
Language support for service-level agreements
for application-service provision

James Skene

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Department of Computer Science

University College London

November 2, 2007

2

Declaration

I, James William Skene, confirm that the work presented in this dissertation is my own. Where informa-

tion has been derived from other sources, I confirm that this has been indicated in the dissertation.

3

Legal disclaimer

Service-Level Agreements (SLAs) are discussed in this dissertation. Sometimes SLAs are legally enfor-

cable contracts. In the British legal jurisdiction at least, it is illegal for unqualified persons to provide

legal advice. Therefore the discussion of SLAs in this dissertation should be regarded as presenting

the findings of research, and not legal advice. Nor should any part of this dissertation be regarded as

legal advice. Any party seeking to enter a legally binding SLA should take advice from a qualified spe-

cialist lawyer before doing so. No representation is made that the SLAs described in this work are an

appropriate basis for a legally binding SLA.

4

Abstract

My thesis is that practical language support can be provided for Service-Level Agreements (SLAs) for

Application-Service Provision (ASP), which is better than that provided by pre-existing languages in

that: it provides greater assistance in expressing conditions that mitigate the risks inherent in ASP; and

disputes related to agreements expressed in this manner may be more easily resolved in so as to respect

the original intent of the parties.

I support this thesis by establishing requirements for SLAs for ASP based on an account of a

typical ASP infrastructure and business model. These identify the particular risks inherent in ASP,

permit comparisons between ASP SLA languages, and guide the development of an abstract, extensible,

domain-specific language, SLAng.

SLAng is defined using a meta-modelling approach that allows a high degree of precision in the

specification of its semantics, traceability from SLA to language specification, and the testing of the

language and SLAs to ensure they capture the original intent of the parties.

SLAng supports the expression of mutually-monitorable SLAs, for which the determination of

compliance depends only on events visible to both client and provider of the service. I demonstrate

that such SLAs are the most monitorable possible in a typical ASP scenario, given current monitoring

technology, and describe an approximately-monitorable constraint on the accuracy of evidence used to

administer such SLAs.

SLAng is shown to be of practical use in a case study, evaluated against the original requirements,

and compared with pre-existing languages. The evaluation of SLAng is enhanced using metrics devel-

oped to assist in assessing the contribution of a domain-specific language specification to encoding the

meaning of statements in that language.

5

Acknowledgements

Many people have provided me with assistance, support and feedback during the several years it has

taken me to prepare this document and complete the research that it describes. Without doubt, the most

important is Joanne Hacking, without whose love and encouragement I may not have endured the psycho-

logical rigours of studying for a PhD. I am also deeply indebted to my supervisor, Wolfgang Emmerich,

for providing me with the opportunity and freedom to complete this work, and a broad education in

academic life and standards. I have enjoyed working and publishing with D. Davide Lamanna, Giacomo

Piccinelli, Jason Crampton, Franco Raimondi and my father, Allan Skene; special thanks must go to Ja-

son and Franco for their efforts proof-reading this dissertation. Clovis Chapman and Liang Chen assisted

me in the preparation of the case-study. My colleagues on the TAPAS, Divergent Grid and PLASTIC

projects have contributed vital insights and influences to this work. I’d like to thank all my colleagues

at UCL, for making the department a great place to be, and the pub an even better place to be. Finally,

I must also thank my family as whole for their love and support, past, present and future; especially my

parents and John Nickols, who together take full credit for raising me in a liberal and scientific tradition.

