For seven or more hosts, M0

appears to be of better potentials under the conditions UnS0 >>=UnS1, as

depicted in Figure 6.12. The use of this case to exercise the ArchOptions

model has the prospect in providing an insight on how much do we need to

invest in the adapted flexibility relative to the likely future changes, while not

sacrificing much of the resources.

Let us now turn to the throughput valuation point of view, PM: Let us

analyze the architectural potential of S1 and S0 under a high-load scenario

using one and two hosts. Under full utilization of capacity at a host, the value

added shows that S1, whether induced with WLS or JBOSS, is “more” in-the-

money, as when compared to S0 for one and two hosts (Figure 6.13). We

attribute this to two reasons: First, S0 will incur an upfront cost for the

development of both the load balancing and the fault tolerance services to

meet the growing load. This cost is said to be counted in the Price/TOPS.

Second, S0 supports less TOPS for one and two hosts, as when compared to S1

when induced with WLS.

The results of Tables 6.15a-c (using high volatility modeling assumptions)

suggest that S1, when induced with M1, is likely to enhance the option value

by $25.1751/second (when induced with WLS) and $2.13/second (when

induced with JBOSS) over S0 for one host. The results also suggest that S1 is

likely to enhance the option value by $30.2/second (when induced by WLS)

and by $1.4/second (when induced by JBOSS) over S0 for two hosts, if the

 198

change in load materializes in one year-time. The computation assumes a full

utilization of capacity per host under a similar load. As the load is likely to

grow, the results suggest that S0 is likely to enhance the options value over S1,

when induced by JBoss by $6.9/second and $42.12/second respectively for

three and four hosts. This is because under full utilization of capacity, S0 is

likely to support additional 279.36 TOPS using three hosts and another 528.71

TOPS using four hosts, as when compared to S1, when induced with JBOSS.

This implies that the adapted flexibility, due the development of the load-

balancing and the fault-tolerant services on S0, tend to be of better value than

the “embedded” flexibility of S1, when induced with JBoss. S1, when induced

with WLS, continues to be of a better value for three and four hosts as when

compared to S0. It enhances the value by $48.3/second for three and by

$102/second for four hosts. The interpretation is as follows: First, WLS can

support additional 353 TOPS on 3 hosts and another 668 TOPS on 4 hosts, as

when compared to S0. In terms of real options, WLS has embedded flexibility

in supporting extra tops/hosts. That is WLS, has better value under

uncertainty. Second, S0 is less “performant” than S1 (when induced with

WLS); that is, S0 can execute less TOPS and generate less value.

 199

Options per second in $ for WLS, JBoss, and JacORB
volatility100%

0
30
60
90

120
150
180
210
240
270

1 2 3 4

No of hosts

O
pt

io
ns

($
) WLS

JBOSS
jacORB

Figure 6.13. Throughput valuation point of view: Options per second ($) for
WLS, JBoss, and JacORB under high volatility assumptions

Table 6.15a. Throughput valuation point of view: Options per second ($) for
S1 when induced with WLS under high uncertainty (σPthro 100%) for 1 to 4
hosts and their sensitivity

S1 induced with WLS Hosts

XivPthro CeiPthro OptionsPthro Delta Vega
1 92.42424 116.5451 28.639 0.60 0.35
2 115.9549 136.2558 38.3265 0.63 0.43
3 176.1919 148.8778 75.937 0.79 0.56
4 333.455 107.2882 234.9709 0.94 0.35

Table 6.15b. Throughput valuation point of view: Options per second ($) for
S1 when induced with JBOSS under high uncertainty (σPthro 100%) for 1 to 4
hosts and their sensitivity

S1 induced with JBOSS Hosts

XivPthro CeiPthro OptionsPthro Delta Vega
1 50.53758 150.68 5.60400 0.28 0.17
2 63.40412 149.62 9.78300 0.39 0.24
3 96.34174 173.98 20.73000 0.46 0.39
4 182.3332 126.96 90.38285 0.81 0.51

 200

Table 6.15c. Options per second ($) for S0 when induced with JacORB under
high uncertainty (σPthro 100%) for 1 to 4 hosts and their sensitivity

S0 induced with JacORB Hosts

XivPthro CeiPthro OptionsPthro Delta Vega
1 69.04 330.86 3.46398 0.14 0.16
2 86.62 285.32 8.24432 0.24 0.27
3 131.61 243.05 27.59433 0.45 0.52
4 249.09 154.07 132.54728 0.84 0.61

Observation 3. The value of flexibility under uncertainty

One of the earlier claims we have made is that real options is suited to address

typical software evolution problems, where uncertainty attributed to the change in

requirements is the norm. We have also claimed that using real options theory is

better suited than techniques that are based on Present Value (PV) and Discount

Cash Flow (DCF) as these techniques tend to systematically underestimate the value

of flexibility under uncertainty. As we have mentioned in several occasions, in our

case the likely change in load is the major source of uncertainty that the Duke’s Bank

faces. To address such uncertainty and provide better insights on value creation, we

have appealed to the use of real options theory.

 201

Figure 6.14. The Cash flow at Year i, represents cash flows in which the cash
flows occur, and r is a per-period discount rate

Let us assume that the load is assumed to be in the range of 30- 50 TOPS. Based on

the benchmarks, 30-50 TOPS could be easily addressed by one host using either M0

(JacORB) or M1 (JBOSS or WLS). Figure 6.15 sketches the likely associated costs when

inducing the architecture with either alternative.

S1(WLS), S1(JBOSS), and S0(JacORB) costs for 1
host (low throughput)

0.00

20000.00

40000.00

60000.00

80000.00

100000.00

1

Host

($
)

WLS

JBOSS

JacORB

Figure 6.15. The likely associated costs compared upon inducing
Duke’s architecture with WLS, JBOSS, and JacORB for very low
throughput requirements on 1 host

For such a low throughput requirements, inducing the architecture with M0 may

appear to be more attractive as when compared to inducing the architecture with

M1 (using either JBoss or WLS). This is because M1 incurs license costs for WLS.

Moreover, looking at S1 when induced with JBOSS, S1 is likely to be in magnitude

 202

slower than S0 as when induced with JacORB. This means that S1 (JBOSS) will

support fewer TOPS and consequently will create less value added per second as

when compared to S0. For this low load, the fault-tolerance and load-balancing

services need not be implemented on S0. If options analysis is not used, M0 will

be a no-brain choice for inducing the Duke’s Bank architecture. Though inducing

the architecture S1 with M1 (using WLS) appears less attractive than M0 (JacORB),

S1 may still carry embedded growth options which will only materialize if the load

grows. If we use a PV or DCF approach, the resulted valuation will compute the

present value as realized and ignore these growth options. In other words,

inducing the architecture with WLS if undertaken, PV or DCF would hint that S1

would destroy value rather than create it. Formulating this argument, a PV

approach, for example, will leave us with ValueS1 = PV. However, ValueS1 is

actually ValueS1 = PV + Opt. That is, M1 carry embedded growth options, Opt.

The Opt, if left unexercised, are ignored by the non-options analysis. Hence,

Value for S1 is then said to be underestimated. As a result, S0 may look more

attractive (Table 6.16a). The PV and DCF calculation of Table 6.16a shows that S1

is the least attractive for this range of load. The computation is based on the

benefits of supporting 100 TOPS less their costs. However, the computation

ignores the growth options on S1 in supporting additional 632 TOPS using the

first host. Similarly, the PV and DCF systematically undervalue the growth

potential of S1 (Jboss) and S0 (JacORB) in respectively supporting 300.26 TOPS

and 446.26 TOPS. In other words, PV and DCF ignore the flexibility value of S1

and S0 in responding to the growing load at host 1. Note that it is a fact that NPV

or DCF does not work well for projects with future decisions that depend on how

uncertainty resolves. Though they can be used to evaluate the operational

benefits in a stable environment with well-understood and measurable costs and

benefits, they have little to offer when capturing additional value due to

flexibility under uncertainty, such as strategic opportunities and the ability to

respond to changing conditions. Using PV or DCF, S1, when induced with WLS,

reports negative values upon inducing the architecture with WLS for this range

of load. However, the situation indicates that these results underestimate the

value of S1, as S1 can better respond to uncertainty, where the load is likely to

grow over 100 TOPS. In Table 6.16b, we have turned to the intuition and used

ArchOptions to capture the growth options on S1 and S0. The volatility parameter

 203

is an expression of the range of “benefits” at a host. For example, consider S1

(WLS): the benefits could “wander” from zero (i.e., idle state with no operations

executing at a second) to the benefits derived from full utilization of capacity (i.e.,

in the support of 732 TOPS). That is, the volatility of 66% for S1 (WLS) indicates

that the benefits of executing the TOPS is in the range of $0(idle) to $92.42(full

utilization) per second on host 1. Similarly, for S0 (JacORB): the 45% volatility for

S0 (JacORB) indicates that the benefits of executing the TOPS are in the range of

$0(idle) to $69.04 (full utilization) per second on host 1. As far as the options on

S1(WLS) are concerned, S1 has “pulled” the options on one host for this range of

load. This is because we have accounted for the possible fluctuation in the

derived values from supporting the TOPS. Considering such “fluctuation”

provides us with better insights on the architectural potential of S1 in support of

this likely change in load. Table 6.16b suggests S1 has reported a value added of

$0.017 on 1 host.

S1(WLS) Options, PV, and DCF

-1000

-800

-600

-400

-200

0

200

400

1 2 3 4

No of Hosts

$

Options

PV

DCF

Figure 6.16a. The options, PV, and DCF on S1 when induced with WLS
relative to the throughput valuation point of view

 204

S1(JBOSS)- Options, PV, and DCF

-700.00

-600.00

-500.00

-400.00

-300.00

-200.00

-100.00

0.00

100.00

200.00

1 2 3 4

No of Hosts

$
Options
PV
DCF

Figure 6.16b. The options, PV, and DCF on S1 when induced with JBoss
relative to the throughput valuation point of view

S0(JacORB)- Options, PV, and DCF

-700

-600

-500

-400

-300

-200

-100

0

100

200

1 2 3 4

No of Hosts

$

Options

PV

DCF

Figure 6.16c. The options, PV, and DCF on S0 when induced with JacORB
relative to the throughput valuation point of view

Table 6.16a. Illustration NPV and DCF per second ($) very low throuput
scenario (100 TOPS)

 205

100 TOPS No
Hosts

Max
TOPS

CeiPThro XiVPThro PV DCF Value
Ignored
(TOPS)

S1(WLS) 1 732.00 853.11 12.63 -840.48 -933.87 -632 TOPS
S1(JBOSS) 1 400.26 603.11 12.63 -590.48 -656.09 -300.26TOPS
S0(JacORB) 1 546.80 603.11 12.63 -590.48 -656.09 -446.80TOPS

Table 6.16b. Illustration options per second ($) very low throuput scenario
(100 TOPS)

100 TOPS No
Hosts

CeiPThro XiVPThro σPthro Options Actual Value
 (TOPS)

S1(WLS) 1 853.11 92.424 66% 0.01700 100 + 632 TOPS
S1(JBOSS) 1 603.11 50.53 35% 0+ 100 + 300.26TOPS

S0(JacORB) 1 603.11 69.04 49% 0.00001 100 + 446.80TOPS

Observation 4: Comparing PV and Options: the impact of volatility on value

A critical difference between PV/DCF and real options is the effect of uncertainty

(or risk) on value. Figures 6.16a-c shows that PV and DCF systematically

underestimate the potential value of S1 and S0 in supporting a range in load on

one to four hosts. The reason why DCF reports steeper values is due to the

discount rate (10% is used for illustration purposes only). We have turned to the

intuition and have used a more powerful technique offered by the theory of

option pricing to capture the value of flexibility under the dynamic and the

uncertain range of load. However, how this uncertainty is expressed? How does

this relate to Duke’s case? Let us have a close look at the impact of the volatility

parameter, which is an expression of the value of flexibility under uncertainty.

In the context of ArchOptions, the volatility parameter estimates the “cone of

uncertainty” in the future value of the asset, rooted as its current value and

extending over time as a function of volatility. As volatility increases, total

uncertainty around the benefits also increases. The more TOPS a host is likely to

support, the more likely that the actual benefits to “wander” up and down and

deviate from the expected present value if the load grows. Hence, the more

volatile the environment is said to be.

 206

Let us now assume that Duke’s Bank needs to support more customers. Assume

that the load is likely to grow and be in the range of 600- 686 TOPS (Table 6.17a):

S1, when induced with WLS, realizes the change in load by one host. S0, when

induced with JacORB, will need two hosts and will incur the cost of developing

the fault-tolerance and load-balancing services on the structure. Yet, S1 when

induced with JBoss will require three hosts and will incur additional hardware

costs for completing the 686 TOPS. Figure 6.17 shows a scenario for a likely load

of 600-686 TOPS for S1 when induced with WLS and for S0 when induced with

JacORB. S1 could be regarded as an investment with a wide range of possible

outcomes. However, S0 is an investment with a relatively narrower range. For S1,

the investment is said to be more volatile. This is because S1 can support more

TOPS/host resulting in a possible range of values. Relating this to PV, this means

that there is a chance of producing positive PV in the future. Hence, a real option

under this set of outcomes would have value. As for the S0, the valuation under

this scenario is more stable. This is because S0 can support at most 686 TOPS for

the existing configuration. This means that S0 has no chance of producing a

project with a positive NPV beyond 686 TOPS. That is an option using the latter

set of outcomes would have no value.

Figure 6.17. Impact of volatility on value

 207

Table 6.17a. PV and DCF ($) per second for supporting 686 TOPS on S0 and S1 and
the values they ingnore

Table 6.17b. Adjusted PV and the options in ($) per second under full utilization
scenario of hosts for load greater than 686 TOPS on S0 and S1 and the values added
per second

Let us now assume that we have induced the Duke’s architecture with M1 (WLS) for

one version and M0 (JacORB) for the other. Hence, investment is made. As time

passes, let us assume that an increase in load materializes. As change in load

materializes, uncertainty is assumed to be resolved. Thus, the present value, as a

result of supporting more TOPS (analogous to the future value of a stock), can be

then calculated more accurately. If we examine the PV of this scenario, we can see

that PV reports $92.18/second for WLS for 686 TOPS. That is, this is equal to the

68
6T

O
PS

N
o

H
os

ts

M
ax

 T
O

PS

C
ei

PT
hr

o

X i
V

PT
hr

o

PV

D
C

F

V
al

ue

Ig
no

re
d

(T
O

PS
)

S1(WLS) 1 732 124.36 216.54 92.18 83.80 -46 TOPS
S1(JBOSS) 3 763 193.51 216.54 23.03 20.93 -77 TOPS
S0(JacORB) 2 686 285.32 216.54 -68.78 -76.42 0 TOPS

Full
Utilization

N
o

H
os

ts

C
ei

PT
hr

o

X i
V

PT
hr

o

σ P
th

ro

PV
 p

ri
or

A

dj
us

tm
en

t

A
dj

us
te

d
PV

O
pt

io
ns

Pr

ed
ic

te
d(

$)

A
dd

ed

V
al

ue
 l

($
)

A
ct

ua
l V

al
ue

 (T

O
PS

)

S1(WLS) 1

12
4.