6

Contents

1 Introduction 20

1.1 Background . 20

1.2 Problem statement . 21

1.3 Contribution . 21

1.3.1 Requirements analysis . 22

1.3.2 The SLAng language . 22

1.3.3 Evaluation . 24

1.4 Structure of the dissertation . 25

2 Requirements 26

2.1 The Application Service Provision (ASP) scenario . 26

2.2 ASP risks . 29

2.2.1 Risks to the client . 29

2.2.2 Termination risks . 31

2.2.3 Risks to service providers . 31

2.2.4 The magnitudes of ASP risks . 32

2.3 What is a Service-Level Agreement (SLA)? . 32

2.4 SLAs for application services . 34

2.5 Conditions relating to application services . 36

2.6 Systems of SLAs for ASP . 38

2.7 Requirements for systems of ASP SLAs . 39

2.7.1 Conditions appropriate to electronic services 40

2.7.2 Protectability . 40

2.7.3 Precision . 41

2.7.4 Monitorability . 41

2.7.5 Cost . 42

2.7.6 Machine readability . 43

2.7.7 Non-exploitability . 43

2.8 Requirements for ASP SLA languages . 43

2.9 Requirements for ASP SLA language specifications . 45

2.10 Other views on requirements for SLAs . 45

7

2.11 Summary . 49

3 Domain-specific languages for ASP SLAs 50

3.1 Foundations of the approach . 51

3.1.1 Object-oriented modelling . 51

3.1.2 The Object Management Group (OMG) and the Model-Driven Architecture

(MDA) . 55

3.1.3 The syntax of modelling languages . 56

3.1.4 The semantics of modelling languages . 61

3.2 Abstract, extensible, domain-specific languages for SLAs 65

3.2.1 Modelling SLAs . 65

3.2.2 Reusable models of SLAs . 67

3.2.3 Recommendations for developing languages for ASP SLAs 70

3.2.4 Consequences of the recommendations . 73

3.3 Other approaches to defining languages . 74

3.3.1 Specification of syntax . 74

3.3.2 Specification of semantics . 75

3.4 Summary . 78

4 Domain-specific language specifications 80

4.1 Language specifications as first-class entities . 81

4.1.1 Referencing languages from models . 83

4.1.2 Suggested revisions to OMG standards . 85

4.1.3 Consequences of the proposed revisions . 87

4.2 The UCL MDA tools . 89

4.2.1 Alternative MDA tool support . 93

4.3 Testing language specifications . 94

4.4 Runtime monitoring of ASP SLAs . 95

4.4.1 Architecture of the SLA checker . 96

4.4.2 Evaluation of the checker component . 98

4.4.3 Other runtime requirements-monitoring approaches 100

4.5 Metrics for domain-specific languages . 102

4.5.1 Language specifications, extensions and statements 103

4.5.2 Power, adequacy and specificity . 104

4.5.3 Defining size and used functions for EMOF and OCL-based languages 107

4.5.4 Related work in metrics . 113

4.6 Summary . 115

8

5 The Monitorability of ASP SLAs 117

5.1 Monitorability . 118

5.1.1 Modelling systems of SLAs . 119

5.1.2 Monitorability analysis . 125

5.1.3 SLAs for the ASP scenario . 127

5.1.4 Multiple ISPs . 129

5.2 Approximate monitorability . 130

5.2.1 Accuracy constraint . 131

5.2.2 Approximate monitorability of the accuracy constraint 132

5.2.3 Choosing parameter values . 136

5.3 Related work . 136

5.4 Summary . 137

6 The SLAng language 139

6.1 The history of SLAng . 140

6.2 The SLAng language specification . 142

6.3 SLAs, parties and services . 143

6.4 Failures and violations . 144

6.5 Administration . 147

6.6 Accuracy of evidence . 150

6.7 Termination of SLAs . 151

6.8 Electronic services . 154

6.9 Reliability, timeliness and throughput conditions . 156

6.9.1 Service behaviour restrictions . 156

6.9.2 Electronic-service usage behaviour definitions 159

6.9.3 Service-usage record accuracy . 162

6.10 Availability conditions . 162

6.11 The SLAng language specification . 166

6.12 Additional considerations in ASP SLAs . 166

6.12.1 Payments and penalties . 166

6.12.2 Multiple penalties, gradated penalties, and interactions between conditions . . . 166

6.12.3 Maintenance and scheduling . 167

6.12.4 Real-world behaviour and mutual monitorability 167

6.13 Language specification overview . 167

6.13.1 Generic syntax . 168

6.13.2 Generic semantics . 169

6.13.3 Electronic-service syntax . 170

6.13.4 Electronic-service semantics . 171

6.13.5 Relationships between syntactic and semantic elements 172

9

6.14 Summary . 172

7 Case-study: the eMaterials project 174

7.1 Case-study method . 174

7.1.1 Initial analysis . 176

7.1.2 Risk analysis . 177

7.1.3 SLA design and definition . 177

7.1.4 Evaluation . 179

7.1.5 Redesign . 179

7.2 The eMaterials case-study . 179

7.2.1 SLAs in the eMaterials scenario . 180

7.3 Service architecture . 180

7.3.1 MOLPAK and DMAREL . 180

7.3.2 Condor and Polynet . 181

7.3.3 ActiveBPEL Workbench . 181

7.3.4 GridSAM and JSDL . 182

7.3.5 The plotws service . 183

7.3.6 Service deployment . 183

7.4 Stakeholders and fundamental requirements . 185

7.5 Use-case and risk analysis . 186

7.5.1 Use-cases in the scenario . 186

7.5.2 Use-case 1: conduct a simulation . 186

7.6 SLA design and risk analysis . 188

7.6.1 A system of SLAs for the scenario . 188

7.6.2 Individual SLA design . 190

7.7 SLA definition . 191

7.7.1 SLA 1: Provision of the Polymorph Search Webclient by IS to Chemistry193

7.7.2 SLA 4: Provision of the plotws web-service by the ISP to CS 209

7.8 Case-study conclusions . 212

7.9 Redesigning the service . 215

8 Evaluation 216

8.1 Evaluation of SLAng versus requirements . 217

8.1.1 Expressiveness requirements . 217

8.1.2 Remaining requirements for ASP SLA languages 223

8.1.3 Requirements for ASP SLA language specifications 226

8.1.4 Summary of conformance to requirements . 227

8.2 Survey of related languages . 228

8.3 The power, adequacy and specificity of SLAng . 232

10

8.4 A trajectory for SLAng . 236

8.5 Summary . 237

9 Summary 239

9.1 Contributions of this work . 239

9.2 Conclusions . 243

9.3 Future work . 244

9.3.1 On domain-specific languages . 244

9.3.2 On risk . 246

9.3.3 On trust and monitorability . 247

9.3.4 On SLAng . 247

A Critical review of alternative languages for ASP SLAs 249

A.1 The Web-Service Level Agreement language (WSLA) 249

A.2 The Web-Services Offerings Language (WSOL) . 251

A.3 Web-Services Management Language (WSML) . 252

A.4 Rule-Based Service-Level Agreement language (RBSLA) 254

A.5 EXecutable Contracts (X-Contracts) . 255

A.6 Web-Services Agreement Specification (WS-Agreement) 257

A.7 The Business Contract Language (BCL) . 258

A.8 Ontology Web Language for Services (OWL-S) . 259

A.9 Quality-of-service Modelling Language (QML) . 260

A.10 Quality-of-service for CORBA Objects QoS Description Language (QuO-QDL) 262

A.11 Quality-of-service aware component Architecture (QuA) 262

A.12 Quality-of-service Interface Definition Language (QIDL) 262

A.13 Job Submission Description Language (JSDL) . 263

A.14 SLA information in trading services . 264

B Case-study material 265

B.1 Use-case 1: conduct an experiment . 265

B.1.1 Initiating Actor . 265

B.1.2 Preconditions . 265

B.1.3 Postconditions . 265

B.1.4 Steps . 265

B.2 SLA clauses and risk analysis . 272

B.2.1 SLA 1: Provision of Polymorph Search Webclient by IS to Chemistry . 272

B.2.2 SLA 2: Provision of Polymorph Search Webclient by CS to IS 277

B.2.3 SLA 3: Provision of Condor cluster services by IS to CS 280

B.2.4 SLA 4: Provision of plotws web-service by ISP to CS 282

B.2.5 SLA 5: Provision of Plot service by Southampton to IS 284

11

B.3 Case-study risks by party . 286

B.3.1 Chemistry . 286

B.3.2 IS . 287

B.3.3 CS . 289

B.3.4 ISP . 290

B.3.5 Southampton . 291

C SLA 1: Chemistry and IS 292

D SLA 4: CS and ISP 318

E Specification - Combined 327

E.1 Package - ::types . 327

E.1.1 Enumeration - ::types::TimeUnit . 327

E.1.2 Class - ::types::Percentage . 327

E.1.3 Class - ::types::Duration . 327

E.1.4 Abstract class - ::types::Date . 328

E.1.5 Class - ::types::TAIDate . 329

E.1.6 Primitive type - ::types::Real . 331

E.1.7 Primitive type - ::types::Boolean . 331

E.1.8 Primitive type - ::types::Integer . 331

E.1.9 Primitive type - ::types::String . 331

E.2 Package - ::slang . 331

E.2.1 Abstract class - ::slang::AccuracyClause . 331

E.2.2 Abstract class - ::slang::AdministrationClause 333

E.2.3 Abstract class - ::slang::AuxiliaryClause . 336

E.2.4 Abstract class - ::slang::ConditionClause . 336

E.2.5 Abstract class - ::slang::Definition . 337

E.2.6 Class - ::slang::MutuallyMonitorableSLA . 337

E.2.7 Class - ::slang::PartyDefinition . 338

E.2.8 Class - ::slang::PenaltyDefinition . 338

E.2.9 Class - ::slang::PermanentFixedReportRecordingAccuracyClause 339

E.2.10 Abstract class - ::slang::ReconciliationAdministrationClause 339

E.2.11 Abstract class - ::slang::ReportRecordingAccuracyClause 340

E.2.12 Abstract class - ::slang::ServiceBehaviourDefinition 341

E.2.13 Abstract class - ::slang::ServiceBehaviourRestrictionConditionClause 341

E.2.14 Abstract class - ::slang::ServiceDefinition . 347

E.2.15 Class - ::slang::SLA . 348

E.2.16 Abstract class - ::slang::TerminatingConditionClause 349

E.2.17 Abstract class - ::slang::TerminationByReportAdministrationClause 349

12

E.2.18 Abstract class - ::slang::TerminationByReportConditionClause 350

E.3 Package - ::slang::es . 352

E.3.1 Enumeration - ::slang::es::ParameterKind . 352

E.3.2 Abstract class - ::slang::es::AvailabilityConditionClause 352

E.3.3 Abstract class - ::slang::es::AvailabilityDependentElectronicServiceUsage-

BehaviourDefinition . 357

E.3.4 Class - ::slang::es::ElectronicServiceClientDefinition 358

E.3.5 Class - ::slang::es::ElectronicServiceDefinition 358

E.3.6 Class - ::slang::es::ElectronicServiceInterfaceDefinition 359

E.3.7 Abstract class - ::slang::es::ElectronicServiceUsageBehaviourDefinition 360

E.3.8 Abstract class - ::slang::es::FailureModeDefinition 363

E.3.9 Class - ::slang::es::InformalFailureModeDefinition 363

E.3.10 Class - ::slang::es::InformalUsageModeDefinition 364

E.3.11 Abstract class - ::slang::es::LatencyFailureModeDefinition 365

E.3.12 Class - ::slang::es::OperationDefinition . 365

E.3.13 Class - ::slang::es::ParameterDefinition . 366

E.3.14 Class - ::slang::es::PermanentFixedServiceUsageRecordAccuracyClause 367

E.3.15 Abstract class - ::slang::es::ServiceUsageRecordAccuracyClause 367

E.3.16 Abstract class - ::slang::es::UsageModeDefinition 369

E.4 Package - ::services . 370

E.4.1 Class - ::services::Account . 370

E.4.2 Class - ::services::Administration . 371

E.4.3 Abstract class - ::services::Compensation . 372

E.4.4 Abstract class - ::services::Event . 372

E.4.5 Abstract class - ::services::Evidence . 373

E.4.6 Class - ::services::Party . 373

E.4.7 Abstract class - ::services::Report . 374

E.4.8 Class - ::services::ReportRecord . 374

E.4.9 Class - ::services::TerminationReport . 374

E.4.10 Class - ::services::Violation . 375

E.5 Package - ::services::es . 376

E.5.1 Class - ::services::es::BugFixReport . 376

E.5.2 Class - ::services::es::BugReport . 377

E.5.3 Class - ::services::es::ElectronicServiceClient 377

E.5.4 Class - ::services::es::ElectronicServiceInterface 377

E.5.5 Class - ::services::es::Operation . 378

E.5.6 Class - ::services::es::Parameter . 378

E.5.7 Class - ::services::es::ParameterValue . 379

13

E.5.8 Class - ::services::es::ParameterRecord . 379

E.5.9 Class - ::services::es::ServiceRequest . 380

E.5.10 Class - ::services::es::ServiceResponse . 381

E.5.11 Class - ::services::es::ServiceUsageRecord . 382

E.6 Package - ::combined . 383

E.7 Package - ::combined::slang . 383

E.7.1 Abstract class - ::combined::slang::ConsecutiveAdministrationClause 383

E.7.2 Class - ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenalty-

Definition . 385

E.7.3 Class - ::combined::slang::FixedPenaltyTerminationByReportConditionClause . 385

E.7.4 Class - ::combined::slang::PeriodicInterval . 386

E.7.5 Class - ::combined::slang::PeriodicProcess . 387

E.7.6 Class - ::combined::slang::PermanentFixedWindowFixedOccurrencesFixed-

PenaltyMinimalServiceBehaviourRestrictionConditionClause 389

E.7.7 Abstract class - ::combined::slang::PermanentFixedWindowFixedOccurrences-

MaximalServiceBehaviourRestrictionConditionClause 391

E.7.8 Class - ::combined::slang::PermanentFixedWindowFixedOccurrencesNo-

PenaltyMaximalServiceBehaviourRestrictionConditionClause 392

E.7.9 Abstract class - ::combined::slang::PaymentPenaltyDefinition 392

E.7.10 Class - ::combined::slang::ScheduledAdministrationClause 393

E.7.11 Abstract class - ::combined::slang::ScheduledClause 394

E.8 Package - ::combined::slang::es . 396

E.8.1 Class - ::combined::slang::es::ConsecutiveAvailabilityAwareAdministrationClause396

E.8.2 Class - ::combined::slang::es::FixedDeadlineTerminationByReportConsecutive-

AvailabilityAwareReconciliationAdministrationClause 396

E.8.3 Class - ::combined::slang::es::InformalSuccessModeDefinition 397

E.8.4 Class - ::combined::slang::es::ScheduledConsecutiveAvailabilityAwareReconciliation-

AdministrationClause . 397

E.8.5 Abstract class - ::combined::slang::es::SuccessModeDefinition 398

E.8.6 Abstract class - ::combined::slang::es::ViolationDependentElectronicService-

UsageBehaviourDefinition . 398

E.9 Package - ::combined::services . 399

E.9.1 Class - ::combined::services::PoundsSterlingPenaltyPayment 399

E.10 Package - ::sla1 . 399

E.11 Package - ::sla1::slang . 399

E.11.1 Class - ::sla1::slang::PermanentFixedWindowFixedOccurrencesFixedPenalty-

MaximalServiceBehaviourRestrictionConditionClause 400

14

E.11.2 Class - ::sla1::slang::PermanentFixedWindowFixedOccurrencesSteppedPenalty-

MaximalServiceBehaviourRestrictionConditionClause 400

E.11.3 Class - ::sla1::slang::SteppedPenalty . 400

E.11.4 Abstract class - ::sla1::slang::SteppedPenaltyClause 401

E.12 Package - ::sla1::slang::es . 401

E.12.1 Abstract class - ::sla1::slang::es::AsynchronousFailureModeDefinition 402

E.12.2 Class - ::sla1::slang::es::AsynchronousOperationDefinition 405

E.12.3 Abstract class - ::sla1::slang::es::DelegatedExecutionDependentFailureMode-

Definition . 405

E.12.4 Class - ::sla1::slang::es::DelegatedExecutionOperationDefinition 407

E.12.5 Abstract class - ::sla1::slang::es::ExecutableDefinition 408

E.12.6 Class - ::sla1::slang::es::FixedDurationExecutableDefinition 408

E.12.7 Class - ::sla1::slang::es::FixedLatencyAvailabilityDependentViolationDependent-

FailureModeDefinition . 409

E.12.8 Class - ::sla1::slang::es::FixedLatencyFixedDeadlineDelegatedExecution-

DependentAvailabilityDependentViolationDependentAsynchronousFailure-

ModeDefinition . 409

E.12.9 Class - ::sla1::slang::es::InformalAvailabilityDependentViolationDependent-

FailureModeDefinition . 410

E.12.10Class - ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability-

ConditionClause . 411

E.13 Package - ::sla1::services . 412

E.14 Package - ::sla1::services::es . 412

E.14.1 Class - ::sla1::services::es::DelegatedExecution 412

E.14.2 Class - ::sla1::services::es::Executable . 413

E.14.3 Class - ::sla1::services::es::ExecutionParameterRecord 413

E.14.4 Class - ::sla1::services::es::ExecutionParameterValue 414

E.14.5 Class - ::sla1::services::es::Node . 414

E.14.6 Class - ::sla1::services::es::SlowExecutionReport 414

E.15 Package - ::sla4 . 415

E.16 Package - ::sla4::slang . 415

E.16.1 Class - ::sla4::slang::FixedDeadlineScalingPoundsSterlingPaymentPenalty-

Definition . 415

E.16.2 Class - ::sla4::slang::PermanentFixedWindowFixedOccurrencesScalingPenalty-

MaximalServiceBehaviourRestrictionConditionClause 416

E.16.3 Abstract class - ::sla4::slang::ScalingPenaltyConditionClause 417

E.17 Package - ::sla4::slang::es . 417

15

E.17.1 Class - ::sla4::slang::es::ScheduledFixedLatencyAvailabilityDependentViolation-

DependentFailureModeDefinition . 417

E.17.2 Class - ::sla4::slang::es::ScheduledInformalAvailabilityDependentViolation-

DependentFailureModeDefinition . 418

E.17.3 Class - ::sla4::slang::es::ScheduledScalingPenaltyFixedDeadlineAvailability-

ConditionClause . 418

F Bibliography 422

16

List of Figures

2.1 A three-party electronic-service scenario . 27

2.2 An ASP scenario with distributed clients and multiple network providers 27

2.3 Example value flows in an ASP relationship . 29

2.4 Possible costs to the client in an ASP relationship . 30

2.5 Flows of value in an ASP relationship with compensation payments governed by an SLA 35

3.1 A UML model of bicycles . 51

3.2 The UML specification, with help from the dictionary, determines what real-world ob-

jects conform to a model . 53

3.3 An abstract syntax for a simple language for cataloging warehouses 57

3.4 The four-level meta-modelling architecture, as defined in the introduction to the UML

2.0 standard . 59

3.5 The EMOF meta-model from the draft MOF version 2.0 core proposal 61

3.6 Model-denotational semantics for the warehouse catalogue language 64

3.7 A UML model of a service-provisioning relationship 66

3.8 A more reusable UML model of a service-provisioning relationship 68

4.1 A specification used as input to a JMI generator. Abstract syntax and semantic docu-

mentation are available to the repository user via reflection 89

4.2 Recovering the meaning of an artifact by navigating links to concrete-syntax standards

and language specifications . 89

4.3 Editing a UML class in the Eclipse editor plug-in generated by the UCL MDA tools . . . 92

4.4 Design of the SLA checker . 97

4.5 The SLA checker component deployed to monitor an EJB application 98

4.6 The conceptual burden of a statement is divided between the language in which it is

expressed (including any extensions used) and the choice and arrangement of syntactic

elements in the statement itself. 103

4.7 A semantic model for the EMOF language . 109

5.1 An interaction model for application service provision showing actions and their associ-

ated events . 120

17

5.2 Monitorability is possible for ASP SLAs across chains of ISPs by regarding ISPs en-

capsulating the service as service providers, hence Ii = Si for i > 0. Clients may be

embedded in any network . 129

6.1 Service provision in three-tiered architectures . 140

6.2 The package structure of the SLAng language specification 143

6.3 Party and service definitions in SLAng . 144

6.4 Condition definitions and the calculation of violations related to SLAng SLAs 146

6.5 The administration of SLAng SLAs . 148

6.6 Accuracy constraints in the SLAng langauge . 150

6.7 Clauses governing the final administration of a terminated SLAng SLA 151

6.8 Conditions and semantics related to the termination of SLAng SLAs 153

6.9 Accuracy clauses governing the recording of the exchange of reports related to SLAng

SLAs . 154

6.10 Definitions of electronic services in SLAng, and corresponding semantic elements 155

6.11 The behaviour of electronic services, assumed by the SLAng semantics 156

6.12 Clauses supporting conditions related to restrictions on service behaviours 158

6.13 Service behaviours relevant to reliability, timeliness and availability conditions 160

6.14 Clauses constraining the accuracy of reporting of service usages 163

6.15 Availability clauses and supporting semantics . 164

6.16 Electronic-service behaviours may be conditional on the state of availability of the ser-

vice in some usage mode . 165

6.17 Syntactic elements supporting the specification of SLAs, but independent of service type,

in the SLAng language specification . 168

6.18 Semantic elements descriptive of SLA relationships independent of the types of service

of which conditions are expressed, in the SLAng language specification 169

6.19 Syntactic elements supporting the specification of SLAs for electronic services, in the

SLAng language specification . 170

6.20 Semantic elements descriptive of electronic services in the SLAng language specification 171

6.21 Relationships between syntactic and semantic elements in the SLAng language specifi-

cation . 172

7.1 Case study phases, and the information gathered in each. Arrows indicate derivation

relationships between the information, with the target of an arrow derived in some part

from the source. 176

7.2 Workflow in the polymorph-search service . 181

7.3 Service infrastructure in the e-Materials case-study . 184

7.4 The location of nodes within networks in the eMaterials scenario 185

18

7.5 SLAs for the eMaterials scenario, located at network boundaries where events occur, to

which they are pertinent . 190

7.6 Service-behaviour-restriction conditions extended for SLA 1 198

7.7 Success-mode types for SLA 1, enabling the definition of positive outcomes, supporting

the definition of the simulation-throughput condition 199

7.8 Syntactic and semantic elements supporting the definition of penalties requiring the pay-

ment of a sum of money in Pounds Sterling . 200

7.9 Latency, and informal, functional, failure-mode types for SLA 1 201

7.10 An availability clause type appropriate to SLA 1 . 203

7.11 Clause-types for defining asynchronous electronic-service failure modes 205

7.12 Domain-model extension describing the behaviour of delegated execution services . . . 205

7.13 Clause-types for describing a delegated-execution electronic service 206

7.14 The ‘simulation’ failure mode, combining a number of more abstract failure-mode types 207

7.15 Abstract and concrete administration clause types for SLA 1 208

7.16 Administration and condition clause types related to the termination of an SLA, appro-

priate to SLA 1 . 210

7.17 A scheduled availability type, guaranteeing availability only according to a specified

schedule, in support of SLA 4 . 211

7.18 Scheduled latency and informal functional failure mode types in support of SLA 4 212

7.19 Condition clause and penalty definition types implementing scaling penalties for SLA 4 . 213

19

List of Tables

5.1 Results of a monitorability analysis for the ASP scenario, with performance of depth-first

search algorithm . 127

8.1 Various measures of the size of the SLAng specification 232

8.2 Sizes for various sub-components of the SLAng language, and language extensions and

SLAs produced in the case-study . 234

8.3 New sizes of the language extensions for the case-study SLAs after common elements

are combined . 237

B.1 HTTP service interface to the Polymorph search webclient, returning static

pages . 276

B.2 HTTP service interface to the Polymorph search webclient, for submission of

configuration files and execution of experiments . 277

B.3 HTTP service interface to results generated by the Polymorph search webclient 278

B.4 SOAP interface to the plotws webservice . 285

20

Chapter 1

Introduction

1.1 Background

In the outsourcing business model, a client organisation depends on one or more provider organisations

to deliver services that realise some elements of the client’s objectives. A reduction in the quality of

these services causes some degree of suffering on the client’s part, so the client needs to take measures to

control its exposure to this risk, by ensuring that the services can be expected to be of a consistently high

quality, or that the client is adequately compensated in the event of a deterioration of service quality. The

stringency of such measures should of course be related to the value of the service to the client, and the

client’s perception of the likelihood of harm.

A number of measures can be taken by the client to control its exposure. They may select services on

the basis of the reputation of a supplier, or on the maturity of the service, or on the degree of competition

present in the marketplace for services, a possible driver of quality. The client may require that services

must be implemented using particular technologies or methodologies, which guarantee certain properties

of the services (e.g. hard-real-time operating systems offer the guarantee that correctly-implemented

processes will complete within a fixed deadline [68]). The client may require a due-diligence inspection

of the provider, to obtain some measure of confidence in the management of the service. The client may

also or alternatively enter into a Service-Level Agreement (SLA) with the provider, in which constraints

on the behaviour of the service are described, and financial penalties may be associated with violations

of these constraints.

Application-Service Provision (ASP) is an umbrella term for the implementation of services in

which a large component of the interaction between client and provider occurs over a computer network.

Various middleware technologies have been designed to support ASP. When the client and provider

are financially independent, ASP may be seen as an example of outsourcing, and is therefore expected

to deliver the same benefits, allowing clients to concentrate on their core competencies and creating

a competitive market for services, thereby lowering costs and driving quality. However, it has been

asserted that the widespread adoption of this practice has been hindered by the high degree of diversity

of technical services, and the lack of strong trust relationships in a global internet setting [97]. In this

dissertation I argue that these factors represent financial risks to the client, and it is these risks that have

limited the adoption of the ASP model. Clearly, SLAs are a potential mechanism to mitigate these risks,

increasing the attractiveness of the ASP model.

1.2. Problem statement 21

1.2 Problem statement
The adoption of a technical language for specifying all or part of an SLA may be justified by a number

of requirements for SLAs: most obviously by the common desire to utilise SLA information in technical

service infrastructure, but also by the need to reduce the cost of SLA preparation without diminishing the

quality of the SLAs. This cost may be reduced by the reuse of an appropriate language – the syntax to

guide the design towards good SLAs, and the semantics to convey some of the intent of the agreement,

reducing the effort required to author an SLA. Validation may be assisted by syntactic and semantic

checking built into tools based on the language.

In all language design a tension exists between expressiveness and concision: the broader the do-

main of things that a language can describe, the more complex the language must become; or else the

more abstract the concepts that it can express directly must be. In either case, the cost to the user of the

language increases – either he must learn to use a more complicated language, or his statements must

bear more of the burden of expressing his intent, and validation will be less automated. Therefore it

is common to restrict the domain of a language to preserve concision. This decision, and the obvious

appropriateness of SLAs to the ASP domain, appears to have motivated the design of a number of prior

languages focussed on expressing SLA information that is applicable to the ASP domain.

None of these languages have found widespread adoption, and if the assumptions that that the

ASP model is desirable, and that the use of appropriate SLAs makes it more desirable, are retained,

then it is reasonable to conclude that these languages are not providing significant assistance in the

production of appropriate SLAs. Having reviewed the prior languages, I contend that this is because

none of the languages allow the expression of SLA conditions that convincingly mitigate the real risks

involved in entering into an ASP relationship for at least one of two main reasons: either no support

is provided for expressing the risk-mitigating conditions required, or the agreement once written seems

to provide no real assurance that the parties can or will respect it. This latter flaw may be caused by

two main deficiencies in an SLA: either a lack of precision in describing the agreement, or the inclusion

of conditions that a dishonest or incompetent party could ignore without consequence. Note that if no

confidence exists that parties will respect the initial intent of an SLA, then the SLA will not be effective

as a means to mitigate risk, as a party may not be able to receive compensation for an injury it has

sustained. Having the SLA would be no better than not having the SLA.

Clearly, the lack of language support for writing useful SLAs is a problem that is feasible to address

and the solution to which will hopefully be of general benefit.

1.3 Contribution
The main contribution of this dissertation is to demonstrate convincingly the thesis stated in the front-

matter, specifically that it is possible to provide practical language support for the authoring of ASP SLAs

that is demonstrably better than that provided by previous languages in two particular ways: first, that

real support is provided to express SLA conditions that mitigate the risks inherent to the ASP scenario;

and second, that disputes concerning SLAs written in this manner will be easier to resolve in a manner

consistent with the original intent of the agreement. This is achieved in three steps, described in the

1.3. Contribution 22

following subsections:

1.3.1 Requirements analysis

First, the role of SLAs as a mechanism for mitigating risk in the ASP scenario is further motivated and

a detailed list of requirements for such SLAs and a language in which to express them are developed.

The requirements and the accompanying discussion of the ASP scenario establish the assumptions upon

which this work rests. The requirements provide a basis for the comparison of ASP SLA languages,

and inform the subsequent design of a new language. The requirements and the rationale behind them

should be considered the first contribution of this work to ASP SLA design, since no previous work has

presented a thorough treatment of requirements for ASP SLA languages.

1.3.2 The SLAng language

Second, an abstract core language of conditions for ASP SLAs, SLAng, is developed, in an attempt to

satisfy the identified requirements to the maximum extent possible.

SLAng incorporates a number of theoretical advances, each of which represents a contribution of

this work to the state of the art in ASP SLA language development, and in SLA development more

generally. These are:

• the adoption of the model-denotational approach to defining the abstract syntax and seman-

tics of the language;

In this approach an object-oriented formalism is used to describe the structure and domain of

a language. By applying this approach a high degree of precision and understandability in the

definition of SLAng is achieved. The presence of the domain model and its explicit relationship

to the structure of the language makes it straightforward to understand what aspects of the service

are being constrained, what should be monitored, and how the parties should behave to comply

with the SLA.