36

23
1.

06

10
.5

2%

92
.1

8

10
6.

7

10
6.

7

14
.5

2

68
6

TO
PS

Pl

us

46
 T

O
PS

S1(JBOSS) 3

19
3.

51

24
0.

85

6.
9%

23
.0

3

47
.3

4

47
.3

4

24
.3

4

68
6

TO
PS

Pl

us

77
 T

O
PS

S0(JacORB) 2

28
5.

32

21
6.

54

 0

-6
8.

78

-6
8.

78

0 0

0
TO

PS

 208

benefits minus the costs of completing the 686 TOPS. However, this value is said to

be underestimated, as it ignores the additional 46 TOPS that S1 can support using one

host (i.e., 732 minus 46 TOPS). S1, when induced with JBoss, reports a PV of $23.03,

ignoring the additional value of supporting 77 TOPS for this configuration. S0, when

induced with JacORB, reports a negative PV. The negative value is attributed to cost

incurred upon the development of the fault tolerance and the load balancing services

on S0. Let us now turn to options: Table 6.17b suggests that for 686 TOPS, S1, when

induced with WLS, creates more options than S0 using one host. In particular, S1

(WLS) reports a value of $106.7. S1 (JBoss) reports a value of $47.3. S0 (JacORB)

reports a value of $0. Why is this difference? Technically speaking, this is because of

the volatility parameter that captures variation in the value potentials of the said

structures. For S1 (WLS), the difference for S1 (WLS) is attributed the range of possible

returns that the additional 46 could ascribe to S1(WLS). This means that for S1 (WLS),

the additional future values, if the range in load changes, is in the bound of $0(i.e., at

most 686 TOPS) to $46*216.54/686(i.e., assuming equal returns upon supporting the

additional 46TOPS). This will leave us with a volatility of %10.52, using the standard

deviation of the returns over this bound. Similar argument applies for S1 (JBoss),

leaving us with a volatility equal to %6.9 in support of the additional 77 TOPS. S0

(JacORB) reports $0 options. This is because S0 (JacORB) cannot support additional

TOPS on this structure. In the language of options, S0 (JacORB) is not volatile and

ceases to create options beyond 686 TOPS; henceforth, the reported zero values.

Let us now turn to PV again and assume an additional load has materialized (i.e.,

uncertainty has been resolved). Let us adjust the PV based on the new information at

hand: if we compute the PV of the additional 46 TOPS for S1 (WLS), this will leave us

with an added value of $14.52 over the previously computed PV, as reported in Table

6.17b. If we compute the PV of the additional 77 TOPS for S1 (JBoss), this will leave us

with an added value of $24.34 over the previously computed PV for S1(JBoss)- see

Table 6.17b. Adjusting the PV, we sum these values with the previously reported PVs

of Table 6.17b. This will leave us with $106.7 value for S1 (WLS) and $47.3 value for S1

(JBoss). Henceforth, this is a match with the ArchOptions results for S1 (WLS) and S1

(JBoss).

 209

This observation leaves us with following conclusions: First, though it is still possible

to adjust PV or DCF techniques for capturing the options, ArchOptions provides us

with a ready and closed-form solution, rooted in options theory, for capturing the

value of flexibility under uncertainty on a given architecture. This solution is said to

be superior to PV and DCF, as the latter they systematically underestimate the value

of the flexibility of an architecture under uncertainty. Secondly, the analysis of

matching the adjusted PV values with that of ArchOptions confirms the correctness

and the effectiveness of the model. Nevertheless, the effectiveness of ArchOptions is

essentially rooted in our use of Black and Scholes options theory. The analysis,

however, has established confidence on both its correctness and effectiveness. Third,

the results of this observation show that the volatility parameter is critical for the

valuation of the options. In real situations, the performance analyst/architect may

inspect available performance benchmarks, screen historical load-trends to predict

future ones, or use prototypes of partial implementations to collect performance

indices. Consequently, volatility can be then empirically extracted. The analyst can

make use of the sensitivity analysis we have provided in Chapter 4 for better

understanding of the impact of throughput on the value added when uncertainty in

the likely future load dominates.

Observation 5. Selecting a stable architecture

The change impact analysis has shown that the architectural structure of S1 is

left intact when the scalability change needs to be accommodated. However,

the structure of S0 has undergone some changes, mostly on the architectural

infrastructure level to accommodate the scalability requirements. From a

value-based perspective, the search for a potentially stable architecture

requires finding an architecture that maximizes the yield in the added value,

relative to some future changes in requirements. As we are assuming that the

added value is attributed to flexibility, the problem becomes selecting an

architecture that maximize the yield in the embedded or adapted flexibility in

a software architecture relative to these changes. Even, if we accept the fact

that modifying the architecture or the infrastructure is the only solution

towards accommodating the change, valuation the impact of the change

becomes necessary to see how far we are expending to “re-maintain” or “re-

 210

achieve” architectural stability relative to the change. Note that the economic

interplay between evolving requirements, the flexibility of the architecture to

accommodate the change, the structural impact, and the corresponding

cost/value implications is the key towards selecting a “more” stable

architectures that tends to add value as the requirements evolve. Though it

might be appealing to the intuition that the “intactness” of the structure is the

definitive criteria for selecting a “more” stable architectures, the practice

reveals a different trend; it nails down to the potential added value upon

exercising the change.

If you consider the case of S0 and S1 in response to the change in scalability for

one host (Table 6.13a), the flexibility has yielded a better payoff for S1 than for

S0, while leaving S1 intact. This implies that inducing the Duke’s Bank

software architecture with M1 is likely to be more stable relative to the future

change in scalability, than when induced with M0. However, the situation and

the analysis have differed upon varying the number of hosts and upon

factoring a license costs for S1. Though S0 has undergone some structural

changes to accommodate the change, the case has shown that it is still

acceptable to modify the architecture and to realize added value under the

conditions that UnS0 >>=UnS1 for 7 or more hosts (Table 6.13c, Figure 6.12).

Hence, what matters is the added value upon either embarking on a “more”

flexible architecture, or investing to enhance flexibility which is the case for

implementing load balancing and fault tolerance on S0. For the case of

WebLogic, Though M1 is in principle more flexible, the flexibility comes with

a price, where the flexibility turned to be a liability rather than a value for 7

or more hosts, as when compared with the JacORB, under the condition that

UnS0 >>=UnS1. The case verifies our claims that the value of flexibility can

guide towards the selection of architectures that tend to add more value, as

the requirements evolve. These architectures have the potential of being

potentially stable.

The analysis of the throughput valuation point of view, taking the

throughput as a critical measure, has revealed a different trend upon taking

into account the distribution cost and the added value of the supported TOPS

 211

on a host. Deciding on a particular middleware to induce the software system

architecture can be seen as an investment to purchase future growth options

that enhance the upside potentials of the structure. Looking at the throughput

valuation point of view, part of the growth options come from the ability of

the induced-architecture to support more TOPS while minimizing the cost of

distribution; henceforth, creating more options. These growth options are

correlated with the TOPS that could be supported on a host and their exercise

price. However, the choice is not straightforward as the future load is

“dynamic” and uncertain. The range in which the load may change

determines the suitability of the choice. If the likely load tends to be high and

uncertain, an induced-architecture, which is volatile and holds more options,

will be a favorable choice. If the range in the load is deterministic but low, the

maintainability point of view may steer the selection (see Observation 3). In

this regard, one could characterize the choice of a “more” stable architecture

as a multi-objective optimization activity in which one trades maintainability

for performance. In real situations, selecting a stable architecture implies

finding an architecture, which maximizes the yield in the added value

relative to the two valuation points.

The options analysis has complemented the structural and the behavioral

analyses to quantify the impact of the change on the software architecture.

The intuition is that complementing both structural and behavioral impact

analysis with a value-based calculation, the combination provides the

architect/analyst with a useful tool for understanding extent to which the

software system tend to be flexible relative to a likely change in requirements,

a cost/value indictors of the impact of the change on the structure, its

performance which is directly linked to value, the likely success (failure) of

the software system evolution, and consequently the potential stability of the

software architecture relative to the change.

6.3.8 Implications on the Discipline

 212

In subsequent sections, we draw some preliminary lessons and insights that have

derived upon the application of ArchOptions. This could stimulate future research in

the area of relating requirements to software architectures and consequently advance

our understanding to the architectural stability problem, when addressed from the

evolution of the non-functional requirement perspective.

Implication 1. Understanding architectural stability has to be in connection with the

solution domain

Our hypothesis that middleware induced-software architectures differ in coping

with changes is verified to be true for the given change. Based on the pervious

observations, we can see that the stability of S1 and S0 appears to be dependent

on the flexibility of the middleware in accommodating the likely changes in the

scalability requirements. For the category of distributed software systems that

are built using middleware, the results of the case study affirm the belief that

investigating the stability of the distributed software architecture could be

fruitless, if done in isolation of the middleware, where the middleware

constraints and dominates much of the solution that relate to the non-

functionalities, managing system resources, and their ability to smoothly evolve

over the life time of the software system. Hence, the development and the

analysis for architectural stability and evolution shall consider the “coupling”

between the architecture and the middleware. This addresses pragmatic needs

and is feasible even at earlier stages of the software development life cycle: a

considerable part of the distributed system implementation could be available,

when the architecture is defined, for example, during the Elaboration phase of

the Unified Process. We also note that the change in requirements could have

been addressed by other architectural mechanisms. However, the middleware

has guided the solution for evolving the software system. For instance, the

choice of replication as an architectural mechanism for scaling the software

system, with a given architectures S1 and S0 was respectively guided by the

clustering primitives provided by M1 and the core capabilities provided by M0 to

support load balancing and fault tolerance. Interestingly, Di Nitto and

Rosenblum [1999] state that “despite the fact that architectures and middleware

 213

address different phases of software development, the usage of middleware and

predefined components can influence the architecture of the system being

developed. Conversely, specific architectural choices constrain the selection of

the underlying middleware used in the implementation phase”. In more abstract

terms, Rapanotti, Hall, Jackson, and Nuseibeh [2004] advocate the use of

information in the solution domain (e.g., the middleware-to be induced for our

case) to inform the problem space:

“Whereas Problem Frames are used only in the problem space, we

observe that each of these competing views uses knowledge of the solution

space: the first through the software engineer’s domain knowledge; the

second through choice of domain-specific architectures, architectural styles,

development patterns, etc; the third through the reuse of past development

experience. All solution space knowledge can and should be used to inform

the problem analysis for new software developments within that domain”

[Rapanotti et al., 2004].

The “coupling” between the middleware and the architecture becomes of higher

interest in case of developing and analyzing software systems for evolution. This is

because the solution domain can guide the development and evolution of the

software system; provide more pragmatic and deterministic knowledge on the

potential success (failure) of evolution, and consequently assist in understanding the

stability of the software architectures from a pragmatic perspective.

Implication 2. Understanding architectural stability: intertwined with changes in

non-functional requirements, style, and the middleware

Following the definition of Shaw and Garlan [1996], a style defines a set of

general rules that describe or constrain the structure of architectures and the

way their components interact. Styles are a mechanism for categorizing

architectures and for defining their common characteristics. Though S1 and S0

have exhibited similar styles (i.e., three-tier), they have differed in the way

they cope with the change in scalability. The difference was not only due to

 214

the architectural style, but also due to the primitives that are built-in in the

middleware to facilitate scaling the software system. The governing factor,

hence, appears to be to a large extent dependent on the flexibility of the

middleware (e.g., through its built-in primitives) in supporting the change.

The intuition and the preliminary observations, therefore, suggest that the

style by itself is not revealing for the stability of the software architecture

when the non-functional requirements evolve. It is, however, a factor of the

extent to which the middleware primitives can support the change in non-

functional requirements. Interestingly, Sullivan et al. [1997] claims that for a

system to be implemented in a straightforward manner on top of a

middleware, the corresponding architecture has to be compliant with the

architectural constraints imposed by the middleware. Sullivan et al. [1997]

support this claim by demonstrating that a style, that in principle seems to be

easily implementable using the COM middleware, is actually incompatible

with it. Following a similar argument, adopting an architectural style that is

in principle appear to be suitable for realizing the non-functionality and

supporting its evolution, may not be complaint with the middleware in the

first place. And if the architectural style happens to be compliant with the

middleware, there are still uncertainties in the ability of the middleware

primitives to support the change. In fact, the middleware primitives realize

much of the non-functional requirements. Hence, the architectural style by

itself may not be revealing for potential threats that the architecture may face

when the non-functional requirements evolve. The evolution of non-

functionality maybe in principle easily supported by the style, but could be

uneasily accommodated by the middleware. An observable advantage of

scaling the software architecture induced by S1, for example, is that no

development effort required to realize the scalability requirements through

replication, as when compared to that of S0, knowing that in principle the

style of S1 and S0 exhibit similar capabilities.

Engineering for stability and evolution, requirements engineering has not

only to be aware of the architecture (e.g., the style), but also of the underlying

middleware. For example, if we take a goal-oriented approach to

requirements engineering (e.g., [Dardenne et al., 1993]), we advocate

 215

adjusting the non-functional requirements elicitation and their corresponding

refinements to be aware of both the architectural style and the constraints

imposed by middleware. The operationalization of these requirements in the

software architecture have to be guided by both the architectural style, the

complaint middleware for the said style, and guided by previous experience.

This, we believe, is a pragmatic need towards engineering requirements and

developing “evolvable” software architectures that tend to be stable as the

non-functional requirements evolve.

6.3.9 Concluding Remarks

We have used change in scalability, a representative critical change in non-functional

requirements to steer the study and apply the model. We have appealed to the use of

structural and behavioral analysis, combined with value-based analysis, to inform

the tradeoff and select a “more” stable architecture. Though the reported

observations reveal a trend that agrees with the intuition, research, and the state-of-

practice, confirming the validity of the observations are still subject to careful further

empirical studies. These studies may need to consider other non-functional

requirements, their concurrent evolution, and their corresponding change impact on

different architectural styles and middleware. As a limitation, we have relaxed

considering the change impact of scaling up the software system on other non-

functional requirements like security, availability and reliability. However, we note

that the analysis might get complex upon accounting for the impact of the change on

other non-functional requirements and their interactions. Note the change could

positively or negatively impact other non-functional requirements and

understanding the cost implications is not straightforward and worth a separate

empirical investigation. In this context, utilizing the NFR framework [Mylopoulos et

al., 1992] could be promising to model the interaction of various non-functional

requirements, their corresponding architectural decisions, and the negative/positive

contribution of the architectural decisions in satisfying these non-functionalities. The

framework could be then complemented by means for measuring (i) the

corresponding cost of implementing the change itself, and (ii) the additional cost due

 216

to the impact of the change on other contributing or conflicting non-functionalities,

as realized by either the CORBA or the J2EE middleware-induced architectures.

It is also worth noting that the investment decision in either CORBA or the J2EE

might be influenced by other factors, such as the skills of the developers, the project

maturity, and other organizational factors. The devised real options model does not

explicitly take into account these factors. The treatment of these factors is left implicit

and sufficiently addressed by our use of COCOMO II, where COCOMO II carries

parameters to adjust the cost estimates based on these factors. It could be also argued

that in iterative development, when estimations are continuously recalibrated (e.g.,

in the Unified Process), it is possible to come up with estimations that are more

accurate than COCOMO II, as they will take into account the above mentioned

factors.

We note that the flexibility of either solutions (i.e., the CORBA or the J2EE induced-

architectures) is closely tied to the problem domain. In particular, domain-specific

functional characteristics can also influence the flexibility of the solution and its

behavior, as both the application component and the infrastructure are tightly

coupled [Liu and Gorton, 2003]. The way the application components and the

infrastructure are coupled varies across various middlewares. For this study, the

functional characteristics are assumed to be stable for both the J2EE and the CORBA

versions; that is, they have not undergone any changes that require from us

understanding the impact of the functionality change on the flexibility of either

solutions. It will be interesting, however, to investigate how changes in the domain

functional characteristics can impact the flexibility and the stability of the

middleware-induced architectures.

Under no considerations should the results be regarded as a definite distinction of

the merit of one technology over the other, but yet still revealing on the scalability

dimension. The reason is due to the fact that we have only used “flavors” of CORBA

and J2EE, respectively through JacORB, JBoss, and WebLogic.

 217

Table 6.18a and Table 6.18b relate the case to the method developed in the previous

Chapter. The case has exemplified the valuation points of view framework that we

have outlined in Chapter 5. It has appealed to the use of two: these are structural

point of view (maintainability valuation point of view) and behavioral point of view

(throughput valuation point of view). For Phase I of the method, the above case has

adopted a goal-oriented approach to elicit the change as a goal that need to be

achieved for scaling the structure. The refinement was done in relation to the

middleware to be induced. For the throughput valuation point of view, we have

assumed that we are given likely changes in load-range. We have attempted to relate

the load-range to performance, which is an architectural quality, as a way to link the

change to the architecture. Nevertheless, we could have adopted goal-oriented

approaches for eliciting these ranges. However, the purpose of the case is to verify

the thesis claims, illustrate the use of the model and simulate its steps; evaluate the

maturity of model’s interpretations and its applicability.

Table 6.18a. Relating the cases to Phase I of the method

Phase I Case 2

Setting the objectives for

evaluating architectural

stability

Objective:

Which middleware-induced architecture is more

stable with respect to future changes in scalability

and relative to two valuation points of view

Maintaining scalability on the structure Eliciting the change {i1, i2,

…, in} that are critical to

the set objectives
Likely ranges in load

The change was refined and traced to the

middleware primitives responsible in realizing

scalability

Relating the change to the

architecture

The change was related to performance

 218

Table 6.18b. Relating the cases to Phase II of the method

Phase II Case 2

Structural(Maintainability valuation point of view):

Maintainability, configuration, and deployment

Identify valuation points

of view

Behavioral(Throughput valuation point of view):

throughput

Structural(Maintainability valuation point of view):

J2EE built-in primitives in realizing scalability

through replication

Identify the value of the

architectural potentials

with respect to the change

Behavioral(Throughput valuation point of view):

value in supporting additional TOPS

Structural: optimistic, likely, and pessimistic Volatility

Behavioral(Throughput valuation point of view):

return on possible values of supported TOPS in a

range or modeling assumptions

Structural(Maintainability valuation point of view):

The cost of implementing scalability on each

structure

Estimate the cost of

accommodating the

change

Behavioral(Throughput valuation point of view):

Price/TOPS

6.4 Comparative Analysis

We evaluate ArchOptions using some general qualitative characteristics including

simplicity of use, openness, comprehensiveness, and prediction effectiveness.

Qualitative Characteristics

The analogy that ArchOptions makes with options is simple, yet powerful and

comprehensive enough to provide basis for analyses supporting plenty of problems.

We have just utilized this simple and intuitive analogy to address two complex

architectural centric-evolution problems: valuing the long-term cost-effectiveness of

refactoring and informing the selection of more stable middleware. Further, in

Chapter 7, we will highlight some possible unexplored uses of the model to reason

about the worthiness of investing in restructuring “traditional” systems to support

 219

aspect-orientation, with the objective of facilitating future maintainability and better

stability.

ArchOptions is a composite model, for it is flexible to incorporate estimations based

on both expert knowledge and parameterized models. For example, our use of

COCOMO II to estimate Cei and the use of subjective estimates of xiVs, based on the

twin asset, uses both expert knowledge and parameterized models to estimation.

Note that such a combination may result in higher estimate accuracy, as when

compared to the use of models, which are solely based on expert knowledge or

parameterized models. For example, for the case of the middleware selection, we

have used TAO and benchmarks as twin assets. The intent behind using the twin

asset is to understand the behavior of an option by using a corresponding replicating

portfolio (i.e., a twin). The portfolio and the options are interchangeable for all

practical purposes and should worth the same. The assumption is that the two assets,

the option and the twin, with the same payoffs under same conditions, must have the

same price. If we know how much the twin asset is worth in the present, we can then

determine how much the option is worth in the present. The analogy of ArchOptions

with options theory holds such assumptions, which we believe, is strength as it is

grounded in a sound theory. Further, the use of the twin asset is said to theoretically

complement software engineering approaches, which advocate using analogy to

estimate cost in software (e.g., [Shepperd et al., 1996]) for improving the prediction.

A notable desirable feature of ArchOptions is its flexibility and openness; the model

does not define rigorous ways for estimating its parameters, conducting its steps,

and confirming specific actions to execute, following the options computation.

Consequently, we note that evaluating methods like ArchOptions is rather hard, as

their effectiveness is dependent on the way practitioners apply them. For example,

practitioners may have to tailor ArchOptions to address the needs of a specific

architectural-centric evolution problem and its desired stability requirements. In

addition, the nature of the decisions made when applying ArchOptions

fundamentally varies from one project to another, with the addressed problem, and

across organizations. As a result, the effectiveness of its application is subject to the

context in which the model is applied. ArchOptions is open; it could be easily

integrated to complement existing architectural evaluation methods, highlighted in

Chapter 2, with the objective of explicit evaluation for stability while taking an

 220

economics-driven perspective. The integration may provide a basis for analyzing the

complexity and economic ramifications of a change in requirements and its impact

on the architecture and/or the associated architectural decisions.

Prediction Effectiveness

ArchOptions levels on a sound theory in financial engineering(Nobel Prize winning).

The ArchOptions prediction is inherently effective as it is grounded in the use of

Black and Scholes technique. Nevertheless, Observations 3 and 4 of Section 6.3.7 have

confirmed the effectiveness of the prediction and the correctness of the computation

through examples. The observations left us with the following conclusions: First,

though it is still possible to adjust PV or DCF techniques for capturing the options,

ArchOptions provides us with a ready and closed-form solution, rooted in options

theory, for capturing the value of flexibility under uncertainty on a given

architecture. This solution is said to be superior to PV and DCF, as PV and DCF

systematically underestimate the value of the architectural flexibility under

uncertainty. Secondly, the analysis and our ability to match the adjusted PV values

with that of ArchOptions (refer to Observation 4) confirms the effectiveness of the

model.

To further confirm this claim and extend the confidence in the model prediction, we

have conducted three small comparative exercises. In the first exercise, we report on

the student’s experience in implementing the structural scalability change on the

Duke’s architectures. We report on how the actual value is compared to that of the

ArchOption’s predicted one. In the second exercise, we have benchmarked some

representative results of the refactoring case against the binomial options model of

[Cox and Rubinstein, 1985], one of the most cited options techniques in the economic

literature. In the third exercise, we have compared the ArchOptions results of the

refactoring case to that of [Leitch and Stroulia, 2003], where the latter is based on

cost/benefit analysis.

In conducting the above exercises, we have used the Magnitude Relative Error

(MRE) [Conte et al., 1986], a commonly used measure, for the evaluation of

estimation models. The objective is to evaluate the effectiveness of the ArchOptions

 221

prediction and to understand the degree of deviation of the estimated options to that

of the actual ones. The tailored MRE for our case is given in the below equation (6.5):

MRE = |Options actual- Options predicted | (6.5)

Options actual

Such that Options actual >0

One of the motivations behind using real options theory is because the value of the

architectural potential to the change is uncertain as the change is uncertain. Let us

assume that uncertainty is resolved: the value becomes certain. We can then calculate

the value added, Options actual of (6.5), using PV. ArchOptions is then used to

calculate the Options predicted. Using the Options actual and Options predicted, we could

then calculate the MRE. We use the prediction level Pred(l) of equation (6.6). This

measure is often used in the literature and is a proportion of the observations for a

given level of accuracy.

Pred(l) = K/N (6.6)

Where, N is the total number of observations, and K is the number of observations

with an MRE less than or equal to l. A common value for l is 0.25. The Pred (0.25)

gives the percentage of observation that were predicted with an MRE equal or less

than 0.25. Conte et al. [1986] suggest an acceptable threshold value for the mean MRE

to be less than 0.25. For Pred(0.25), Conte et al. [1986] suggest an acceptable threshold

value to be greater or equal to 0.75.

Exercise 1. Using the help of a student, the Duke’s bank was implemented. All effort

was made to ensure that the student mimics the twin asset and utilize the guidelines

provided by the supporting documentation for implementing and “switching on”

scalability on each structure. SLOC were gathered from the corresponding

implementation. The student implementation of the load balancing and the fault

tolerance services on S0 (JacORB) yielded to 12226 SLOC in contrary to the estimated

9240 SLOC. The 12226 SLOC corresponds to costs ranging from $127659(optimistic)

 222

to $199470(pessimistic) according to Table 6.19a. These figures are computed using

COCOMOII and based on similar computation assumptions to that of Table 6.13a

and Table 6.13b. This means that if the student would have used S1 (JBOSS), then

savings in person-months relative to S0 (JacORB) would have been realized. These

savings, xiVPM S1 (JBOSS), are in the range of $126101.8 to $197035.3 and according to

Table 6.19b.

Using PV, we have computed Options actual, on the maintainability valuation points

of view, and based on the assumptions that value and cost are certain (i.e., as the

architectural potential is now certain). For Options predicted of (6.5), we have used the

options results of Table 6.13a and 6.13b. Using equation (6.5), the reported variation

is in an acceptable range with 24% MRE.

Table 6.19a. The SLOC and the corresponding cost of implementing the load
balancing and fault tolerance by the student on S0(JacORB)for one host
(Maintainability valuation point of view)

Table 6.19b. The predicted options ($), PV ($), and MRE on S1 (Jboss) relative to S0
(JacORb) relative to the maintainability valuation point of view

The deviation, however, could be attributed to the following reasons: the

“unfaithfulness” that the student may have shown to the twin asset, TAO; his

programming skills and style; the code optimization; any probable implementation

defects; and so forth. As a limitation, we acknowledge that the sample is too small to

generalize a conclusion. Replicating this trial, during the PhD period, was difficult

for two major reasons: First, the experiment is time and human demanding; it is

SLOC

CeiPM
S0(JacORB)

Optimistic 127659.8
Likely 159575.8

Maintainability
valuation point of

view

12226

Pessimistic 199470.4

 CeiPM
S1(Jboss)

xiVPM
S1(Jboss)

ArchOptions

Student (PV)

MRE

Pessimistic 1158 126101.8 94892 124543.7 0.238
Likely 1948 157627.7 118615 155679.7 0.238

Maintainability
valuation point of

view Optimistic 2435 197035.3 148269 194600.3 0.238

 223

difficult to accommodate within the doctoral period. Second, the experiment

includes some variables, which were difficult to control. The skills of the developer,

the correctness and the completeness of the code, the programming style, are just a

few variables to enumerate. The conducted study, however, provides the promise for

future replication. As future work, we aim to conduct a careful systematic study,

possibly by assigning this exercise to a large group of students of advanced or

graduate standing(with strong programming and distributing software engineering

skills) to empirically arrive at a better insight on the predictive effectiveness of

ArchOptions in relation to these variables.

Exercise 2. One of the most cited options techniques in the economic literature is the

binomial options model of [Cox and Rubinstein, 1985]. In brief, this binomial model

assumes that the value of the underlying asset (in the ArchOptions case, denoted by

xiV) follows a binomial distribution. Starting at time zero, in one time period t, xiV

may rise to u xiV with probability q or fall to d xiV with probability 1-q, where d<1,

u>1, and d<r<u. In contrast, the use of Black and Scholes [1973] assume that xiV is

lognormaly distributed. Both assumptions means that the value of the underlying

asset can increase to infinity, but only fall to zero [Hull, 1997]. The terminal value of a

call option under [Cox and Rubinstein, 1985] at T is given by equations (6.7):

Cu = max [0, u xiV – Cei] and

Cd = max [0, xiV – Cei],

with probabilities q and 1-q, respectively (6.7)

We have cast the ArchOptions model to use the options valuation technique of [Cox

and Rubinstein, 1985]. For 18 observations, we have assumed that we are given

values for u and d. Given u and d, we have calculated the “rise” and the “fall” in the

values of the architectural potential in response to change for a time period. Let us

now assume that the computed options using [Cox and Rubinstein, 1985] correspond

to Options actual. Using a tool accompanied with [Hull, 1997], we have approximated

the volatility from the possible ranges of the probability-adjusted values, arriving at

the so-called implied volatility. The implied volatility and the corresponding

 224

behavior of the adjusted-probability value are therefore comparable. Using the

implied volatility, we can then use ArchOptions to estimate the Optionspredicted. Table

6.19a reports on the MREs of the results for 18 observations. Figure 6.18 shows a very

tiny variation upon the computation of the ArchOptions calls using Binomial theory

[Cox and Rubinstein, 1985] and [Black and Scholes, 1973].

For Pred(0.25), ArchOptions reports 95% accuracy, which is in an acceptable

accuracy range in accordance to [Conte et al., 1986]. The results, as sketched in Figure

6.18 and depicted in Table 6.20, extend the confidence in the ArchOptions prediction.

The variation, however, could be attributed to the following reasons: First, the

assumptions that the Binomial options theory makes to the computation. Second, the

approximation of the implied volatility from the probability adjusted values.

However, the application of Black and Scholes [1973] offers a closed and an easy-to-

compute solution, for it assumes that xiV is lognormaly distributed, not requiring xiV

to be probability-adjusted for rise and drop in value, as when compared to [Cox and

Rubinstein, 1985]. Furthermore, determining u and d is a difficult empirical problem

because asset “price” rarely follow a classical binomial process [Hull, 1997].