I discuss the application of this approach to the problem of developing a language for SLAs, which

suffers from conflicting requirements. An SLA language should reduce the cost of preparation of

SLAs by encoding common domain knowledge, thereby allowing SLAs to be expressed concisely.

However, the conditions required in an SLA may be related to a huge range of factors external to

the technical implementation of a service, implying the need for a highly-expressive, generalised

language. I describe how these requirements can be reconciled by the production of an abstract,

extensible, domain-specific language, which captures the essential aspects of its domain, relies on

the meta-modelling language in which it is defined to provide general expressive capabilities in

extensions when required, but also provides structural guidance for the definition of those exten-

sions.

Based on experience obtained applying the approach, which was originally proposed by other re-

searchers as a means to formalise modelling languages, I have suggested refinements to the under-

lying standards on which the approach relies, to improve its precision and to maintain traceability

between statements and the languages in which they are written, general requirements inspired by

the application of the approach to the SLA domain.

1.3. Contribution 23

I have also demonstrated how generative programming standards can be combined with the ap-

proach to efficiently implement a checker component. This can be used as a syntactic and semantic

checker for statements in the language. It can also be used to test the language, its extensions, and

statements in the language, lending confidence to the assertion that an SLA written in the lan-

guage genuinely captures the intent of the parties with respect to some agreement written in the

language. I have also evaluated its use as part of the implementation of a runtime monitoring

system for SLAs.

• a method for the analysis of monitorability of systems of SLAs;

Monitorability concerns the ability for parties to obtain reliable evidence about the events pertinent

to compliance with an SLA. A party entering into an SLA will have more confidence that disputes

relating to the SLA will be resolved according to the original intent of the agreement if they can

monitor compliance to the SLA by other parties to the agreement.

Systems of SLAs may be classified according to the least monitorable SLA that they contain.

The result of applying our analysis to a typical ASP scenario, involving financially independent

client, service-provider and network-service provider parties, is that mutual monitorability is the

best level of monitorability for a safe system of SLAs in the ASP scenario, assuming that tamper-

proof monitoring systems are not available. Significantly, this degree of monitorability can only be

achieved by a single configuration of SLAs in which parties only participate in SLAs which have

conditions related to events occurring at the interfaces between their own technical infrastructure

and that of another scenario participant. This result implies that network service providers may

need to act as re-sellers of application services, a business model not in common usage today. It

also suggests that only electronic-service oriented, rather than network-oriented SLA vocabulary,

is necessary to insure end-to-end quality-of-service properties. Hence, this has allowed a focus on

mutually monitorable, electronic-service oriented SLAs in the design of SLAng.

• an approximately-monitorable measurement-accuracy constraint;

If SLAs are at best mutually monitorable, then the client and provider of the service will have to

periodically meet to produce a reconciled account of service behaviour from which to calculate

penalties. SLAng includes support for specifying how this procedure should take place; further-

more, the parties must be constrained to report honestly, whilst accommodating an inevitable

amount of disagreement due to measurement error. I show how to write such a constraint in such

a way that it is approximately monitorable using a statistical hypothesis test based on the com-

parison of trusted and un-trusted monitoring logs. Support for the constraint is included in the

language.

• support for expressing mutually-monitorable conditions appropriate to the scenario.

SLAng has been developed to include support for expressing conditions to mitigate risks implied

by the scenario, in such a manner as to preserve mutual monitorability. These include constraints

to mitigate risks due to bad behaviour by either party. Bad behaviour in general must be defined in

1.3. Contribution 24

a service-oriented manner, but the prevalence of electronic services in ASP scenarios enables the

need for reliability, latency and throughput conditions to be anticipated and supported. Conditions

are also developed to mitigate the risk of early termination of the agreement by either party.

1.3.3 Evaluation

The final step in demonstrating the thesis is achieved by evaluating SLAng to show that it provides

practical language support for ASP SLAs, can express SLAs that better mitigate the risks implied in the

scenario than those expressible using prior languages, and that disputes concerning SLAs written using

SLAng will be easier to resolve in a manner consistent with the original intent of the agreements, thereby

using the example of SLAng to show that such support is possible.

The evaluation is achieved by a number of means:

• SLAng is evaluated critically in comparison to previous languages developed for the same purpose

according to the criteria set by the requirements developed for such languages. The broad survey

of ASP SLA languages and related technologies included in this evaluation is a contribution of

this work to existing literature on SLAs;

• SLAng is used to support the expression of SLAs in a case study. The case study focusses on

an existing service that allows the execution of large-scale computational experiments on grid

resources, an endeavour involving several financially independent parties. I present a risk analysis

of the scenario based on the activities required to conduct the experiment. I then design a system

of SLAs capable of mitigating these risks, and implement the SLAs using extensions to SLAng;

• to assist in the evaluation of SLAng I develop a theory of metrics for domain-specific languages,

based on the idea that the expressive burden of a statement is spread across the syntax of the

statement and the definition of the language in which it is written. This idea gives rise to precise

definitions of properties of languages with intuitive appeal: the power of a language in relation to

a statement can be defined as the relative size of a statement and the language elements used to

construct the statement; specificity and adequacy measures can be defined similarly. These met-

rics provide quantitative support for the qualitative argument that SLAng provides good practical

support for expressing the SLAs required by the case study.

These exercises combine to demonstrate the thesis as follows: first, SLAng is shown to better

express SLAs that mitigate the true scenario risks by identifying these risks in a theoretical discussion of

the scenario, then by observing that these same risks credibly exist in the case-study scenario, and finally

by finding in the critical review that other languages do not provide good support for mitigating these

risks, whereas SLAng does.

Second, I argue that disputes concerning SLAs expressed in SLAng should be easier to resolve in a

manner consistent with the original intent of the agreements by noting that SLAng benefits from a more

precise language specification than alternative languages, and that its semantics support the creation of

mutually-monitorable SLAs, whereas prior languages do not provide any explicit support for this. These

two properties should tend to allow disputes to be more easily resolved in a manner consistent with

1.4. Structure of the dissertation 25

the original intent of the agreement, since the resolution of a dispute depends only on determining the

intent of the SLA with regard to reliable evidence concerning the behaviour of the service. Also, by

demonstrating tool support for checking the SLAs, I show that it is possible to obtain confidence that the

SLAng SLAs capture the original intent, and that conformance to the SLA can be checked under some

circumstances using the tools.

Finally the case-study has permitted a demonstration of the practicality of SLAng. I support this

assessment quantitatively using my metrics to assess the power, adequacy and specificity of the core

language and extensions. I demonstrate that evolution of the language will be possible in the future

to increase its adequacy, with specificity measurements used to control the evolution, preventing from

becoming bloated and therefore difficult to use.

1.4 Structure of the dissertation
In the next chapter, I introduce the ASP scenario and the use of SLAs in detail, in order to state the

assumptions upon which this work is founded; I then develop requirements for systems of SLAs in the

ASP scenario, languages for ASP SLAs and specification documents defining languages for ASP SLAs

based on these assumptions.

In Chapter 3 I describe an approach to defining domain-specific languages appropriate to languages

for ASP SLAs.

In Chapter 4 I describe enhancements to the underlying meta-model standards employed in Chap-

ter 3 to improve the precision of language specifications and language statements. I also describe tools

based on these standards and the proposed improvements, supporting the authoring an mechanical valida-

tion of language specifications and statements. I discuss the potential of such tools to assist in monitoring

conformance to SLAs. Finally, I describe a theory of metrics that may be helpful in the evaluation and

evolution of domain-specific languages.

In Chapter 5 I describe a theory of monitorability, and the results of a monitorability analysis applied

to the ASP scenario; I also describe the design of a constraint on the accuracy with which parties must

report measured values when administering an SLA, and demonstrate that the constraint is approximately

monitorable.

In Chapter 6 I describe the design and implementation of the SLAng language.

In Chapter 7 I describe a case-study of the use of SLAng to specify SLAs for an application-service,

provided by a federation of several financially-independent parties, implementing the facility to perform

computation experiments of interest to chemists at University College London.

In Chapter 8 I summarise the evaluation of SLAng, as described above, including an evaluation

of SLAng against my requirements, and in comparison to alternative languages. I also use the metrics

developed in Chapter 4 to demonstrate the power, adequacy and specificity of the language in relation to

the case-study, and to demonstrate a process of refinement by which the language may be improved in

the future.

In Chapter 9 I summarise this work and discuss future research challenges.

26

Chapter 2

Requirements

In this chapter I describe the assumptions upon which this work rests, and then develop a set of re-

quirements for systems of SLAs for ASP, languages for such systems, and the specifications of such

languages, the quality of which has a direct impact on the practical usefulness of the language.

2.1 The Application Service Provision (ASP) scenario
In this section I start by examining the ASP scenario more closely.

In ASP, communication and processing are implemented to a large extent using electronic services.

An electronic service is software executed on a network-connected node, and allows the communication

with a client using protocols typically based on requests and responses.

At least three roles are usually involved in the provision of an electronic service. These are the client

C, the service provider S and the network-service provider, in the context of the Internet also known as

an Internet-Service Provider (ISP), denoted by I . The scenario is depicted in Figure 2.1.

The client, utilising some appropriate client software, submits requests to the service at its discre-

tion, or according to a loose schedule. The network, under the supervision of the ISP conveys these

requests to the service, which performs some appropriate processing, possibly performing or instigating

some real-world activity as a result, and possibly storing or modifying some data held on behalf of the

client. The performance of the service is the responsibility of the service provider. In due course, a

response may be returned to the client via the network.

The implementation of this type of electronic communication is supported by a number of mod-

ern middleware systems, including various Remote Procedure Call (RPC) implementations [17, 128],

the OMG’s CORBA [90], Microsoft’s DCOM [65] and .NET [66], Sun’s J2EE [127], and Web Ser-

vices [145]. Web-server technology, for example the Apache [4] web-server, also implements this type

of communication, based on the HTTP protocol [37].

In any of the above mentioned technologies, requests to the service carry information in the form

of parameters. In general, one parameter identifies the particular function of the service being invoked.

I therefore state that a service consists of a set of named operations.

Responses may also convey information in the form of parameters or be empty signifying a simple

acknowledgement of the request. I do not assume a synchronous model of communication between

individual client programs and the server. Responses may never be generated. Multiple requests may be

submitted by a single instance of client software before any response is returned by the service.

2.1. The Application Service Provision (ASP) scenario 27

C SI

Figure 2.1: A three-party electronic-service scenario

The ASP scenario characteristically involves the provision of at least one electronic service by a

provider party to a client party. However, multiple electronic services may be involved in the provision of

one application service to a client. The service provider may permit the client to access multiple, related

electronic services. The client software may also implement electronic services, as well as having the

capability to access them. As part of the application service provided to the client, the service provider

may spontaneously invoke operations on an electronic service implemented by the client software to

push information to the client.

The distinction I maintain between electronic services and application services is that an application

service consists in the overall delivery of some utility by the provider to the client, whereas electronic

services are merely individual channels of communication. When I refer to client and provider parties in

this work, I am referring to the client and provider of the application service, unless otherwise stated. I

also refer to individual electronic services as service interfaces below, and use the term ‘service’ inter-

changeably to refer to either an overall application service or an individual electronic service, provided

that it is clear from the context what is intended.

Commonly, more than one ISP may be involved in the delivery of messages, with ISPs exchanging

the messages at the boundaries between their networks. Client programs under the control of a single

client organisation may also be distributed in the network. This more general scenario is depicted in

Figure 2.2

C

C
C

C C

SI

I

I

I1

2

3

4

Figure 2.2: An ASP scenario with distributed clients and multiple network providers

2.1. The Application Service Provision (ASP) scenario 28

Assuming that an application service already exists with the potential to meet some requirement of

the client’s, a service-provision scenario is established as follows:

1. the client first discovers the service, perhaps assisted by some directory technology such as

UDDI [101];

2. the service will consist in part of electronic services offered at one or more particular points in

some network(s). In order to access the service, the client must obtain access to some minimal

subset of these service-provision points. Before beginning to use the application service, the client

will assess the feasibility of obtaining such access;

3. the client assesses the feasibility of implementing or obtaining client software capable of using the

application service;

4. assuming the client believes it feasible to access and use the application service, they may then

wish or need to contact one or more parties offering access to the service. The client may need

to obtain permission to use the service, as attempting to use a service without permission could

be construed as malicious behaviour. The client may also wish to negotiate an SLA with the

provider, as discussed further below. The service provider contacted need not necessarily be the

actual provider of the service, but will take responsibility as such;

5. access to the service may be controlled by technical means, such as the need for a username and

password. Assuming the client meets or undertakes to meet any necessary conditions, the service

provider will arrange for any necessary credentials to be provided to the client;

6. the client will take whatever measures necessary to obtain access to the points of service provision;

7. the client will implement or obtain client software capable of using the application service;

8. the client will begin to attempt to use the service.

Application services may be offered for free, and require no contact between client and provider

prior to an attempt by the client to use the service. Alternatively the provider may require the client to

pay and/or enter into an agreement of some kind to govern the relationship.

The client will continue to attempt access the service until they choose or are forced to cease. This

may occur in response to its permission to use the service lapsing, the service becoming unavailable

for some technical reason, the client losing the capability to access the point of service provision, a

deterioration in the client’s relationship with the provider, or for any other reason.

Service-provision relationships vary in the amount of time that they last, from a single invocation,

to years. In practice, the client and the provider may be the same party, using a service model as a

convenient way to coordinate some larger activity. Alternatively, the client and provider might have had

no prior contact whatsoever, and only interact via the network.

2.2. ASP risks 29

2.2 ASP risks
2.2.1 Risks to the client

A client is exposed to two major risks when employing an application service provided by a second

party. First, I assume that a client is only ever motivated to use any kind of service because the service

as advertised by the provider has the potential to deliver some value to the client. Therefore the client

assumes the risk that the service will not meet some requirements necessary to deliver this value. The

magnitude of this risk will depend on the reliance the client has on the service; at best the client may

only have wasted its time, but the consequences may be far more severe. In any case the client will incur

a cost, either directly or in terms of lost revenue. Such costs may occur occasionally or, if the service

deteriorates but the client is unable to quit the service-provisioning relationship, over a long period.

Second, the client will generally have to make an initial investment to acquire or implement client

software capable of using the service, or more generally to integrate the service into its IT infrastructure.

If the service ceases to work altogether within the expected period of service-provisioning, degrades to

the extent that it is no longer cost-effective for the client to rely on the service, or if for any reason the

service provider prematurely withdraws permission for the client to access the service, then the client

will have lost some opportunity to recuperate those costs.

These risks are illustrated in Figure 2.3. The graph depicts four flows of cash or value over time,

related to a hypothetical service: the client’s expected spend, the client’s actual spend, the client’s ex-

pected return and its actual return. The relationship between the client and the provider can be seen to be

divided into two phases, the integration phase and the operation phase. During the integration phase, the

client spends to integrate the service, and receives no value from the service. During the operation phase

the client (potentially) incurs operating costs as a result of using the service, but has the opportunity to

receive value in return.

time

value integration
phase

operation
phase

expected spend
actual spend
expected return
actual return

key:

Figure 2.3: Example value flows in an ASP relationship

The graph depicts a relationship in which the operating period is shorter than expected for some

reason, and the client is able to receive less value than expected during the operating period due to poor

2.2. ASP risks 30

service performance. Although the client has had to pay for the service for less time than they expected,

the total amount they earn has been rendered unprofitable compared to its initial integration costs.

Both of these types of cost, which I refer to as inefficiency and termination costs, are opportunity

costs. The client has lost an opportunity that they expected to have, as a result of using a service, to

obtain some return.

An alternative way to view the costs incurred by the client over the lifetime of the service-provision

relationship is depicted in Figure 2.4. Here the opportunity costs are represented as direct costs to the

client. Note that because in this case the client expected to obtain a return from using the service at

a constant rate, the cost due to poor service performance is the mirror image of the income shown in

Figure 2.3. The termination cost is the lost income minus the saving in reduced operating costs. Since

the income would not have been received all at once, this cost can be regarded as being spread over the

interval following the actual termination of the service-provision relationship until the moment the client

expected the relationship to end.

time

value integration
phase

operation
phase

integration
cost inefficiency cost

operating cost

termination
cost

Figure 2.4: Possible costs to the client in an ASP relationship

This example makes plain the fact that using an outsourced service is a gamble. The client will

make predictions concerning what they will spend on the service during the lifetime of the relationship,

and concerning what they will be able to earn or receive in consequence. If these guesses are wrong, the

client suffers.

The alternative to using an outsourced service is for the client to implement an equivalent service

in-house. This will not always be possible, as the nature of a service may mean that not all parties will be

capable of providing it. However, assuming that it is possible, it is helpful to consider the risks associated

with this option in order to understand how outsourcing risks may be more or less problematic.

The risks associated with implementing a service in-house might plausibly result in a graph of

exactly the same form as Figure 2.3, but the causes of spending and lost income will be different. Initial

expenditure is now due to the cost of implementing the service rather than integration. The service might

still generate less value than expected due to a lower than expected quality of implementation resulting in

buggy behaviour, or an inability to correctly maintain the service. These will be inefficiency costs. If this

becomes intolerable, the system may suffer premature obsolescence, essentially implying a termination

cost. The similarity between the two scenarios makes intuitive sense. In both cases the client is relying

on the competence of some party to provide a service: in the outsourcing case, that party is a second

2.2. ASP risks 31

party; in the in-house case, it is itself.

The key difference between these two scenarios is in the client’s belief in its ability to predict the

amount of risk involved in each. A party might think they have a better understanding of its own ability

to implement and maintain a service than it does of the ability of a second party to deliver the service.

It may therefore believe that it can better control opportunity costs due to poor service performance.

Similarly, it might have more confidence in its own commitment to the service, and ability to regulate

itself financially, than it does of a second party. Hence the party may assume that a service it implements

itself will be available for as long as is required.

It is in the nature of ASP services that the parties tend to be distributed, with the main communica-

tion occurring over a network, most commonly the Internet. This tends to limit the amount of information

that parties have about one another. For a potential client party, this makes it hard to assess the likelihood

that a service will perform well, and be available as required over some reckoning period. With limited

ability to quantify these probabilities, a prudent party will assume the worst. The overall risk of outsourc-

ing will therefore be primarily related to the value of the service to the client, and the client will only be

prepared to enter into low-value relationships, or will otherwise choose to implement services in-house.

I argue that this is the main discouragement for parties wishing to make use of outsourced services, and

the reason that service-oriented technology, such as middleware, has thus far found its principle applica-

tion in structuring the activity within the administrative domain of individual large organisations, such

as banks and retailers, or in very high-value relationships where costly risk-mitigation techniques such

as due-diligence inspections or natural-language SLAs prepared by lawyers are feasible.

2.2.2 Termination risks

The graphs presented in the previous section allow a more complete consideration of the effect of the

termination of a service provision relationship on a client party. The party will have at most three options:

they may find and integrate a replacement outsourced service; they may implement an equivalent service

in-house; or they may give up hope of receiving value due to the service.

Assuming the first service is performing adequately, then early termination by the provider will be

a risk to the client, as it will lose the opportunity to recuperate its initial integration costs, and may incur

the costs involved in integrating or implementing a replacement service.

However, if the original service is producing low returns, the client may wish to force early termina-

tion, either to cut its losses if the operating cost exceeds the value offered by the service, or because they

prefer to invest in a new service what would otherwise have been spent in operating costs for the old. In

this case being locked into a relationship with the first provider will represent a risk to the client, as the

ongoing operating costs of the first service might be onerous or render the integration or implementation

of a second service financially impractical.

2.2.3 Risks to service providers

A discussion of ASP risks would be incomplete without mentioning that permitting the client to access an

application service may represent a risk to the other parties in the scenario, namely the service provider

and the network-service provider, or ISP.

2.3. What is a Service-Level Agreement (SLA)? 32

Perhaps the most basic risk that the client poses to these parties is that they will choose to use the

service. If they do so they will inevitably consume network and computing resources, resulting in costs

to the providers.

The providers will also have to invest money and effort in implementing the service and its support-

ing infrastructure (for example, the network). This will represent a cost to the providers, if they cannot

find a way to profit from the service.

Unlike the risks to the client discussed above, these risks are actually quite easy for the providers

to mitigate, and are therefore not limiting factors in the adoption of the ASP model. Since the service

provider and network-service provider directly or indirectly control access to the service by the client,

they can simply deny access to the client, preventing the client from using the resources. This can be

used to hold the client to ransom, forcing it to pay for the privilege of using the service (what might be

considered a ‘pay-as-you-go’ scheme), or obliging it to enter into an agreement that includes a commit-

ment to reimbursement. In this latter case, the client will likely demand some reciprocal guarantees with

respect to quality-of-service, and the commitment becomes an SLA.

2.2.4 The magnitudes of ASP risks

I make no assumptions concerning the magnitude of any of the risks described in this section. The

magnitude of a risk is related to the likelihood of an event occurring and the degree of harm caused by

that event: parties may or not behave reliably, particularly if there exists a financial incentive to cheat, so

the probability of harm occurring is not bounded below; the costs of delivering a service, the gains to be

made by using a service, and therefore the potential financial losses associated with service provision,

are entirely dependent on the circumstances of the scenario, and are therefore not bounded above.

2.3 What is a Service-Level Agreement (SLA)?
A Service-Level Agreement (SLA) is an agreement between the client and the provider of some service.

The term ‘service-level agreement’ implies that an SLA includes permission for a client to attempt to

use a service. This is necessary as the client cannot expect to receive any level of service if they are not

permitted to request service. It also implies that such an agreement will include at least some guarantee

by the provider in relation to the service meeting certain requirements – some attempts to access the

service by the client must result in some level of service, a refusal to provide service being no service

at all. The nature of these requirements will depend on the type of the service, and on the outcome of

negotiations between the parties.

However, simply defining what is required from a service by no means guarantees that that this will

be provided. Therefore, an SLA primarily represents some guarantee to the client that the service will

either meet the stated requirements or there will be consequences that will tend to compensate the client

for the harm it suffers due to these requirements being missed.

If an SLA is protected by law, then it is a contract. However, not all SLAs are contracts, as SLAs

are sometimes used to coordinate activities within large organisations. Such an organisation will fulfil

multiple roles in the scenario, and the roles are therefore not filled by financially independent parties.