Comparing ArchOptions to Binomial Options Theory

0
2000
4000
6000
8000

10000
12000
14000
16000

0 1 2 3 4 5 6 7 8 9 10111213141516171819

No of Observations

C
al

l O
pt

io
ns

 in
 ($

)

ArchOptions
Binomial

Figure 6.18. ArchOptions and Binomial options compared for 18 observations

 225

Table 6.20. The Refactoring case study: the MRE upon computing the calls of
ArchOptions using [Black and Scholes, 1973] and [Cox and Rubinstein, 1985]

Observation Cei Xiv T ArchOptions Binomial MRE
1 38296 3516 4 0 0 0
2 47834 4396 4 0 0 0
3 59795 5494 4 0 0 0
4 29953 8046 4 100.6 92.5 0.0875676
5 36458 11039 4 204 281 0.2740214
6 45609 13764.1 4 252 236 0.0677966
7 1893 9938.9 0.5 8046 8045 0.0001243
8 2366 13405 0.5 11039 11039 0
9 2958 16722 0.5 13764 13765 7.265E-05
10 1893 9939 4 8052 8046 0.0007457
11 2366 13405 4 11045 11039 0.0005435
12 2958 16722 4 13772 13764 0.0005812
13 1893 2877.6 4 993 992 0.0010081
14 2366 4887.7 4 2522 2521 0.0003967
15 2958 4983 4 2029 2026 0.0014808
16 1893 1858 3 71.9 71.8 0.0013928
17 2366 2323 3 90.2 90.03 0.0018883
18 2958 3201.5 3 298 320 0.06875

Exercise 3. We compare some of the ArchOptions results for the refactoring case of

Section 6.3 to that of [Leitch and Stroulia, 2003], where the latter is based on PV

analysis. Consider the following changes in requirements as depicted in Table 6.21.

These changes benefit from the flexibility of the refactored structure through likely

savings in maintenance. These savings are relative to the unrefactored structure. The

benefits are denoted by Xivs and based on accumulated savings upon exercising an

additional change. The benefits range from $464.6 for one change to $4640 if all the

ten changes materialize in a given time, leaving us with us with %14.1 volatility for

ten likely changes. Every change is made, it is assumed to cost an average of $181.7

corresponding to an estimate for Cei. ArchOptions reports an added value of $2823

for ten changes following refactoring. That is, if refactoring was designed and in

mind at most ten changes, the structure is worth $2823 of man-month savings as

when compared to the unrefactored one.

Let us now assume that uncertainty is resolved: this means the value of the structure

is certain. PV can be then used. Using options analysis with the assumption that

uncertainty is resolved: for the one to ten changes, the options held on the

 226

architecture are worth $2823. That is, if we calculate the value of the structure now

for any change using options thinking, we are left by PV for the change + Growth

Options = $2823 as shown in Table 6.21.

Table 6.21. Comparing ArchOptions to [Leitch and Stroulia, 2003]

Changes Xiv Options Now Stroulia

1 464.6 2823 -1352.4
2 929.2 2823 -887.8
3 1393.8 2823 -423.2
4 1858.4 2781.5 + 41.4 41.4
5 2323 2315.5 + 506 506
6 2787.6 1817 + 970.6 970.6
7 3252.2 1387.8 + 1435.2 1435.2
8 3716.8 923.2 + 1899.8 1899.8
9 4181.4 459 + 2364 2364.4
10 4640 2823 2823

Let us now turn to [Stroulia and Leitch, 2003]. The results show that their use of PV

underestimates the value of the structure as they ignore the growth options held on

the architecture. For example, for 1 to 4 changes, they report negative values for less

than 4 changes. That is, if a decision need to be made based on PV, the investment in

refactoring may seem to be unattractive ignoring the growth options held on the

architecture. Only for ten changes, Stroulia and Leitch’s use of PV reveals the $2823

options value, which the actual value of the structure and as shown in Figure 6.19.

 227

Comparing ArchOptions to Stroulia & Leitch [2003]

-2000
-1500
-1000

-500
0

500
1000
1500
2000
2500
3000
3500

0 2 4 6 8 10 12

Changes

$
Options

Leitch & Stroulia

Figure 6.19. Comparing ArchOptions to [Leitch and Stroulia, 2003]

6.5 Summary and Implications

The evaluation has explored the approach “fitness” in addressing two architectural-

centric software evolution problems. In the first case, we have taken refactoring, as a

representative example, to show how ArchOptions can be used to assess the

worthiness of re-engineering an architecture for change. The importance of this

example is not in the architecture itself, but in how we have used the theory and the

model to reason about the flexibility of the architecture in relation to likely change in

requirements. We have verified the claim that the flexibility of an architecture in face

of likely changes has values in the form of real options. In the second case, we have

shown how ArchOptions can inform the selection of a “more” stable middleware-

induced software architecture in the face of future changes in non-functional

requirements, taking change in scalability requirements as an example. We have

verified the hypothesis that flexibility creates real options in the structure relative to

the likely change. We have shown how the uncertainty, attributed to the likelihood

of the change, makes real options theory superior to other valuation techniques

which fall short in dealing with the value of architectural flexibility under

uncertainty. We have compared the options results to other valuation techniques, PV

and DCF, where the latter fall short in dealing with the value of architectural

 228

flexibility under uncertainty. The results show that ArchOptions yield more realistic

measures under uncertainty, as it continue to account for the embedded options in a

system of a given architecture. We have exemplified and demonstrated the

comprehensiveness and the effectiveness of the valuation points of view framework

in “capturing” the options on an evolving architecture from two valuation points of

view. This is necessary for reaching a comprehensive value of options from different

perspectives. We have verified the claim that the decision of selecting a potentially

stable architecture has to maximize the value added relative to some valuation points

of view. For this case, we have particularly shown that the choice of a “more” stable

distributed software architecture has to be guided by the choice of the underlying

middleware and its flexibility in responding to future changes in scalability

requirements and relative to two valuation points of view. These are the

maintainability and the throughput valuation points of view. The overall results

show that value-based reasoning and real options can provide better insights on

stability and investment decisions related to the evolution of software architectures.

On the discipline level, the application of ArchOptions to the above cases has drawn

some preliminary observations, lessons, and insights that could stimulate future

research in the area of relating requirements to software architectures. Consequently,

these observations advance our understanding to the architectural stability problem,

when addressed from an evolution and economics-driven software engineering

perspectives. For example, the case of the middleware-induced architectures

provides the reader with a fair amount of insight into the complexity and economic

ramifications of a typical critical change in non-functional requirements (i.e., changes

in scalability) and its impact on the architecture. Note that in-depth analysis of the

change in critical non-functionality like scalability, its impact on the architecture, and

its economics implications are often ignored and left unaddressed in the

requirements and the architectures research. This, we believe, is just a step towards a

better understanding of how critical non-functional requirements could relate to the

architecture and tend to evolve as the requirements evolve.

Though ongoing research on the “coupling” of middleware and architectures(e.g.,

[Jazayeri, 1995; Gall et al., 1997; Sullivan et al., 1997; Oreizy et al., 1998; Di Nitto and

Rosenblum, 1999; Metha et al., 2000; Denaro et al., 2004]) could have an impact on

 229

understanding the relation between architectures and non-functional requirements,

their contributions to such understanding is still insufficient. As far as the

architectural stability problem is concerned, no effort has been devoted for

understanding the evolution of non-functional requirements in relation to both the

architecture and the middleware, when coupled. Our use of architectural flexibility

and its value as metric to inform the decision of selecting a “more” stable

middleware-induced architecture is novel and only a step toward such an

understanding using a value-based reasoning.

Researchers working on relating requirements to architectures (e.g., [Finkelstein,

2000; van Lamsweerde, 2000; Nuseibeh, 2001]) have often begged the question:

which architectural styles tend to be more stable in face of likely changes in

requirements? Our observations have reshaped this question. In particular, the

results- of Section 6.3 - have shown that though two architectures have exhibited

similar styles (i.e., three-tier styles), they have differed in the way they cope with

likely changes in scalability requirements. The governing factor, hence, appears to be

to a large extent dependent on the flexibility of the middleware (e.g., through its

built-in primitives) in supporting the change. The intuition and the preliminary

observations, therefore, suggest that the style alone is not enough for answering this

question, as when the non-functional requirements evolve. Understanding

architectural stability relative to changes in non-functional requirements is also a

factor of the extent to which the middleware primitives can support changes in non-

functional requirements. Though this is an interesting observation, its validity is

subject to further careful empirical studies.

 230

Chapter 7

Conclusions, Future Work, and Open
Questions

In this chapter, we summarize the thesis contribution. We highlight some future

work on ArchOptions. We conclude by highlighting some open questions that could

stimulate future research in architectural stability, relating requirements to software

architectures, and architectural economics.

7.1 Summary of the Contribution

The main goal of the thesis has been the development of a framework for

systematically evaluating the stability of software architectures in face of changes in

requirements, taking an economics-driven approach. The contribution could be

summarized as follows:

We have reviewed research work on architecture evaluation and have discussed

their limitations in addressing architectural evaluation for stability. We have

investigated the requirements for evaluating architectural stability from an

economics-driven software engineering perspective and have described a real

options-based model to address these requirements. We have complemented the

model with a three-phase method for conducting an architectural evaluation for

stability. The method provides guidelines on eliciting the likely changes in

requirements and relating architectural decisions to value. For valuing flexibility of

 231

an architecture to change, the method includes a valuation points of view

framework, which we have outlined. The framework accounts for the economic

ramifications of the change on the structural (e.g., maintainability) and behavioral

(e.g., throughput) qualities of an architecture and on relevant business goals (e.g.,

new market products). We have exemplified and demonstrated the

comprehensiveness of the valuation points of view framework in capturing the

options on an evolving architecture from different perspectives. This framework is

viable for the decision of selecting a potentially stable architecture has to maximize

the value added relative to some valuation points of view.

In evaluating the thesis in the large, we have explored the approach “fitness” in

addressing two architectural-centric software evolution problems. These are (i)

assessing the worthiness of reengineering for change, and (ii) informing the selection

of a “more” stable middleware-induced software in the face of changes in non-

functional requirements. Addressing these problems have resulted in novel

applications of real options theory in valuing the payoff of refactoring [Bahsoon and

Emmerich, 2004b] and in informing the selection of middleware-induced software

architectures using options[Bahsoon et al., 2005]. In evaluating the thesis in the small,

we have verified the claim that the flexibility of an architecture in face of likely

changes has values in the form of real options. We have shown how the uncertainty,

attributed to the likelihood of the change, makes real options theory superior to other

valuation techniques which fall short in dealing with the value of architectural

flexibility under uncertainty. We have compared the options results to other

valuation techniques, PV and DCF, where the latter fall short in dealing with the

value of architectural flexibility under uncertainty. The overall results show that our

approach yields more realistic measures for the value of architectural flexibility

under uncertainty, as the approach accounts for the embedded growth options in a

system of a given architecture. We have used general qualitative characteristics

including simplicity of use, openness, comprehensiveness, and prediction

effectiveness to further evaluate the thesis.

On the discipline level, the application of ArchOptions to the above cases has drawn

some preliminary observations, lessons, and insights that could have implications on

future research in the area of relating requirements to software architectures.

 232

7.2 Future Work on ArchOptions

Multi-objective optimization view to design and the interdependence of
non-functional requirements

We have taken the view that software design and engineering activity is one of

investing valuable resources under uncertainty with the goal of maximizing the

value added [Sullivan, 1996]. It is possible to adopt a complex view of value. One

could characterize software design as a multi-objective optimization activity in

which one trades safety for performance, or in which one satisfies multiple

stakeholders [Boehm, 1989]. We have taken a narrow view to valuation: the value is

measured relative to one objective at a time. For example, upon applying the

ArchOptions model to select a “more” stable middleware-induced software

architectures, we have relaxed considering the change impact of scaling up the

software system on other non-functional requirements like security, availability, and

reliability to optimize for these interacting requirements. However, we note that the

analysis might get complex upon accounting for the impact of the change on other

non-functional requirements and their interactions. Note the change could positively

or negatively affect other non-functional requirements. For the refactoring case, we

have valued the payoff of investing in a refactoring exercise relative to future savings

in maintainability. We, however, acknowledge the fact that refactoring could also

have implications on other quality of the structure such as extensibility, modularity,

reusability, or efficiency. If we take the multi-optimization view to software design,

understanding the cost/value implications is not straightforward and worth a

separate investigation. In this context, utilizing the NFR framework [Mylopoulos et

al., 1992], for example, could be a promising starting point to model the interaction of

various non-functional requirements, their corresponding architectural decisions,

and the negative/positive contribution of the architectural decisions in satisfying

these non-functionalities. The framework could be then complemented by means for

measuring (i) the corresponding cost of implementing the change itself, and (ii) the

additional cost due to the impact of the change on other contributing or conflicting

non-functionalities.

 233

Valuation of the architectural potential to the change

As we have acknowledged, the problem of valuing the architectural potential to the

change is a multi-perspective valuation problem. In today’s world of rapidly

changing information technology, organizations, and marketplaces, the requirements

tend also to change, and in ways that require participation of all knowledgeable

parties to value the architectural potential to the change. This necessitates finding a

comprehensive solution for capturing the value from different perspectives. In

chapter 5, we have highlighted a framework for addressing this problem. The

valuation point of view framework aims at providing a comprehensive solution for

quantifying the options from different perspectives. Future work may entail finding

ways to manage the valuation under this framework, such as identifying the

dimensions, which are critical for understanding architectural stability, prioritizing

and weighting the valuation of these dimensions, managing conflicts, and

reconciling the options results. This is necessary to provide a sound comprehensive

valuation, which takes into account the various valuation points of views. The model

interpretations and decision-making may then need to be tuned accordingly. Though

both contributions are unrelated and address different problems, it would be

possible for future research on ArchOptions to benefit from existing work on

viewpoints frameworks (e.g., [Nuseibeh et al., 1994]). This because the highlighted

framework inherits and mimics much of the characteristics described in viewpoints

frameworks (e.g. “modularity” and “separation of concerns”); it follows the trend

towards heterogeneity in reasoning. Up to the author’s knowledge, no work has been

done on exploiting viewpoints in the economics-driven software engineering

research. This will demonstrate the ability to leverage the contribution on robust

approaches in software engineering to solve problems in an emerging discipline, the

value-based software engineering.

Further application of the model: aspects and architectural economics

The success and popularity of aspect-oriented software development have created an

interest in transforming existing software systems into aspect-oriented ones. Such a

transformation tends to improve the value of the structure, through the separation of

concerns, but incurs upfront costs. The upfront costs include the cost of identifying

 234

potential aspects and the crosscutting concerns in existing non-aspect-oriented

system; the cost of refactoring a non-aspect into an aspect-oriented one; and the cost

of “evolving” the associated maintenance-related infrastructure as a result of such

transformation (e.g., generating new test suites following the transformation). The

benefits, if any, are due to the enhanced flexibility in the structure. These benefits,

however, are uncertain, long-term, and may not be immediate. The benefits may take

the form of expected savings in maintenance and/or returns due to the enhancement

of some qualities such as maintainability, extensibility, modularity, reusability, or

efficiency.

The problem of understanding the economics of transforming non-aspect systems

into aspect-oriented ones is appealing to the use of real options theory in general and

ArchOptions in specific. Building on ArchOptions may result in economics models,

which aim to quantify the payoffs of transforming a system into aspects. These

models may inform the decision of investment through a tradeoff between the up-

front costs and the expected benefits as a result of such transformation. These models

may need to be derived empirically from real life cases to answer questions like:

when is it cost-effective to invest in an aspect-transformation exercise? How can we

value the payoff due to such transformation prior to investing in such an exercise?

How can we reason about this payoff in connection with changes in the structure and

at correspondingly higher level of abstractions than code? The studies and the

derived models are likely to have an impact on understanding the economics of

aspect-transformation activities, may result, or motivate economics-driven

approaches to aspects.

7.3 Open Questions

Though the software architecture, as a key designed artifact, is considered to be “the

promising solution for easing and guiding software maintenance and evolution”

[Jazayeri, 2002], rapid technological advances and industrial evidence are now

showing that the architecture is creating its own maintenance, evolution, and

economics problems. Part of the problem stems in (i) the rapid technological

advancements where evolution is not limited to a specific domain but extends to

 235

“horizontally” cover several domains, (ii) the current practice in engineering

requirements, which ignore the above, (iii) and the improper management of the

evolution of these requirements and across different design artifacts of the software

system. In the subsequent sections, we highlight some open issues that future

research may consider to address some architectural-centric software evolution

problems. Addressing these questions may have a positive implication on

understanding the architectural stability problem.

Coping with rapid technological advancements and changes in the
application domain

Assume that a distributed e-shopping system architecture which relies on a fixed

network needs to evolve to support new services, such as the provision of mobile e-

shopping. Moving to mobility, the transition may not be straightforward: the original

distributed system’s architecture may not be respected, for mobility poses its own

non-functional requirements for dynamicity that are not prevalent in traditional

distributed setting [Capra, 2003]. Examples of these requirements include the need to

react to frequent changes in the environment, such as change in location; resource

availability; variability of network bandwidth; the support of different

communication protocols; losses of connectivity when the host need to be moved;

and so forth. These requirements may not be satisfied by the current fixed

architecture, the built-in architectural caching mechanisms, and/or the underlying

middleware. Replacement of the current architecture and/or its underlying

middleware may be required.

The challenge is thus to cope with the co-evolution of both the architecture and the

non-functional requirements as we change domains. This poses challenges in

understanding the evolution trends of non-functional requirements; designing

architectures, which are aware of how these requirements will change over the

projected lifetime of the software system and tend to evolve through the different

domains. From an economics perspective, such is necessary to reduce the future

“switching cost”, which could hinder the success of evolution. In this perspective,

engineering requirements and designing architectures need to be treated as value-

maximizing activities in which we can maximize the net benefits (or real options) by

 236

minimizing the future “switching costs” while transiting across different domains.

This necessitates amending the current practice of engineering requirements and

brings a need for methods and techniques, which explicitly model the domain, the

“vertical” evolution of the software system within the domain itself and how the

domain is likely to change over the projected lifetime of the software system. Again,

goal-oriented requirements engineering could be a promising starting point to

“horizontally” capture the evolution across various domains and “vertically” across

the domain itself. The problem of selecting an architecture, which tend to be stable as

the “vertical” and the “horizontal” requirements evolve, become a multi-

optimization design problem, where the selected architecture must maximize the

value added relative to the “vertical” and the “horizontal” changes. The modeling

could be then complemented by valuation frameworks which have the promise for

answering questions of interest such as which architectural styles and middlewares,

have the promise to reduce the switching costs and could prevail over the life time of

the software system? This we believe is a practical need for engineering requirements

to support stable software architectures.

Architectural stability: the architecture or the middleware?

Recent research effort (e.g., [Jazayeri, 1995; Gall et al., 1997; Sullivan et al., 1997;

Oreizy et al., 1998; Di Nitto and Rosenblum, 1999; Metha et al., 2000; Denaro et al.,

2004]) on the relation between software architectures and middleware has been

motivated by pragmatic needs. The effort has revolved on issues such as

investigating the compliancy of architectural styles with middleware; capabilities

that the middleware and the architecture can bring when “coupled” to understand

quality attributes of the system such as performance; mapping between middleware

and software architectures; and semantics and syntactical issues related to the

mapping process. As it has been noted in several occasions [Emmerich 2000b;

Emmerich 2002], research on software architectures has over-emphasized

functionality and not sufficiently addressed how global properties and non-

functional requirements are achieved in an architecture, where these requirements

cannot be attributed to individual components or connectors. Though we believe that

ongoing research on the “coupling” of middleware and architectures could have an

impact on understanding the relation between architectures and non-functional

 237

requirements, their contributions to such understanding is still insufficient. As far as

the architectural stability problem is concerned, no effort has been devoted for

understanding the evolution of non-functional requirements in relation to both the

architecture and the middleware, when coupled. Our use of architectural flexibility

and its value as metric to inform the decision of selecting a “more” stable

middleware-induced architecture is novel but only a step toward such an

understanding using a value-based reasoning. Some of the results are still

preliminary: though, for example, the two middleware-induced architecture have

exhibited similar three-tier styles, these architectures have differed in the way they

cope with the change in scalability. Our preliminary observations suggest that the

style by itself is not revealing to the analysis of architectural stability with respect to

changes in non-functional requirements. Though this observation reveals a trend that

agrees with the intuition and the state-of-practice, confirming the validity of these

observations are still subject to some systematic empirical studies. These studies may

need to consider other non-functional requirements, their concurrent evolution, and

their corresponding change impact on different architectural styles and middleware,

which worth future research.

Change management: traceability of requirements to the architecture

An important outcome of the initial development of the software system is the

knowledge that the development team acquires: the knowledge of the application

domain, user requirements, role of the application in the business process, solutions

and algorithms, data formats, strength and weakness of the architecture, and

operating environment. This knowledge is acknowledged to be crucial prerequisite

for evolution [Bennet and Rajlich, 2000]. In particular, both the architectures and the

team knowledge make the evolution possible [Bennet and Rajlich, 2000]. These to a

great extent allow the team to make changes in the software without damaging the

architectural integrity. Once one or the other aspect disappears, the system is no

longer evolvable and enters the stage of servicing (also referred to as maturity by

Lehman) [Bennet and Rajlich, 2000]. At the servicing stage, only small tactical

changes would be possible. For the business, the software is likely to be no longer a

core product and the cost-benefit of the change becomes marginal. According to

Bennet and Rajlich [2000], there is a positive feedback between the loss of software

 238

architecture coherence and the loss of software knowledge. Less coherent

architectures requires more extensive knowledge in order to evolve the system of the

given architecture. However, if the knowledge necessary for evolution is lost, the

changes in the software will lead to faster deterioration of the architecture. Very

often on software projects, the loss of knowledge is triggered by loss in key

personnel and the project slips into the servicing stage. Hence, planning for

evolution and stable software architectures urges the need for traceability

techniques, which traces requirements and their evolution back and forth into the

architecture and aid in “preserving” the team knowledge.

Davis [1993] gives the earliest definition of traceability. Davis defines traceability as

“the ability to describe and follow (track) the lifetime of an artifact, in both a forward

and a backward direction, i.e., from its origin to development and vice versa” [Davis,

1993]. Gotel and Finkelstein [1995] have preserved the spirit of Davis’s definition of

traceability. They, however, have scoped the definition on tracing a requirement

through its “life”. The requirements life covers periods of a requirement origin,

development and specification, deployment, use, and on-going refinement. They

have defined requirements traceability as “the ability to describe and follow the life of a

requirement in both a forwards and backwards direction (i.e., from its origins,

through its development and specification, to its subsequent deployment and use,

and through periods of on-going refinement and iteration in any of these phases)”.

Gotel and Finkelstein [1995] have particulary discussed the importance of tracing

requirements back to their source. These sources might be people, other

requirements, documents, or standards.

Traceability is important for modeling dependencies among software objects and for

managing the change across software artifacts. Traceability information records the

dependencies between requirements and the sources of these requirements,

dependencies between requirements themselves, and dependencies between

requirements and the system implementation [Kotonya and Sommerville, 1998].

Advances in software-development environments and repository technology have

enabled software engineers to trace the change in software using traceability

techniques. According to [Gotel and Finkelstein, 1995], these techniques span a

variety of approaches ranging from cross-referencing schemes (e.g., cross-referencing

 239

schemes, based on some form of tagging, numbering, indexing, traceability matrices,

and matrix sequences), through document-centered techniques (e.g., Templates,

hypertext, and integration documents), to more elaborate structure-centered

techniques (e.g., assumption-based truth maintenance networks, constraint

networks, axiomatic, key phrase, and/or relational dependencies).

We define requirement to architecture traceability as the ability to describe the “life” of a

requirement through the requirements engineering phase to the architecture phase in

both forwards and backwards. Forwards demonstrates which (and how)

architectural element(s) satisfy an individual requirement in the requirements

specification. Backwards demonstrates which requirement(s) in the requirements

specification an individual architectural element relate to and satisfy. Current

architectural practices, however, do not provide a support for traceability from the

requirements specification to the architectural description (i.e., which and (how)

requirement(s) in the requirements specification an individual architectural element

relate to and satisfy and vise versa). Maintaining traceability “links” is necessary for

managing the change, the co-evolution of both the requirements and the architecture,

confining the change, understanding the change impact on both the structure and the

other requirements, providing a support for automated reasoning about a change at

a high level of abstraction. Further, such traceability “links” make it easier to

preserve the acquired knowledge of the team through guided documentation. This

may then minimize the impact of personnel losses, and may allow the enterprise to

make changes in the software system without damaging the architectural integrity

and making the software system unevolvable.

Architectural change impact analysis

Although change impact analysis techniques are widely used at lower levels of

abstractions (e.g., code levels) and on a relatively abstract levels (e.g., classes in O.O.

paradigms), little effort has been done on the architectural level (i.e., architectural

impact analysis). Formal notations for representing and analyzing architectural

designs generically referred to as Architectural Description Languages (ADLs) have

provided new opportunities for architectural analyses [Garlan 2000]. Examples of

such analyses includes system consistency checking [Allen and Garlan, 1994;

 240

Luckham et al., 1995], and conformance to constraints imposed by an architectural

style [Abowd et al., 1993].

Notable effort using dependency analysis on the architectural level includes the

“chaining” technique suggested by Stafford, Richardson, and Wolf [1997]. The

technique is analogous in concept and application to program slicing. In chaining,

dependence relationships that exist in an architectural specification are referred to as

links. Links connect elements of the specification that are directly related. The links

produce a chain of dependencies that can be followed during analysis. The technique

focuses the analysis on components and their interconnections. A component may

have a set of input and output ports (which correspond to the component’s

interface). These ports may have been connected to one another to form a particular

architectural configuration. Communication between components is accomplished

by sending events to the component’s ports. Stafford et al. [1997] supports the

approach with an analysis tool, Aladdin. Aladdin accepts an architectural

specification as input. A variety of computations can be then performed. The

computations include unconnected component identification, change impact analysis

(i.e., which components will be affected by an architectural change), and event

dependence analysis (i.e., which components can send the following event to this

port). These computations start at a particular component and/or port. Forward

and/or backward chaining are then performed to discover related components.

Forward and backward chaining is analogous in concept to forward and backward

walk in the data-flow slicing. The applicability of this technique is demonstrated on

small scale architectures and could be extended to address current architectural

development paradigms. For example, how such a concept could be refined to

perform what-if analysis on large-scale software architectures such as product-line or

model-driven architectures? For product-line architectures, this is necessary for

reasoning about how the change could impact the commonality, variability, and their

interdependence. These techniques could be then complemented by analysis tools

which could facilitate automated reasoning and provide a basis for what-if analyses

to manage the change across instances of the core architecture. Understanding how

the change could then ripple across different products might be feasible. For model-

driven architectures, for example, this could help in reasoning about how the change

 241

could affect the Platform Independent Model (PIM) and ripple to affect the Platform

Specific Models (PSM). These techniques could be complemented by automated

reasoning to manage evolution. When combined with traceability links, the

combination could provide a comprehensive framework for managing the change

and guiding evolution.

Empirical studies

A key benefit of adopting an architecture-centric approach to manage the evolution

of the software system is driven by the objective of reducing future evolution costs,

while attaining a net benefit and embedding real options. Though this is the

motivation behind many architectural-centric approaches to software evolution, such

as product-line architectures and model-driven architectures, little -if no-

documented empirical evidence is available on the extent to which the architecture

has succeeded or failed in attaining its objectives. In particular, the architectural

stability problem is just a hint on the fact that the architecture is also creating its own

problems. This brings a need for systematic empirical studies to analyze real life

horror cases, which lead to substantial “break” in the architecture of the software

system upon accommodating changes in requirements. The “breakage” could be

attributed to the nature of the change, personnel, the architectural style, the adopted

middleware, and so forth. Lessons to be learned from these studies may have

positive implications on the way we engineer our future requirements, design

architectures to meet these changing requirements, and have better understanding

on how we can control risks associated with the change and its impact. The main

objective is to learn from the state-of-practice to improve the state-of-the-art.

Concluding remarks

The thesis is a culmination of four years of independent “make a way” challenge into

the architectural stability problem, in the absence of closely related focused research.

The contribution may have the following implications: advancing the understanding

of the architectural stability and its related problems from an economics-driven

perspective, stimulating, and possibly motivating future research in architectural

stability and related problems. The intellectual framework is most critical; the thesis

 242

demonstrates that with value-based reasoning we can improve our ability to evaluate

for architectural stability, develop software systems that need to adapt to the

inevitable evolving requirement, and provide a basis for analyzing the stability and

investment decisions for many architecture-centric evolution problems.

 243

Appendix A

The COnstructive COst MOdel (COCOMO):
Brief Background

The COCOMO (COnstructive COst MOdel) cost and schedule estimation model was

originally published in [Boehm 1981]. It became one of most popular parametric cost

estimation models of the 1980s. However, COCOMO ’81 along with its 1987 Ada

update experienced difficulties in estimating the costs of software developed to new

life-cycle processes and capabilities. Boehm validated his COCOMO model in the

1980’s and he obtained very good results for the intermediate and detailed

COCOMO, and quite poor ones for the basic COCOMO. Independent evaluations

performed on other data sets have not always produced such good results, with

results fluctuating from high to low accuracy in predictions. For example, it was

found that COCOMO I may systematically overestimate the effort. COCOMO I has

been improved and resulted in the so called COCOMO II. COCOMO II improves the

estimation by incorporating expert knowledge using Bayesian Statistics. Such a

calibration has lead COCOMO II to reach promising results outperforming

COCOMO I.