If the service fails to meet the client’s requirements, the agreement may be broken. If the agreement

2.3. What is a Service-Level Agreement (SLA)? 33

is a contract, the client may seek compensation in a court of law. If the agreement is more informal, the

breach of the agreement may have other consequences for the relationship between the client and the

provider, or the management of these parties.

In some cases, regarding the agreement as having been breached the first time that the service

fails to meet some requirement is not practical. Instead, the provider may agree to provide some kind

of compensation to the client in this event. Providing the compensation is paid, the agreement is not

breached, and the parties are satisfied.

The association of consequences for the provider, potentially including penalties, with the violation

of the client’s requirements for the service implies that SLAs have the potential to mitigate risks to the

client related to the behaviour of the service.

In such an SLA, the provision of compensation by the provider in the event of poor performance by

the service becomes a constraint. This suggests that the SLA is not only concerned with the behaviour

of the service, but also that of the service provider.

SLAs may also function as a means for the provider to charge the client for using a service. This

helps to mitigate the financial risk to the provider inherent in developing the service originally. An agreed

charging scheme will also become necessary, because by entering into an SLA a provider will typically

agree to suffer negative consequences as a result of withholding access to the service from the client.

This may effectively eliminate this as a mechanism available to the provider to mitigate the risk that the

client will choose to use the service, hence implying costs to the provider. The provider of a service may

therefore, in some service-provision relationships, reasonably seek to impose conditions on the client,

for example that the client pay to use the service, to mitigate risks of this kind to the provider.

The client may also have the potential to behave in a manner more or less objectionable to the

provider. The provider may agree to tolerate some bad behaviour in return for some kind of compensa-

tion, or a relaxation of their own obligations.

An SLA may therefore be a mechanism by which either party may become liable to provide com-

pensation to the other party. In this respect an SLA can represent an additional risk to either party, which

is that they will by some means be forced into a situation where it is unavoidable that they must incur a

penalty according to the terms of the SLA. Clearly for SLAs to be an attractive means to mitigate risk,

they must be as non-exploitable as possible.

Either party may wish to establish the right to terminate the agreement under certain conditions. If

payment is required, the client will wish to quit the agreement if service performance is consistently bad.

The provider may wish to withdraw permission for the client to access the service if the client behaves

consistently badly.

Similarly, either party may wish to receive guarantees as to the lifetime of the agreement. The

client may be benefiting from the service, and wish this to continue. The provider may wish to safeguard

payments for the service to cover an initial investment in the service or turn a profit. Penalties for either

party may be related to the early termination of the agreement by that party.

To summarise, an SLA provides permission for the client to access a service in some manner that

2.4. SLAs for application services 34

is acceptable to both client and provider, and will also define conditions relating to the behaviour of the

service, with the provider considered to be responsible for violations of these conditions. Additionally,

conditions may be placed on the behaviour of the client and the provider. Violation of a condition

may result either in a breach of the agreement, in which case the consequences for the parties in their

continuing relationship will no longer be explicitly governed by the SLA (although the SLA and the

nature of the breach may be highly pertinent to subsequent events in the relationship between the parties),

in an obligation for the responsible party to perform some compensating action, or in a modification of

the effect of other conditions in the SLA.

Henceforth I only consider SLAs with a concrete representation, not word-of-mouth agreements,

or de-facto agreements. When I refer to an SLA below, I am referring to a concrete representation of the

agreement.

SLAs represent an agreement between two parties. The conditions encoded in an SLA are therefore

not the whim of any one party, but a result of negotiation between the parties. It is nevertheless possible

for a service provider to offer standardised commodity SLAs for its services, into which a client may

choose to enter.

2.4 SLAs for application services
In the preceding sections I described the risks to parties in the ASP scenario, and suggested that the risk

to clients significantly inhibits the adoption of the ASP model; I also described the potential of SLAs to

mitigate risks to parties in a service provisioning relationship. I now briefly discuss the particular role of

SLAs for ASP.

SLAs clearly have the potential to be used to mitigate the risks in the ASP scenario, by associating

compensation for the client with poor service performance, compensation for either party with early

termination of the service, and by providing a mechanism for the provider to charge for the service.

Figure 2.5 reprises the example service-provision relationship described in Section 2.2. Now an

additional cash-flow is depicted representing compensation payments paid by the provider to the client

according to the terms of an SLA. Note that compensation is paid in response to poor performance of

the service, and in the event of early termination of the relationship, and goes some way to balancing the

inefficiency and termination cost incurred by the client. The client’s operating costs for the service may

now be (at least partially) explained in terms of payments required by the provider under the terms of the

SLA.

It cannot be assumed that SLAs will be able to mitigate all risk to the client in all circumstances.

The value of a service to a client will vary, and the service provider should not necessarily be expected

to indemnify its clients against all kinds of risk. Moreover, in situations in which the service provided is

hard to reproduce, or in which the existence of the service offers a business opportunity to the client, the

service provider may not have to offer strong guarantees in order to retain its clients. However, even in

these circumstances, an SLA can be used to adjust the level of risk that each party assumes.

On the other hand, the use of SLAs in the ASP scenario has the potential to make outsourcing

significantly preferable to implementing services in-house. By associating penalties with poor service

2.4. SLAs for application services 35

time

value integration
phase

operation
phase

expected spend
actual spend
expected return
actual return

key:

compensation

Figure 2.5: Flows of value in an ASP relationship with compensation payments governed by an SLA

performance, or early termination of the service-provision relationship, an SLA provides only minimal

additional information to the client concerning the probability of these things occurring; the SLA only

indicates that the provider expects that the conditions will be met or is prepared to take the consequences

otherwise. However, the penalties associated with SLA conditions can mitigate the risks, and have the

potential to do so totally. In contrast developing a new service will always imply some risk.

Indeed, total mitigation of risk may not be necessary to make outsourcing more desirable than

implementing services in-house. Implementation will tend to be more expensive than integration, so

outsourcing may be preferable providing the magnitude of the financial risk is favourable in comparison

to the difference in start-up and operating costs.

As discussed in [97], SLAs are used in current industrial practice to manage relationships between

application-service providers and their clients. However, as described in Section 2.10, the types of

conditions included in practice do not necessarily systematically address the risks to the participants.

Poor SLAs may be better than no SLAs at all. Also, the importance of having an SLA is diminished if

risk is mitigated by other means. In high-value service provision relationships the parties may be much

more prepared to invest in legal services to assist in the management of the relationship. Consequently

either good quality, legally-binding SLAs will be produced at great expense, or litigation or arbitration

can be relied upon to settle disputes satisfactorily.

However, it seems clear that lower-value service-provision relationships could also benefit from the

use of SLAs. This may allow the ASP model to be used in industry where previously it was infeasible,

due to the level of risk implied by the situation and the relatively high cost and poor quality of industrial

standard SLAs. Moreover, the cost of using SLAs even in high-value relationships could be decreased if

a repeatable way to produce good SLAs can be found.

A logical approach to addressing this problem is to provide language support for authoring SLAs for

2.5. Conditions relating to application services 36

ASP services. A substantial amount of previous research work has focussed on this approach, discussed

in detail in Chapter 8. The contribution of this thesis is to demonstrate that improvements on this previous

work are possible by focussing on the role of SLAs in the ASP scenario in mitigating risks.

Providing good language support for any purpose depends on anticipating what needs to be ex-

pressed. I next examine the conditions that could be reasonably required over application services and

the client, based on the assumptions that I have thus far made about ASP scenarios.

2.5 Conditions relating to application services
In Section 2.1 I presented an abstract model of application services. Although in principle the client

of a service may find any behaviour either favourable or unfavourable, by considering the scenario it is

possible to draw some conclusions as to likely conditions the client will wish to place on these types

of service. By then considering the risks that a provider would expose itself to by agreeing to these

conditions, it is also possible to anticipate what conditions the provider will in turn require from the

client.

A client of a service should reasonably only be concerned with the behaviour of a service in so far

as it affects the client. The internal behaviour of the service should be the responsibility and concern of

the service provider alone, provided that the results delivered to the client are satisfactory. In this respect

appropriately written SLAs may be a more attractive risk-mitigation strategy than say due-diligence

inspections, as the client need not purchase expertise in the business practices or technology used by the

provider.

Referring back to the scenario depicted in Figure 2.1, it is clear that two kinds of behaviour of the

service may affect the client. First, the client may receive information from electronic services via the

network, either in the form of responses, or information pushed to electronic services implemented by

the client software; and second, the service may take other actions, apart from those related to electronic

services, whose consequences eventually affect the client.

For example, consider the purchase of a book from the online bookshop Amazon.co.uk. A

purchaser will interact with the service via its website, browsing its stock and in due course submitting

an order. This interaction will consist of a sequence of webpage responses and requests and will be

transacted entirely through the medium of the network. If the submission of book purchase requests

were a matter of urgency for the client, then an SLA could be established to constrain the timeliness and

reliability of responses to page requests. The interaction will also result in activity on Amazon’s part to

fulfil the order. A book will be retrieved from a warehouse, or ordered from a third party, and will be

packaged and dispatched via a postal service. This latter type of behaviour does not require interaction

with the client over a network, but still ultimately affects the client when the book is delivered, or it fails

to arrive when expected.

To distinguish this kind of behaviour from that related to electronic services, I henceforth consis-

tently refer to it as real-world behaviour, although I recognise that electronic services also exist in the

real world.

Communications originating from a service have two main attributes that the client could seek to

2.5. Conditions relating to application services 37

constrain. What is returned, and when it arrives. Conditions related to the interval between a service

request and the time of arrival of a correlated response are variously referred to as performance, latency

or timeliness conditions. These may also apply to pushed information, if the information is provided

as an asynchronous consequence of an earlier request. Alternatively, pushed information may have to

conform to some schedule.

Because the client has no access to the implementation of the service, its expectations concerning

the behaviour of the service will depend on a description of the service given to them by, or negotiated

with, the service provider. Before entering into an SLA the client will make the choice to integrate the

service into its own operations on the basis of this description. If the service subsequently behaves in

a manner other than that described, the client is likely to suffer. Hence, a condition that the client will

want to protect in an SLA is that the service either behaves as described to a high degree or client will

be entitled to receive compensation. Such conditions are normally called reliability conditions.

Communications via electronic services have no other attributes, so I conclude that the client will

be primarily concerned with timeliness and reliability conditions relating to these services, and with

conditions relating to the real-world behaviour of the application service as a whole.

Conditions concerning the timeliness and reliability of a service may be highly diverse. For exam-

ple, a client may wish to require that failures that occur at a particular crucial point in a business process

are very highly penalised, or similarly, that delays at peak times incur heavy penalties. I make no as-

sumptions concerning the nature of these requirements. I also assume that the client may have arbitrary

requirements concerning the real-world effects of a service.

As mentioned above, by entering into a service-provisioning relationship a service provider exposes

themselves to the risk that the client will choose to use the service, implying a cost to the provider re-

lated to the resources required to deliver the service to the client. In the absence of any SLA related

to the service, this risk may be mitigated by withholding the service. However, reliability and timeli-

ness conditions applied to a service-provider in an ASP SLA reduce the effectiveness of this as a risk

management mechanism for the provider. It will therefore be necessary for the provider to implement a

charging scheme in an ASP SLA, and for reliability and timeliness conditions applied to the provider to

be conditional on the client meeting their obligations under this scheme.