In particular, the COCOMO II research effort was started in 1994 at USC to address

the issues on non-sequential and rapid development process models, reengineering,

reuse driven approaches, object oriented approaches, etc. COCOMO II [Boehm et al.,

1995] has three submodels, Applications Composition, Early Design and Post-

Architecture, which can be combined in various ways to deal with the current and

likely future software practices marketplace. The Application Composition model is

used to estimate effort and schedule on projects that use Integrated Computer Aided

 244

Software Engineering tools for rapid application development. These projects are too

diversified but sufficiently simple to be rapidly composed from interoperable

components. Typical components are GUI builders, database or objects managers,

middleware for distributed processing or transaction processing, etc. and domain-

specific components such as financial, medical or industrial process control

packages. The Applications Composition model is based on Object Points [Banker et

al., 1994; Kauffman and Kumar, 1993]. Object Points are a count of the screens,

reports and 3GL language modules developed in the application. Each count is

weighted by a three-level; simple, medium, difficult; complexity factor. This

estimating approach is commensurate with the level of information available during

the planning stages of Application Composition projects. The Early Design model

involves the exploration of alternative system architectures and concepts of

operation. Typically, not enough is known to make a detailed fine-grain estimate.

This model is based on function points (or lines of code when available) and a set of

five scale factors and seven effort multipliers. The Post-Architecture model is used

when top level design is complete and detailed information about the project is

available and as the name suggests, the software architecture is well defined and

established. It estimates for the entire development life-cycle and is a detailed

extension of the Early-Design model. This model is the closest in structure and

formulation to the Intermediate COCOMO ’81 and Ada COCOMO models. It uses

Source Lines of Code and/or Function Points for the sizing parameter, adjusted for

reuse and breakage; a set of 17 effort multipliers and a set of 5 scale factors, that

determine the economies/diseconomies of scale of the software under development.

The 5 scale factors replace the development modes in the COCOMO ’81 model and

refine the exponent in the Ada COCOMO model. The Post-Architecture Model has

been calibrated to a database of 161 projects collected from Commercial, Aerospace,

Government and non-profit organizations using the Bayesian approach [Chulani et

al., 1998]. The Early Design Model calibration is obtained by aggregating the

calibrated Effort Multipliers of the Post-Architecture Model as described in [USC-

CSE, 1997]. The Scale Factor calibration is the same in both the models.

Unfortunately, due to lack of data, the Application Composition model has not yet

been calibrated beyond an initial calibration to the [Kauffman and Kumar, 1993]

data. A primary attraction of the COCOMO models is their fully-available internal

equations and parameter values. Over a dozen commercial COCOMO ’81

 245

implementations are available; one (Costar) also supports COCOMO II: for details,

see the COCOMO II website http://sunset.usc.edu/COCOMOII/suite.html.

 246

Appendix B

Further Supporting Material: The
Middleware-Induced Architecture Case

In this appendix, we provide supporting material for the case of using ArchOptions

to select a “more” stable middleware-induced architecture, described in Section 6.3

of Chapter 6.

B.1 Description of the fault tolerance architecture

We describe the components of the Fault Tolerance Infrastructure as shown on the

top of Figure 6.5 of Chapter 6. These include Replication Manager, Fault Notifier, and

Fault Detector. The bottom of Figure 6.5 shows three hosts: H1, H2, and H3. The client

application object C on H1 invokes a replicated server object with two replicas S1 on

host H2, and S2 on host H3. The Figure shows Factory and Fault Detector objects that

may be present and specific for a host. The service objects are replicated objects. The

host-specific objects, however, are not replicated. The figure also shows the Message

Handler and the Logging and Recovery Mechanisms that are present on each host.

Logically, a single instance of the Replication Manager and Fault Notifier shall exist

in each fault tolerance domain. Physically, however, they are replicated to protect

against faults, as any other application object are.

 247

B.2 Description of the load balancing architecture

Figure 6.6 of Chapter 6 illustrates the components in TAO’s load balancing service.

The design supports adaptive load balancing and on-demand request forwarding

[Othman et al. 2001b] and outlined below:

The Replica Locator identifies which of the replicas will be assigned a request. The

Replica Locator component forwards the requests to the Load Analyzer component. The

Load Analyzer component analyses the requests; it select the replica to be assigned the

request. The Replica Locator obtains a reference to a replica from the load analyzer

and then forwards the request to that replica. The Replica Locator binds clients to the

identified replicas. The Load Analyzer also allows explicit selection of a load balancing

strategy at runtime, while maintaining a simple and flexible design. The replica

locator is portably implemented using servant locators implementing the interceptor

pattern [Schmidt et. al., 2000], abiding to standard CORBA portable object adapter

mechanisms [Henning and Vinoski, 1999]. The Load Balancer component is a

mediator that integrates all the components. It provides an interface for load

balancing without exposing clients to the intricate interactions between the

components it integrates. The Load Monitor component monitors loads on a given

replica, reports replica load to a Load Balancer, and informs replicas when they should

accept requests versus forward them back to the load balancer. Each object that

TAO’s load balancing service manages communicates with it through a unique

proxy. The load balancer uses the replica proxies components to distinguish different

replicas to workaround CORBA’s so-called “weak” notion of object identity [Object

Management Group, 1999], where two references to the same object might have

different values.

B.3 Implementation of the fault tolerant, the load balancing Services, and
their Change Impact on the CORBA-induced architecture

A List of classes and files necessary to implement the fault tolerant service into the

Duke’s Bank architecture of Section 6.3 of Chapter 6 is depicted in Table B-1. Table B-

2 reports on the effort necessary to develop and integrate the load balancing service

into the middleware.

 248

Table B-1. Implementing the fault tolerance service on CORBA

File Name File
Type

SLOC Description

CosFaultTolerance IDL 242 Interface description of remote
methods

PropertyManagerImpl Java 273 Implementation of the
PropertyManager interface

ObjectGroupManagerImpl Java 672 Implementation of the
ObjectGroupManager interface

GenericFactoryImpl Java 523 Implementation of the
GenericFactory interface

ReplicationManagerImpl Java 865 Implementation of the
ReplicationManager interface

FaultNotifier Java 611 Implementation of the
FaultNotifier interface

ClientPolicy Java 155 Implementations of the
RequestDurationPolicy interface

ServerPolicy Java 61 Implementation of the
HeartbeatEnabledPolicy

FTPolicy Java 207 Implementation of the
HeartbeatPolicy interface

FaultDetector Java 149 Class defining the component
illustrated above

DefaultFaultAnalyzer Java 113 The default fault analyzer
ReplicationManagerFaultAnalyzer Java 865 Replication Manager's fault

analyzer
FaultConsumer Java 200 Connect to the fault notifier
PropertyValidator Java 29 Class providing static methods to

validate properties
MemberInfo Java 50 Structure that contains all

member-specific information
PropertyUtils Java 53 Provides some methods used to

manipulate properties
Operators Java 23 Class providing static methods

related to operators
ReplicationManagerServer Java 13 Class running the Replication

Manager server
FaultNotifierServer Java 13 Class running the Fault Notifier

server
Total 5117

 249

Table B-2. Implementing the load balancing service on CORBA

File Name File
Type

SLOC Description

CosLoadBalancing IDL 90 Interface description of remote
methods

LoadAlertImpl Java 26 Implementation of LoadAlert
interface.

LoadCPUMonitorImpl Java 138 LoadMonitor implementation that
monitors the overall CPU load on a
given host

LoadManagerImpl Java 919 Implementation of LoadManager
interface

LeastLoaded Java 405 Implementations of Strategy
interface

LoadAverage Java 305 Implementations of Strategy
interface

LoadMinimum Java 389 Implementations of Strategy
interface

RoundRobin Java 121 Implementations of Strategy
interface

Random Java 128 Implementations of Strategy
interface

MemberLocator Java 59 Class which defines the component
described above

LoadAlertHandler Java 40 This class handles all
asynchronously received replies
from all registered LoadAlert
objects. It only exists to receive
asynchronously sent exceptions

LoadAlertInfo Java 30 Structure that contains all
LoadAlert-specific information

LoadAlertMap Java 60 Maps a LoadAlertInfo with a
location

LoadListMap Java 60 Maps a LoadList with a location
LoadMap Java 60 Maps a load with a location

MonitorMap Java 60 Maps a LoadMonitor with a
location

PullHandler Java 58 Event handler used when the "pull"
monitoring style configured

PushHandler Java 39 Event handler used when the
"push" monitoring style is
configured

LB_ServerRequestInterceptor Java 109 Responsible for redirecting the
requests back to the manager

LB_ORBInitializer Java 72 Creates and registers with the ORB the
LB_IORInterceptor and
LB_ServerRequestInterceptor

LB_ClientRequestInterceptor Java 62 Handles transparent object group
member registration with the
LoadManager, and registration of
the LoadAlert object necessary for
load shedding

LB_ClientORBInitializer Java 33 Creates and registers with the ORB
the LB_ClientRequestInterceptor

LoadManagerServer Java 214 Class running the load balancer
server

LoadMonitorServer Java 315 Class running the load monitor
server

Total 3943

 250

Appendix C

Discount Cash Flows (DCF) and Net Present
Value (NPV): Brief Explanation

According to [Trigeorgis, 1995] in finance, the cost and benefits associated with an

investment are called cash flows. Investments are compared only on the basis of cash

flows. Usually, there is an original investment, Co, represented as a negative number.

Subsequent cash flows are denoted as Cash Flow Year 1,…, Cash Flow Year n,

spanning the time horizon in which the investment incurs costs and generates

benefits. The Present Value (PV) of a future cash flow is the value of the cash flow as

though it was received toady.

Moving forward from present to future, an investment is expected to grow at a

certain rate of return. Now turning it around: Moving backward from future to

present, an investment shrinks with the same rate of return. When moving back in

time, the rate of backward adjustment is itself is called discounting. The general

technique of valuing a capital investment project by summing its discounted future

cash flows is known as discounted cash flows (DCF). Simply the DCF is obtained by

the discounted benefits minus the discounted costs as given in the below formula:

 251

The Cash flow Year i, represents cash flows in which the cash flows occur, and r is a

per-period discount rate. The formula simply tells that whether an investment is

worth more than it costs. The rule is that if DCF is positive, the investment is worth

undertaking; that is, it generates more value than it costs. If DCF is negative, it

should be forgone as the investment generates less value than its costs. If it is zero,

we are indifferent between undertaking and forgoing it.

 252

Glossary of Economics Terms

American option An option that may be exercised at any time up to and including the

expiration date

Call

Option

An option contract that gives its holder the right (but not the

obligation) to purchase a specified number of shares of the underlying

stock at the given strike price, on or before the expiration date of the

contract.

Cash flow In investments, cash flow represents earnings before depreciation,

amortization, and non-cash charges. Sometimes called cash earnings.

Cash flow from operations (called funds from operations by real estate

and other investment trusts) is important because it indicates the

ability to pay dividends

Discount Cash

Flows

Future cash flows multiplied by discount factors to

obtain present values

European option Option that may be exercised only at the expiration date.

Exercise price The price at which the security underlying a options contract may be

bought or sold

In-the-money A call option with a strike price lower than the underlying futures

price. For example, if the March COMEX silver futures contract is

trading at $6 an ounce, a March call with a strike price of $5.50

would be considered in the money by $0.50 an ounce.

Net present value

(NPV)

The present value of the expected future cash flows minus the cost.

Option

Gives the buyer the right, but not the obligation, to buy or sell an

asset at a set price on or before a given date. Investors, not companies,

issue options. Buyers of call options bet that a stock will be worth

more than the price set by the option (the strike price), plus the price

 253

they pay for the option itself.

Out-of-the-money A call option is out of the money if the strike price is greater than the

market price of the underlying security. That is, you have the right to

purchase a security at a price higher than the market price, which is

not valuable.

Rate of return The ratio of the additional annual income or profit generated by an

investment to the cost of the investment. Here's a simple example,

although the calculations are usually a great deal more involved for

actual investments. If the cost of constructing a new factory is $10

million and it gives you an extra $1 million in profit each year, then

its rate of return is 10 percent.

Strike price

The stated price per share for which underlying stock may be

purchased (in the case of a call) or sold (in the case of a put) by the

option holder upon exercise of the option contract.

 254

Bibliography

[Abowd et al., 1993] Abowd, G., Allen, R., and Garlan, D.: Using Style to Understand
Descriptions of Software Architecture. In: Proceedings of Foundations of Software
Engineering, ACM Press (1993) 9-20

[Abowd et al., 1996] Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L., and
Zaremski, A.: Recommended Best Industrial Practice for Software Architecture Evaluation
(CMU/SEI-96-TR-025), Software Engineering Institute, Carnegie Mellon University (1996)

[Allen and Garlan, 1994] Allen, R., and Garlan, D.: Formalizing Architectural Connection.
In: Proceedings of the 14th International Conference on Software Engineering, ACM Press
(1994) 71-80

[Amram and Kulatilaka, 1999] Amram, M., and Kulatilaka, N.: Real Options: Managing
Strategic Investment in an Uncertain World. Harvard Business School Press, Cambridge,
Massachusetts (1999)

[Antón, 1996] Antón, A.I.: Goal-based Requirements Analysis. In: Proceeding of the 2nd

IEEE International Conference on Requirements Engineering, IEEE CS Press (1996) 136-144
[Antón, 1997] Antón, A.I.: Goal Identification and Refinement in the Specification of

Software-Based Information Systems, Ph.D. Thesis, Georgia Institute of Technology, Atlanta,
GA (1997)

[Asundi and Kazman, 2001] Asundi, J. and Kazman, R.: A Foundation for the Economic
Analysis of Software Architectures. In: Proceedings of the Third Workshop on Economics-
Driven Software Engineering Research (2001)

[Bahsoon and Emmerich, 2003a] Bahsoon, R. and Emmerich, W.: Evaluating Software
Architectures: Development, Stability, and Evolution. In: Proceedings of IEEE/ACS
Computer Systems and Applications, IEEE CS Press (2003a) 47-57

[Bahsoon and Emmerich, 2003b] Bahsoon, R. and Emmerich, W.: ArchOptions: A Real
Options-Based Model for Predicting the Stability of Software Architecture. In: Proceedings of
the Fifth Workshop on Economics-Driven Software Engineering Research, in Conjunction
with the 25th International Conference on Software Engineering, Portland, USA, IEEE CS
(2003b) 35-40

[Bahsoon and Emmerich, 2004a] Bahsoon, R. and Emmerich, W.: Evaluating Architectural
Stability with Real Options Theory. In: Proceedings of the 20th IEEE Int. Conference on
Software Maintenance, Chicago, Illinois, IEEE CS Press (2004a) 443-447

[Bahsoon and Emmerich, 2004b] Bahsoon, R. and Emmerich, W.: Applying ArchOptions
to Value the Payoff of Refactoring. In: Proceedings of the Sixth Workshop on Economics-
Driven Software Engineering Research, in Conjunction with the 26th International Conference
on Software Engineering, IEE Press (2004b) 66-70

 [Bahsoon and Emmerich, 2005] Bahsoon, R. and Emmerich, W.: Using ArchOptions to
Value the Flexibility of Product-Line Architectures. UCL Dept. of Computer Science, Research
Note (2005)

[Bahsoon et al., 2005] Bahsoon, R., Emmerich, W., and Macke, J.: Using ArchOptions to
Select Stable Middleware-Induced Architectures. In: IEE Proceedings Software, Special issue
on Relating Requirements to Architectures, IEE Press 152(4) (2005) 176-186

 255

[Bahsoon, 2003] Bahsoon, R.: Evaluating Software Architectures for Stability: A Real
Options Approach. In: Proceedings of the Doctoral Symposium of the 25th International
Conference on Software Engineering, IEEE CS Press (2003)

 [Baldwin and Clark, 1993] Baldwin, C. Y., and Clark, K.B.: Modularity and Real Options.
Working paper, Harvard Business School (1993)

[Baldwin and Clark, 1997] Baldwin, C. Y., and Clark, K.B.: Managing in the Age of
Modularity. Harvard Business Review, 75 (5) (1997) 84-93

[Baldwin and Clark, 2001] Baldwin, C. Y., and Clark, K.B.: Design Rules - The Power of
Modularity. MIT Press (2001)

[Belady and Lehman, 1976] Belady, L.A., and Lehman, M.M.: A Model of Large Program
Development. IBM Systems Journal, 15(3) (1976) 225-252

[Bennet and Rajilich, 2000] Bennet, K. and Rajilich, V.: Software Maintenance and
Evolution: A Roadmap. In: A. Finkelstein (ed.): The Future of Software Engineering. ACM
Press (2000) 73-90

[Bergey et al., 2001] Bergey J., O’Brien, L., Smith, D.: Options Analysis for Reengineering
(OAR): A Method for Mining Legacy Assets, CMU/SEI-2001-TN-013,ADA395201 (2001)

[Black and Scholes, 1973] Black, F., and Scholes, M.: The Pricing of Options and Corporate
Liabilities. Journal of Political Economy. U. of Chicago Press (1973) 637-654

[Boehm and Ross, 1989] Boehm, B.W., and Ross, R.: Theory-W Software Project
Management: Principles and Examples. IEEE Transactions on Software Engineering, 15(7)
(1989) 902-916

[Boehm and Sullivan, 2000] Boehm, B., and Sullivan, K. J.: Software Economics: A
Roadmap. In: A. Finkelstein (ed.): The Future of Software Engineering. ACM Press (2000) 320-
343

[Boehm et al., 1995] Boehm, B., Clark, B., Horowitz, E., Madachy, R., Shelby, R., Westland,
C.: The COCOMO 2.0 Software Cost Estimation Model. In: International Society of Parametric
Analysts (1995)

[Briand and Wieczorek, 2002] Briand, I. and Wieczorek, L.: Resource Modeling in
Software Engineering, Second edition of the Encyclopedia of Software Engineering, Wiley
(2002)

[Brinkkemper, et al., 1996] Brinkkemper J., Lyytinen K., and Welke R. J.: Method
Engineering. Principles of Method Construction and Tool Support. Chapman & Hall (1996)

[Burch et al., 1990] Burch, J., Clarke, E., McMillan, E., Dill, D., and Hwang, L.: Symbolic
Model Checking: 1020 States and Beyond. In: Proc. of the Fifth Annual IEEE Symposium on
Logic in Computer Science. IEEE CS (1990) 428-439

[Capra, 2003] Capra, L.: Reflective Mobile Middleware for Context-Aware Applications.
PhD Thesis. University of London, UK (2003)

[Clements and Northrop, 2002] Clements, P., and Northrop, L.: Software Product Lines:
Practices and Patterns. Addison Wesley, Boston, USA (2002)

[Clements et al., 2002] Clements, P., Kazman, R., and Klein, M.: Evaluating Software
Architectures: Methods and Case Studies. Addison Wesley, Boston, USA (2002)

[Clements, 2000] Clements, P.: Active Reviews for Intermediate Designs. Technical Report
(CMU/SEI-2000-TN-009), Software Engineering Institute, Carnegie Mellon University (2000)

[Coleman et al., 1994] Coleman, D., Arnold, P., Bdoff, S., Gilchrist, H., Hayes, F. and
Jeremaes P., Object-Oriented Development: The Fusion Method. Prentice Hall (1994)

[Conte et al., 1986] Conte, S.D., Dunsmore, H.E., and Shen, V.Y: Software Engineering
Metrics and Models. Menlo Park, Calif.: Benjamin-Cummings (1986).

[Cook et al., 2000] Cook S., Ji H. and Harrison R.: Software Evolution and Software
Evolvability, working paper, U. of Reading, Aug. (2000)

 256

[Cook et al., 2001] Cook, S., Ji, H., and Harrison, R.: Dynamic and Static Views of
Software Evolution. In: International Conference on Software Maintenance, Florence, Italy.
IEEE CS (2001) 592-601

[Corbett and Ayrunin, 1997] Corbett, J., and Avrunin, G.: Using Integer Programming to
Verify General Safety and Liveness Properties. Formal Methods in System design, 6(2) (1997)
97-123.

[Cox and Rubinstein, 1979] Cox, J., Ross, S., and Rubinstein, M.: Option Pricing: A
Simplified Approach. Journal of Financial Economics, 7 (3) (1979) 229-264

[Dardenne et al., 1993] Dardenne, A., van Lamsweerde A., and Fickas, S.: Goal-Directed
Requirements Acquisition, Science of Computer Programming, 20(1-2) (1993) 3-50

[Davis, 1993] Davis, A: Software Requirements: Objects, Functions and States. Englewood
Cliffs, New Jersey: Prentice-Hall (1993)

[Dawson et al., 2003] Dawson, R., Bones, P., Oates, B., Brereton, P., Azuma, M., and
Jackson, M.: Empirical Methodologies in Software Engineering. In Eleventh Annual
International Workshop on Software Technology and Engineering Practice, IEEE CS
Press(2003) 52-58

[Denaro et al., 2004] Denaro, G., Polini A., and Emmerich W.: Performance Testing of
Distributed Component Architectures. In: S. Beydeda and V. Gruhn (eds.), Building Quality
into COTS Components - Testing and Debugging, Springer (2004) 294-314

[Di Nitto and Rosenblum, 1999] Di Nitto, E., and Rosenblum, D.: Exploiting ADLs to
Specify Architectural Styles Induced by Middleware Infrastructures. In: Proceedings of the
21st International Conference on Software Engineering, ACM Press (1999) 13-22

[Dixit and Pindyck, 1994] Dixit, A. and R. Pindyck: Investment under Uncertainty,
Princeton University Press (1994)

[Dwyer and Clarke, 1994] Dwyer, M. and Clarke, L.: Dataflow Analysis for Verifying
Properties of Concurrent Programs. In: Proceedings of the Second ACM SIGSOFT
Symposium on Foundations of Software Engineering, ACM Press (1994) 62-75

[EDSER 1-7, 1999-2005] EDSER 1-7: Proceedings of the Workshops on Economics-Driven
Software Engineering Research: In conjunction with the 21st through 27th International
Conference on Software Engineering (1999 - 2005)

[Emmerich, 2000a] Emmerich, W.: Engineering Distributed Objects. John Wiley & Sons,
Chichester, UK (2000a)

[Emmerich, 2000b] Emmerich, W.: Software Engineering and Middleware: A Road Map.
In: A. Finkelstein (ed.), Future of Software Engineering, ACM Press (2000b) 117-129

[Emmerich, 2002] Emmerich, W.: Distributed Component Technologies and their
Software Engineering Implications. In: Proceedings of the 24th Int. Conference on Software
Engineering, Orlando, Florida, ACM Press (2002) 537-546

[Erdogmus and Favaro, 2002] Erdogmus, H., and Favaro, J: Keep Your Options Open:
Extreme Programming and Economics of Flexibility. In: XP Perspective, Addison Wesley
(2002) 1-44

[Erdogmus and Vandergraaf, 1999] Erdogmus, H., and Vandergraaf. J: Quantitative
Approaches for Assessing the Value of COTS-Centric Development. In: the Proceedings of
the Sixth International Symposium on Software Metrics (METRICS' 99), Boca Raton, FL, IEEE
CS Press (1999) 279-290

[Erdogmus et al., 2002] Erdogmus, H., Boehm, B., Harrison, W., Reifer, D. J., and Sullivan,
K. J.: Software Engineering Economics: Background, Current Practices, and Future
Directions.Tutorial Summary. In: Proceeding of 24th International Conference on Software
Engineering, Orlando, FL, ACM Press (2002) 683-684

[Erdogmus, 2000] Erdogmus, H.: Value of Commercial Software Development under
Technology Risk. The Financier 7(2000)

 257

[FEAST1-2] Lehman, M.M.: Feedback, Evolution and Software Technology, FEAST 1-2.
http://www-dse.doc.ic.ac.uk/~mml/feast/

[Finkelstein and Kramer, 2000] Finkelstein, A., and Kramer, J.: Future of Software
Engineering. In: A. Finkelstein (ed.): The Future of Software Engineering, ACM Press (2000)
5-21

[Finkelstein, 2000] Finkelstein, A.: Architectural Stability.
http://www.cs.ucl.ac.uk/staff/a.finkelstein/talks.html (2000)

[Formal Systems, 1992] Formal Systems (Europe) Ltd.: Failures Divergence Refinement:
User Manual and Tutorial (1992)

[Gall et al., 1997] Gall, H., Jazayeri, M., Klösch, R., and Trausmuth, G.: The Architectural
Style of Component Programming. COMPSAC, IEEE CS Press (1997) 18-27

[Gamma et al., 1995] Gamma E. et al.: Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley Longman, Reading, Mass (1995)

[Garcia and Bray, 1997] Garcia, M.L. and Bray, O.H: Fundamentals of Technology
Roadmapping, Sandia National Laboratories, www.sandia.gov/roadmap (1997)

[Garlan et al., 1994] Garlan, D., Allen, R., and Ockerbloom: Exploiting Style in
Architectural Design Environments. In: Proceedings of SIGSOFT’94, Foundations of Software
Engineering, New Orleans, Louisiana, USA, ACM Press(1994)175-188

[Garlan et al., 1995] Garlan, D., Monroe, R. and Wile, D.: ACME: An Architectural
Interconnection Language. Technical Report (CMU-CS-95-219), Carnegie Mellon University
(1995)

[Garlan, 2000] Garlan, D.: Software Architecture: A Roadmap. In: A. Finkelstein (ed.): The
Future of Software Engineering, ACM Press (2000) 91-101

[Gilb, 1989] Tom, G.: Principles of Software Engineering Management, Addison-Wesley
Longman (1989)

[Godefroid and Wolper, 1991] Godefroid, P., and Wolper, P.: Using Partial Orders for the
Efficient Verification of Deadlock Freedom and Safety Properties. In: Proceedings of the Third
Workshop on Computer Aided Verification, Lecture Notes in Computer Sc, Springer
(1991)417–428

[Gotel and Finkelstein, 1995] Gotel, O., and Finkelstein, A.: Contribution Structures. In:
the Third Proceedings of the Requirements Engineering Symposium, York, UK, IEEE CS
Press (1995) 169-178

[Henning and Vinoski, 1999] Henning, M., and Vinoski, S: Advanced CORBA
Programming With C++, Addison-Wesley Longman, Reading, Mass (1999)

[Holzman, 1991] Holzman, G.: Design and Validation of Computer Protocol, Prentice
Hall Software Series (1991)

[Hull, 1997] Hull, J. C.: Options, Futures, and Other Derivative Security. Third edition,
Prentice-Hall (1997)

[IEEE Standard 610.12, 1993] IEEE Standard 610.12: Glossary of Software Engineering
Terminology. In: Software Engineering Standards Collection, IEEE CS Press (1993)

[Jazayeri, 1995] Jazayeri, M.: Component Programming - a Fresh Look at Software
Components, In: The Fifth European Software Engineering Conference. Lecture Notes in
Computer Sc, Springer (1995) 457-478

[Jazayeri, 2002] Jazayeri, M.: On Architectural Stability and Evolution. Lecture Notes in
Computer Science, Springer Verlag, Berlin (2002) 13-23

[JGroups] JGroups Website, http://www.jgroups.org.
[Jung, H.W., 1998] Jung, H.W. Optimizing Value and Cost in Requirements Analysis.

IEEE Software (July/August) (1998) 74-78

 258

[Karlsson and Ryan, 1997] Karlsson, J. and Ryan, K.: A Cost-Value Approach for
Prioritizing Requirements. IEEE Software (September/October) (1997) 67-74

[Karlsson, et al., 1997] Karlsson, J., Olsson, S., and Ryan, K.: Improved Practical Support
for Large-scale Requirements Prioritizing. Requirements Engineering Journal, 2(1) (1997)51-60

[Kataoka et al., 2002] Kataoka, Y., Imai, T., Andou, H., and Fukaya, T.: A Quantitative
Evaluation of Maintainability Enhancement by Refactoring. In: Proceedings of the
International Conference on Software Maintenance. IEEE CS (2002) 576-585

[Kazman et al., 1994] Kazman, R., Abowd, G., Bass, and L., Webb, M.: SAAM: A Method
for Analyzing the Properties of Software Architectures. In: Proceedings of the 16th
International Conference on Software Engineering, Sorento, Italy. IEEE CS (1994) 81-90

[Kazman et al., 1998] Kazman, R., Klein, M., Barbacci, M., Lipson, H., Longstaff, T., and
Carrière, S.J.: The Architecture Tradeoff Analysis Method. In: Proceedings of fourth
International Conference on Engineering of Complex Computer Systems (ICECCS '98),
Monterey, CA, IEEE CS Press (1998) 68-78

[Kazman et al., 2001] Kazman, R., Asundi, J., and Klein, M.: Quantifying the Costs and
Benefits of Architectural Decisions. In: Proceedings of the 23rd International Conference on
Software Engineering, Toronto, Canada, IEEE CS Press (2001) 297-306

[Kitchenham et al., 1997] Kitchenham, B., Linkman, S., and Law, D. : DESMET: A
methodology for evaluating software engineering methods and tools. In IEE Computing and
Control Journal (1997)

[Klein and Kazman, 1999] Klein, M., and Kazman, R.: Attribute-Based Architectural
Styles. Technical Report CMU/SEI-99-TR-22, Software Engineering Institute, Carnegie
Mellon University (1999)

[Kotonya and Sommerville, 1998] G. Kotonya and I. Sommerville: Requirements
Engineering: Processes and Techniques. John Wiley and Sons. May (1998)

[Kruchten, 2000] Kruchten, P.: The Rational Unified Process: An Introduction. Addison
Wesley Longman (2000)

[Labourey and Burke, 2003] Labourey, S., and Burke B.: JBoss Clustering Documentation,
JBoss Group LLC (2003)