If reliability and timeliness conditions are applied to the provider of an electronic service, then

the provider assumes an additional risk due to the finite capacity of such services. Characteristically,

the timeliness of an electronic-service will decrease drastically once some critical resource required

to service requests, such as a processor or database, approaches 100% utilisation [63]. At this point

the length of queues of requests awaiting access to the highly contended resource begin to increase

dramatically, with waiting times increasing proportionally. Also, due to the necessarily finite capacity

of queues in the implementations of electronic-services, if the volume of incoming requests remain high

it will eventually become necessary to begin ignoring requests, as no further queue capacity will be

available. This behaviour will manifest itself as unreliability in the service.

Little’s law dictates that the mean length of a queue for a system in equilibrium (in which the mean

2.6. Systems of SLAs for ASP 38

request rate is lower than the mean service rate) is the product of the request rate and the mean response

time (the reciprocal of the mean service rate) [40]. Since in an electronic service, the provider is unlikely

to be able to improve the response time of the critical resource at runtime, the only way for to control

the queue length, and hence the overall time spent in the queue, is to limit the rate of requests. However,

the rate of requests is controlled by the client. Therefore it is possible for a client to attempt to exploit

an ASP SLA by increasing the rate of requests.

This risk to the provider can be mitigated in an SLA by applying a condition to the client that

requires a limit on the rate of service requests. The consequences of violating such a condition may be

various, including: requiring the client to pay a penalty to the provider; rendering the client ineligible to

receive compensation for violations of timeliness and reliability conditions in the SLA; or breaching the

SLA altogether. I refer to such a condition as an throughput condition.

Conditions of any kind may relate instances of some kind of bad behaviour to an obligation for a

party to pay a penalty, or otherwise perform some compensating action. However, for the party in ques-

tion to become aware that a violation has occurred they must periodically check whether the conditions

in an SLA have been violated, or be informed of a violation by another party that has performed this

checking. I refer to this process as administering the SLA.

It will often be necessary for an SLA to explicitly state the obligations of the parties with respect

to administering the SLA. A condition must describe the compensation associated with a violation, and

may also place a constraint on when this compensation should be delivered, or else the liable party

could defer the provision of compensation indefinitely without violating the agreement. Clearly, such

a constraint would implicitly require the party liable to deliver compensation to administer the SLA at

some point between the violation occurring and the compensation becoming due.

However, parties may not wish to continuously administer the SLA, so it may be preferable to de-

fine deadlines for compensation in relation to scheduled administrations, or administrations triggered by

specific events. Even if obligations to deliver compensation are directly triggered by violations (rather

than by the administration of the SLA), the parties may make genuine mistakes in calculating their own

liability to pay penalties. This should not necessarily result in the immediate breach of the SLA, so in this

case it is convenient to regard administering the agreement as a consensual process involving a compo-

nent of negotiation, and the SLA will have to contain details of how this is to be achieved. One possibility

is to include provisions for the parties to negotiate a reconciled account of service provision from which

violations will be calculated. The relationship of administration conditions to the monitorability of an

SLA is discussed further in Chapter 5.

2.6 Systems of SLAs for ASP
Referring once more to the scenario presented in Section 2.1, I observe that electronic services may

be delivered to the client over one or more networks controlled by network-service providers. These

providers may be independent of the application-service provider, but it is clear that the behaviour of the

networks has the capability to introduce delays and faults into the communications between the client

and the electronic services constituting the application service. This is precisely the risk that the client is

2.7. Requirements for systems of ASP SLAs 39

seeking to mitigate through the use of SLAs.

However, since more than one party may be responsible for degradation of the quality of the ser-

vice, as received by the client, with what party should the client enter into an SLA? Also, there are

obviously two very different types of service being provided in the scenario. The application-service

provider provides an application service, and the network-service providers provides the service of mov-

ing information around their networks. In the previous section I described the kinds of conditions that

the client will wish to associate with compensation using SLAs, but might not more conditions be needed

to constrain the behaviour of the network? If a fault occurs, how will the client or any other party know

who is responsible for it, and hence who should pay compensation? As discussed in Section 2.1, access

to electronic services will only be offered at one or more defined points in some network or networks,

commonly the interface of the computer providing an electronic service to the network in which it re-

sides. The client may need to enter into additional agreements simply to obtain permission to access this

point in the network.

I address these questions in Chapter 5, using the requirement that SLAs be monitorable (introduced

below) as a way to identify good choices of SLAs for the scenario. Here I merely note that any given

ASP scenario may require not merely one SLA, but a system of SLAs, in order to mitigate the risks

identified for the parties without introducing unacceptable new risks. The SLAs in a system will contain

conditions that, in combination, will act to deliver compensation to the injured party when a harmful

event occurs.

2.7 Requirements for systems of ASP SLAs
In this section I consider requirements for systems of SLAs capable of mitigating the risks identified

in Section 2.5. I then consider the requirements that languages for expressing such SLAs should meet,

and also requirements for the specifications of such languages, the quality of which have a significant

impact on the usefulness of the languages they define. The purpose of elaborating these requirements

is to clarify what is meant in the thesis statement by ‘practical language support’ for ASP SLAs. Such

support is clearly more practical if it is oriented toward writing useful ASP SLAs, so the requirements

for systems of SLAs in the scenario must first be understood. By explicitly elaborating the requirements,

I also provide a basis for the comparison of ASP SLA languages and motivate the design of the SLAng

language described in later chapters.

The requirements in this and subsequent sections are expressed as absolutes, as would be met by

an ideal system of SLAs, an ideal language and language specification. However, for each requirement

varying degrees of satisfaction are possible, and incomplete satisfaction of a requirement does not render

an SLA, language or language specification completely useless. SLAs are a measure for controlling the

level of risk assumed by the parties involved in an outsourcing scenario, and the use of even imperfect

SLAs may mitigate this risk to some extent. Also, trade-offs between requirements may be necessary.

For example, a highly expressive language may be hard to use.

As discussed above, multiple SLAs may be required to insure the service experienced by the client

at the location in the network from which the client wishes to access the service. In this section I therefore

2.7. Requirements for systems of ASP SLAs 40

consider the requirements for systems of SLAs as a whole.

2.7.1 Conditions appropriate to electronic services

As discussed above, the principal role of SLAs in the ASP scenario is to entitle the client to receive com-

pensation when its requirements with respect to the behaviour of the service are violated, or to provide

the client with justification for terminating an SLA without penalty. Due to the nature of electronic ser-

vices, these requirements are likely to include reliability and timeliness constraints, as well as constraints

on the real-world behaviour of the service. This is captured by the following requirements:

SLA 1 (Service Conditions) The system of SLAs should entitle the client to either receive compensa-

tion, vary some SLA or SLAs in an agreed manner, or provide them with the opportunity to quit the system

of SLAs without penalty, when the behaviour of the service, in so far as this effects the client, violates

some anticipated requirement of the client, potentially including timeliness and reliability requirements.

The SLAs should address the risks to the providers implied by offering these guarantees, and there-

fore being obliged to interact with the client. This includes the risk that the client will attempt to over-

whelm the service with requests.

SLA 2 (Client conditions) The system of SLAs should entitle any service providers involved to either

receive compensation, vary some SLA or SLAs in an agreed manner, or provide them with the opportunity

to quit the system of SLAs without penalty, when the behaviour of the client, in so far as it effects the

service, violates some anticipated requirement of the provider, potentially including request-throughput

limitations.

The system of SLAs should also allow the service provider and any network service providers to

receive compensation for providing their services.

SLA 3 (Charging) The system of SLAs should make the service provider and network-service provider

liable to receive compensation, in return for their contributions to providing the service to the client at

the client’s preferred point of service delivery, if the providers require compensation.

Note that the system of SLAs cannot guarantee that any party will receive compensation when

entitled to it, as this is dependant on the ability of the liable party to deliver compensation, which is by

no means guaranteed.

The SLAs should address termination risks to the parties.

SLA 4 (Termination) The system of SLAs should make any party liable to receive compensation when

one or more SLAs in which they participate are terminated prematurely by another party.

2.7.2 Protectability

In an ASP scenario governed by SLAs, if any party is entitled to receive compensation, then one or more

parties with whom they have an SLA will be liable to pay. The capacity of a system of SLAs to establish

these rights and liabilities is therefore likely to be a point of contention between the parties in the event

that they are asserted. I have already assumed that parties to SLAs cannot be relied upon to act honestly,

2.7. Requirements for systems of ASP SLAs 41

particularly if they have a financial incentive to do otherwise. The effectiveness of the system of SLAs as

a mechanism for controlling a party’s exposure to risk, is diminished if in the event of such contention,

disagreements cannot be resolved according to the original intent of the agreement.

I refer to the ability of an SLA to entitle parties to receive the pre-agreed compensations under

the pre-agreed circumstances as the protectability of the SLA. This is because for the SLA to come

into force, the parties to it must have agreed to its provisions, and any deviation from those provisions

represents a violation of that agreement.

SLA 5 (Protectability) All SLAs in a system of SLAs must be protectable.

Resolving a disagreement concerning the intent of an SLA with respect to a given situation relies

on: recovering that intent from the concrete representation of the SLA; obtaining evidence concerning

the behaviour of the service and parties relevant to the determination of compliance with the SLA;

convincing all parties to the agreement, or any arbitrator of the agreement, of the validity of the evidence;

and determining whether the evidence represents compliance with the SLA, or what future action is

required to ensure compliance.

Protectability hence implies two categories of derived requirements: SLAs should be precise and

understandable so that their intent can be recovered and interpreted in relation to evidence; and they must

be monitorable, so that it is possible to obtain pertinent, reliable and convincing evidence.

2.7.3 Precision

An SLA must express the true agreement with respect to service levels between the parties to the agree-

ment, and it must be possible to understand the SLA at any time after it has been written:

SLA 6 (Understandability) SLAs must be understandable, so that all parties can verify that an SLA

correctly captures their intent with respect to the agreement, and so the intended effect of the agreement

can be easily retrieved in the event of a disagreement related to the award of penalties.

SLA 7 (Precision) SLAs must be precise, so that their intended effect is unambiguous in the case of any

disagreement related to the award of penalties.

2.7.4 Monitorability

I refer to the gathering of evidence to determine if an agreement is being violated as monitoring the

agreement. The degree to which a system of SLAs facilitates or hinders monitoring is the monitorability

of the system. Informally, monitorability may be affected by the choice of what events are pertinent to

an SLA, as some events are intrinsically easier for certain parties to monitor than others. Clearly, the

more monitorable a system of SLAs, the easier it is to protect the SLAs in that system.

SLA 8 (Monitorability) The system of SLA should be as monitorable as possible.

Chapter 5 introduces a formal theory of monitorability. I show that monitorability affects the choice

of SLAs in the scenario, and hence their design, and the language support required for them.

Another aspect of monitorability is the effect of error and uncertainty on measured quantities. Mea-

surement of any quantity in the physical universe is subject to a degree of error, which manifests itself

2.7. Requirements for systems of ASP SLAs 42

as a lack of confidence in the value obtained due to the possibility of problems occurring during the

measurement process, and frequently also as a difference between the measured value and the true value

of the quantity being measured. A measurement may also contain a degree of uncertainty due to the

precision with which it is stated.