[Lehman et al., 2000] Lehman, M.M., Kahen, G., and Ramil, J.F.: Replacement Decisions
for Evolving Software. In: Proceedings of the Second Workshop on Economics-Driven
Software Engineering Research (2000)

[Lehman, 1985] Lehman M. M.: Program Evolution. Academic Press, London (1985)
[Lehman, 1998] Lehman, M.M.: The Future of Software – Managing Evolution. IEEE

Software (Jan. 1998)
[Leintz and Swanson, 1980] Leintz, B.P., and Swanson, E.B.: Software Maintenance

Management. Addison-Wesley, Reading Mass (1980)
[Liu and Gorton, 2003] Liu, A. and Gorton, I.: Accelerating COTS Middleware

Acquisition: The i-Mate Process. IEEE Software Vol. (20) (2) (2003) 72-79
[Luckham et al., 1995] Luckham, D. C., Augustin, L. Kenney, J., Vera, J, Bryan, M., and

Mann W.: Specification Analysis of System Architecture Using Rapide. IEEE Transactions on
Software Engineering, 21(4) (1995) 366-355

[Luckham, and Vera, 1995] Luckham, D.C., and Vera, J.: An Event-Based Architecture
Definition Language. IEEE Transactions on Software Engineering, 29(9) (1995) 717-734

[Maciaszek and Liong, 2004] Maciaszek, L., and Liong, B.: Practical Software Engineering-
A Case Study Approach. Addison-Wesley (2004)

[Madj and Pindyck, 1997] Madj, S. and R. Pindyck: Time to Build, Option Value, and
Investment Decisions, Journal of Financial Economics, 18(1) (1997) 7–27

 259

[Magee and Kramer, 1996] Magee, J., and Kramer, J.: Dynamic Structure in Software
Architectures. In: Proceedings of the ACM SIGSOFT '96 Fourth Symposium on the
Foundations of Software Engineering, San Francisco, CA, ACM Press(1996) 3–14

[Magee et al., 1995] Magee, J., Dulay, D., Eisenbach, N., and Kramer, J.: Specifying
Distributed Software Architecture. In: Proceedings of the Fifth European Software
Engineering Conference (ESEC’95), Barcelona, Spain, Lecture Notes in Computer Sc, Springer
(1995) 137-153

[Mansour and Bahsoon, 2002] Mansour, N. and Bahsoon, R. (2002): Reduction-based
methods and metrics for selective regression testing, Journal of Information and Software
Technology, Elsevier Science 40(7) (2002) 431-443,

[Masticola and Ryder, 1991] Masticola, S., and Ryder, B.: A Model of ADA Programs for
Static Deadlock Detection in Polynomial Time. In: Proceedings of the Workshop on Parallel
and Distributed Debugging (1991) 97–107

[Medvidovic and Taylor, 1997] Medvidovic, N., and Taylor, R.: A Framework for
Classifying and Comparing Architecture Description Languages. In: Proceedings of the Sixth
European Software Engineering Conference, together with the Fifth ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Zurich, Switzerland, ACM Press
(1997)60-76

[Medvidovic et al., 1999] Medvidovic, N., Rosenblum, D., and Taylor, R.: A Language and
Environment for Architecture-Based Software Development and Evolution. In: Proceedings
of the 21st International Conference on Software Engineering, Los Angeles, CA IEEE CS Press
(1999)44-53

[Medvidovic et al., 2003] Medvidovic N., Dashofy E., and Taylor R.: On the Role of
Middleware in Architecture-based Software Development. International Journal of Software
Engineering and Knowledge Engineering, 13(4) (2003) 229-306

[Mehta et al., 2000] Mehta, N., Medvidovic, N., and Phadke, S.: Towards a Taxonomy of
Software Connectors. In: Proceedings of the 22nd International Conference on Software
Engineering, ACM Press (2000) 178-187

[Mens and Tourwe, 2004] Mens, T., and Tourwe, T.: A Survey of Software Refactoring. In:
IEEE Transactions on Software Engineering, 30(2) (2004) 126-139

[Moricon et al., 1995] Moriconi, M., Qian, X., and Riemenschneider, R.: Correct
Architecture Refinement. IEEE Transactions on Software Engineering, 21(4) (1995) 356-372

[Muller, 2002] Muller, G.: Roadmapping, Philips Research,
http://www.extra.research.philips.com/natlab/sysarch/ (2002)

[Myers and Majd, 1990] Myers, S. and S. Majd: Abandonment Value and Project Life,
Advances in Futures and Options Research, 4(1990) 1–21

[Myers, 1977] Myers, S.C.: Determinants of Corporate Borrowing. Journal of Financial
Economics. 5(2) (1977) 147-175

[Myers, 1987] Myers, S. C.: Finance Theory and Financial Strategy. Corporate Finance
Journal. 5(1) (1987) 6-13

[Mylopoulos et al., 1992] Mylopoulos, J., Chung, L., Nixon, B.: Representing and Using
Nonfunctional Requirements: A Process-Oriented Approach. IEEE Trans. on Software.
Engineering, Vol. (18) (6) (1992)

[Naumovich et al., 1997] Naumovich, G., Avrunin, G.S, Clarke, L.A., and Osterweil, L.J.:
Applying Static Analysis to Software Architectures. Technical Report, UM-CS-1997-008,
University of Massachusetts, Amherst (1997)

[Nuseibeh and Easterbrook, 2000] Nuseibeh, B., and Easterbrook, S.: Requirements
Engineering: A Roadmap. In: A. Finkelstein (ed.): The Future of Software Engineering, ACM
Press (2000) 35-46

 260

[Nuseibeh et al., 1994] Nuseibeh, B., Kramer, J., and Finkelstein, A.: A Framework for
Expressing the Relationships between Multiple Views in Requirements Specification.
Transactions on Software Engineering, 20(10) (1994)760-773

[Nuseibeh, 2001] Nuseibeh, B.: Weaving the Software Development Process between
Requirements and Architectures. In: Proceedings of STRAW 01 the First International
Workshop from Software Requirements to Architectures, Toronto, Canada (2001)

[Object Management Group, 1999a] Object Management Group: Fault Tolerant CORBA
Specification, OMG document orbos/99-12-08 ed., OMG, Needham, Mass. (1999a)

[Object Management Group, 1999b] Object Management Group: The Common Object
Request Broker: Architecture and Specification, 2.3 ed., Framingham, Mass. (1999b)

[Object Management Group, 2000] Object Management Group: The Common Object
Request Broker: Architecture and Specification, 2.4 ed., Needham, Mass, OMG (2000)

[Oreizy et al., 1998] Oreizy, P., Medvidovic, N., Taylor, R., and D. Rosenblum, D.:
Software Architecture and Component Technologies: Bridging the Gap. In Digest of the
OMG-DARPA-MCC Workshop on Compositional Software Architectures, Monterey, CA
(1998)

[Othman et al., 2001a] Othman, O., O’Ryan, C., and Schmidt, D.C.: Strategies for CORBA
Middleware-Based Load Balancing. IEEE Distributed Systems Online, 2(3) (2001a)

[Othman et al., 2001b] Othman, O., O’Ryan, C., and Schmidt, D.C.: Designing an
Adaptive CORBA Load Balancing Service Using TAO. IEEE Distributed Systems Online, 2(4)
(2001b)

[Parnas and Weiss, 1985] Parnas, D.L., and Weiss, D.: Active Design Reviews: Principles
and Practices. In: Proceedings of the 18th International Conference on Software Engineering
(1985)

[Parnas, 1972] Parnas, D.L.: On the Criteria to Be Used in Decomposing Systems into
Modules, Communications of the Association of Computing Machinery, 15(12) (1972)1053-58

[Parnas, 1976] Parnas, D.L.: On the Design and Development of Program Families. IEEE
Transactions on Software Engineering, 1 (1976) 1-9

[Parnas, 1979] Parnas, D.L.: Designing Software for Ease of Extension and Contraction,
IEEE Transaction on Software Engineering, 5 (2) (1979)

[Parnas, 1994] Parnas, D.L.: Software Aging. In: I6th International Conference on
Software Engineering, Sorento, Italy, ACM Press (1994)279-287

[Port et al., 2002] Port, D., Huang, L., and Boehm, B: Strategic Architectural Flexibility. In:
4th International Workshop on Economics-Driven Software Engineering Research (EDSER),
(2002) 32-37

[Pree, 1994] Pree, W.: Design Patterns for Object-Oriented Software Development,
Addison-Wesley, Reading, MA (1994)

[Rapanotti et al., 2004] Rapanotti, L., Hall, J., Jackson, M., and Nuseibeh, B.: Architecture
Driven Problem Decomposition. In: Proceedings of 12th IEEE International Requirements
Engineering Conference (RE'04), Kyoto, Japan, IEEE Computer Society Press (2004) 80-89

[Ross et al., 1996] Ross, S. A., Westfield, R.W., and Jaffe, J.: Corporate Finance (Fourth).
Irwin, Chicago (1996)

[Saaty, L, 1980] Saaty, L.: The Analytical Hierarchy Process. New York: McGraw-Hill
(1980)

[Schaller, 1999] Schaller, R.R.: Technology Roadmaps: Implications for Innovation,
Strategy, and Policy, The institute of Public Policy, George Mason University Fairfax, VA
(1999)

[Schmid, 1998] Schmid, H.A: Design Patterns to Construct the Hot Spots of a
Manufacturing Framework. In: The Patterns Handbook: Techniques, Strategies and
Applications, L. Rising. Cambridge University Press, Cambridge, UK (1998) 443-470

 261

[Schmidt et al., 1998] Schmidt, D.C., Levine, D.L., and Mungee, S.: The Design and
Performance of Real-Time Object Request Brokers, Computer Communication, 21(4) (1998)
294-324

[Schmidt et al., 2000] Schmidt D.C. et.: Pattern-Oriented Software Architecture: Patterns
for Concurrency and Distributed Objects, Volume 2, John Wiley & Sons, New York (2000)

[Schwartz and Trigeorgis, 2000] Schwartz, S., and Trigeorgis, L.: Real Options and
Investment under Uncertainty: Classical Readings and Recent Contributions. MIT Press
Cambridge, Massachusetts (2000)

[Shaw et al., 1995] Shaw, M., DeLine, R., Klein, D., Ross, T., and Young, D.: Abstractions
for Software Architecture and Tools to Support them. IEEE Transactions on Software
Engineering, 21(4) (1995) 314-335

[Shepperd et al., 1996] Shepperd, M., Schofield, C., Kitchenham, B.: Effort Estimation
Using Analogy. In: Proceedings of the 18th international conference on Software Engineering,
IEEE Computer Society, 170-178 (1996)

[Simon et al., 2001] Simon, F. Steinbru, F. and Lewerentz, C.: Metrics Based Refactoring.
In: Proceeding of the European Conference on Software Maintenance and Reengineering
(2001) 30-38

[Smith and Woodside, 1999] Smith, C., and Woodside, M.: System Performance
Evaluation: Methodologies and Applications. CRC Press (1999)

[Smith, 1990] Smith, C.: Performance Engineering of Software Systems. Addison-Wesley,
Reading, MA (1990)

[Stafford and Wolf, 2001] Stafford, J. A., and Wolf, A. W.: Architecture-Level Dependence
Analysis for Software System. International Journal of Software Engineering and Knowledge
Engineering, 11(4) (2001) 431-453

[Stafford et al., 1997] Stafford, J.A., Richardson, D.J., and Wolf, A.L: Chaining: A Software
Architecture Dependence Analysis Technique. Technical Report CU-CS, Department of
Computer Science, University of Colorado, Boulder, CO (1997) 845-97

[Stroulia and Leitch, 2003] Stroulia, E., and Leitch R.: Understanding the Economics of
Refactoring. In: Proceedings of the Fifth ICSE Workshop on Economics-Driven Software
Engineering Research (2003)

[Stultz, 1982] Stultz, R.: Options on the Minimum or the Maximum of Two Risky Assets:
Analysis and Applications, Journal of Financial Economics, 10(1982)161–85

[Subramanian and Breslawski, 1993] Subramanian, G.H. and Breslawski, S.:
Dimensionality Reduction in Software Development Effort Estimation. Journal of Systems
and Software, vol. (21) (2) (1993) 187-196

[Sullivan et al., 2001] Sullivan, K.J., Griswold, W., Cai, Y., and Hallen, B.: The Structure
and Value of Modularity in Software Design. In: the Proceedings of the ninth ESEC/FSE,
Vienna, Austria (2001) 99-108

[Sullivan, 1996] Sullivan, K. J.: Software Design: The Options Approach. In: the
Proceedings of the Second International Software Architecture Workshop. Joint Proceedings
of the SIGSOFT '96 Workshops, San Francisco, CA (1996) 15–18

[Sullivan, 1997] Sullivan, K. J., Socha, J., and Marchukov, M.: Using Formal Methods to
Reason about Architectural Standards. In: Proceedings of the 19th International Conference
on Software Engineering, Boston, MA, ACM Press (1997) 503-513

[Sullivan, 1999] Sullivan, K. J.: Chalasani, P., Jha, S., and Sazawal, V.: Software Design as
an Investment Activity: A Real Options Perspective. Real Options and Business Strategy:
Applications to Decision-Making. In: Trigeorgis L. (ed.) Risk Books (1999) 215-260

[Sun MicroSystems, 2002] Inc Sun MicroSystems Inc: Enterprise JavaBeans Specification
v2.1 (June 2002)

 262

[Sun Microsystems] Sun Microsystems Inc.: Duke’s bank application,
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank.html.

[Trigeorgis, 1995] Trigeorgis, L.: Real options in Capital Investment: Models, Strategies,
and Applications. Praeger Westport, Connecticut London (1995)

[Valmari, 1991] Valmari, A.: A Stubborn Attack on State Explosion. In: E. M. Clarke and
R. Kurshan(editors), Computer-Aided Verification 90. American Mathematical Society,
Providence RI. Number 3 in DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, (1991) 25–41

[van Lamsweerde, 2000] van Lamsweerde, A.: Requirements Engineering in the Year 00:
A Research perspective. In: Proc. 22nd International Conference on Software Engineering,
Limerick, Ireland (2000) ACM Press 5-19

[Vestal, 1996] Vestal, S.: MetaH Programmer’s Manual, Version 1.09, Technical Report,
Honeywell Technology Center (1996)

[Walkerden and Jeffery, 1999] Walkerden F. and Jeffery R: An Empirical Study of
Analogy-based Software Effort Estimation. Empirical Software Engineering, vol. (4) (2), 135-
158 (1999)

[Williams and Smith, 1998] Williams, L.G. and Smith, C.U.: Performance Evaluation of
Software Architectures. In: Proceedings of the Workshop on Software and Performance
(WOSP98), Santa Fe, NM (1998)

[Yau et al., 1978] Yau, S., Collofeloo J.S., and MacGregor T.: Ripple Effect Analysis of
Software Maintenance. In: Proceedings of Compsac, IEEE Computer Society Press, Los
Alamitos, CA (1978) 60-65