The intent of an SLA is to place constraints upon the true behaviour of a service, the violation

of which will have consequences. However, assessing the violation of these constraints will require

measurement of the service, and the calculation of violations based on these measurements. This raises

two problems related to monitorability. First, an appropriate basis for the calculation of violations must

be established. If conditions are stated in relation to the true behaviour of the service, then they must

be formulated to accommodate a degree of error in their calculation, because measured values, not true

values will be used to assess them. Alternatively, if conditions are defined in relation to measured values,

then a condition must ensure that the measured values are tolerably close to the real value of the quantity

measured, otherwise parties may choose to purposefully vary the error term in reported measurement

values in order to misrepresent the behaviour of the service.

SLA 9 (Error) SLAs should accommodate measurement error and uncertainty, either by only setting

conditions on measured or agreed quantities, with a description being given of how the measurements

are to be taken or the agreement reached, or by specifying acceptable degrees of confidence and margins

for error on constraints over actual physical quantities.

The second problem is that quantities of error and uncertainty present in measurements may ac-

cumulate when calculations are performed on measurements. For example, the error term of the sum

of a set of independent measurements is the sum of the error terms of the measurements. If conditions

are stated with respect to the real behaviour of the service, with a requirement for a minimum degree

of confidence associated with the calculation of violations, it will be necessary for the parties to the

SLA to determine how the error in their measurements accumulates to give a resulting error in their

determination of the violation. Depending on the formulation of the condition, this may be extremely

difficult. This is one example of a broader requirement for SLAs: given all pertinent evidence, it should

be feasible to determine whether a condition has been violated.

SLA 10 (Feasibility) SLAs should only include conditions for which violations can feasibly be calcu-

lated, given all pertinent evidence.

2.7.5 Cost

The use of SLAs in an outsourcing scenario implies additional costs for both client and provider. These

should be minimised.

SLA 11 (Cost) SLAs should be as cheap to produce, protect and administer as possible.

Other costs related to the consequences of having an SLA may be incurred by the parties. Require-

ments related to these are discussed in the next section.

2.8. Requirements for ASP SLA languages 43

2.7.6 Machine readability

Using an SLA in an electronic service scenario will tend to introduce requirements for monitoring,

service adaptation and negotiation. An obvious approach to reducing the cost of using an SLA is to use

the parameters of the SLA as inputs to mechanisms for automating tasks of these types.

If any degree of automation is to be applied to attempt to meet the terms of an SLA, or to manage

or negotiate SLAs, then some machine-readable form for all or part of the SLA will be desirable.

SLA 12 (Machine readability) SLAs should be expressible using an intrinsically machine-readable

syntax. This requirement should not compromise understandability.

A machine readable representation of an SLA may not be appropriate for human comprehension

and vice versa. This raises the prospect of several representations of the same SLA existing. Under these

circumstances, it should be clear what document represents the agreement for the purpose of determining

violations. This requirement is related to the requirement that SLAs be precise.

SLA 13 (One definitive form of agreement) If multiple forms of an SLA exist, they should be provably

equivalent, or it should be clear which is the definitive form.

2.7.7 Non-exploitability

SLAs may associate violations of behavioural constraints with penalties for the party responsible for the

violation. However, it may be possible for one party to behave in such a way as to force another party

to commit a violation and pay a penalty. If an SLA is obviously exploitable, there will be a disincentive

for some party to agree to it, eliminating its usefulness as a mechanism for mitigating risk in the ASP

scenario. If the SLA is exploitable, but not obviously so, then it may be hard to understand, or not

adequately analysable, in violation of other requirements stated here.

SLA 14 (Non-exploitability) SLAs should be not be exploitable.

It may be that the obligations or constraints expressed in an SLA imply other obligations or con-

straints that are not explicitly stated in the SLA. This could be because these implications are only of

concern to a subset of the parties to the agreement, or because stating all of the implications of the agree-

ment would be inconvenient to the expression of the agreement. However, it should still be possible for

each party to become aware of those implications of concern to them.

Moreover, the use of SLAs complicates development and maintenance of services for service

providers. SLA information may therefore be used during development and planning. These scenar-

ios suggest that SLAs should be amenable to analysis.

SLA 15 (Analysability) SLAs should be amenable to analysis to reveal implications that are not explic-

itly stated.

2.8 Requirements for ASP SLA languages
Since we are only considering SLAs with a concrete representation, these SLAs must be written in some

language, either a natural language, a technical language or some combination of both. In this section

2.8. Requirements for ASP SLA languages 44

we consider requirements on languages or combinations of languages capable of expressing all SLAs

required in a system of SLAs meeting the requirements described in the previous section.

Language 1 (Expressiveness) The language must be capable of expressing all SLAs in a system of SLAs

meeting the requirements specified in Section 2.7.

To understand an SLA written in a technical language, it is necessary to understand the semantics of

the language. An SLA language hence assumes some of the burden of expressing the intent of an SLA.

Therefore all requirements related to the precision of an SLA are also requirements of SLA languages:

Language 2 (Understandability) To understand an SLA written in an SLA language it is necessary to

understand the language. The language should be structured so that it is easy to understand.

Language 3 (Precision) The meaning of an SLA is dependent on the semantics of the language in which

it is expressed. Therefore, if the SLA is to be precise in its meaning, then the semantics of the language

must also be precisely defined.

The cost of producing an SLA in a technical language is related to the features of the language. A

number of requirements for the language may be derived from the requirement that SLAs be as cheap to

produce as possible.

SLA languages should support the process of creating SLAs in similar manner to that in which

programming languages support the creation of programs. The syntax should restrict the set of SLAs

that can be expressed to eliminate some illogical or ill-formed SLAs. The semantics should support the

creation of consistency checks to detect SLAs that are illogical.

Language 4 (Restrictiveness) The language should exclude SLAs that do not meet the requirements

specified in Section 2.7.

The language should be easy to write:

Language 5 (Ease of use) In addition to being easy to understand, the syntax should be easy to write,

possibly with the aid of tools.

The language will ideally be used to write multiple SLAs. Those SLAs will have some features

in common, and some features that vary. The need to repeatedly rewrite common SLA terms would

be burden on an SLA writer, so it is preferable to encode common SLA features into concise language

constructs:

Language 6 (Power) Because the SLA language is only defined once, but may be reused in multiple

SLAs, as much of the burden of expressing the SLA as possible should be placed on the SLA language,

except where this is incompatible with requirements for understandability for either the SLA or the

language.

In Chapter 3 I develop a metric for domain-specific languages to formalise this informal notion of

language power, and assist in the comparison of SLA languages with respect to this requirement.

In relation to the requirement that SLAs should be machine readable:

2.9. Requirements for ASP SLA language specifications 45

Language 7 (Automatability) It should be possible to produce tools that take SLAs expressed in the

language as their input. The tools should rely for their functionality only on the specification of the

language, so that anybody who has access to the language definition can reuse the tools successfully.

The design of an SLA language may support the analysis of SLAs expressed in the language.

Language 8 (Analysability) The semantics of the language should be oriented towards that of known

analysis models, provided this is compatible with expressing the true requirements of the client, and any

additional constraints required to avoid exploitability.

2.9 Requirements for ASP SLA language specifications
Clearly any SLA language should be defined explicitly because that definition will need to be delivered to

the users of the language, and referred to when determining the intent of an SLA. The artefact defining the

language is the language specification. I refer to the language in which the SLA language specification

is written as the meta-language.

The quality of the specification will effect the usability of the SLA language. In this section I

therefore consider requirements for specifications.

In many cases the language specification will be the sole source of information available to a user of

the language, so the specification should capture all information of relevance concerning the language.

Specification 1 (Completeness) The specification should fully define an SLA language meeting all of

the requirements specified in 2.8.

Because SLAs must be interpreted with respect to the language specification, the specification also

inherits the precision requirements applying to SLAs.

Specification 2 (Understandability) The specification must define the SLA language in a way that is

understandable.

Specification 3 (Precision) The specification must define the SLA language in a way that is precise.

The SLA language definition serves as the reference for any party implementing tools to manipu-

late SLAs defined in the SLA language. The language definition may therefore be an artefact in some

software development effort.

Specification 4 (Automatability) The meta-language employed in the specification should be defined

in such a way to assist the development of tools that rely on the SLA language definition, for example, by

offering a formal definition of the SLA language that could be used as the input to software engineering

tools.

2.10 Other views on requirements for SLAs
SLAs are currently employed in a variety of contexts, including ASP, although the practice is far from

ubiquitous. Also, SLAs are typically not strong, legalistic agreements, as I have assumed in this chapter,

but are instead support a broader Service-Level Management (SLM) approach. In this section I review

the use of SLAs for SLM, and also prior academic work that has discussed SLAs for ASP.

2.10. Other views on requirements for SLAs 46

SLAs for IT services are currently most usually a component of an SLM management ap-

proach [126]. The term IT services in this context encompasses to a much wider range of services

than the application-services that form the foundation for our work on SLAs. IT services include the

provision of any type of technical support for a business, including the maintenance of hardware, net-

work and software environments, technical support and also the provision of application services, and are

also referred to as Operation Support Solutions (OSS) [51]. SLM is primarily concerned with maintain-

ing the relationship between the business and the IT service provider, largely through the use of SLAs.

Providers are either IT departments within an organisation, or companies specialising in the provision of

IT services.

In [126] the benefits of SLM are stated as being the following:

• client satisfaction – SLAs force a client to state their requirements;

• managing expectations – SLAs document client requirements, preventing ‘expectation creep’;

• resource regulation – IT service providers can control the demands of their clients using SLAs;

• internal marketing of IT services – A history of meeting SLA conditions can be used as a marketing

device, improving the reputation of a service provider;

• cost control – Without knowledge of true client expectations IT services may tend to be over

provisioned;

• defensive strategy – IT service providers meeting SLA conditions can avoid unwarranted criticism

from users.

SLM generally assumes long-lived and high value relationships between client and provider. These

assumptions modify the requirements for SLAs considerably. In SLM, SLAs are created following a

process of feasibility analysis and negotiation, that in itself takes time and is costly. A typical term for

an SLA is cited as being two years, because any shorter and the cost of producing the SLA would be

prohibitive. Writing the SLA precisely is less important than negotiating a realistic agreement between

the parties, so the need for a technical language is not emphasised. SLAs for SLM also tend to make

availability an objective of prime concern. The emphasis on this comparatively gross and unmonitorable

property (as discussed in Chapter 5) indicates that SLAs in SLM are used to guarantee tolerable levels

of service, rather than the satisfaction of rigourous constraints.

The SLM approach is philosophically different from my own in that it relies on strong assumptions

about the culture in which an SLA is to be deployed. In contrast, my own assumptions, that the duration

of an SLA may be short, its value low, and the requirements of the client arbitrarily specific and rigourous

(with the agreement of the provider), reflect a more technical approach intended to offer a risk manage-

ment approach to the client in a wider range of circumstances, particularly when the parties may not be

cooperative and trustworthy. I have also developed requirements that emphasise the importance of SLAs

as technical artifacts supporting service development, deployment, composition and analysis, rather than

simply management documents. However, although more technical than the SLAs required or used in

2.10. Other views on requirements for SLAs 47

current practice for SLM, SLAs meeting my requirements can potentially fulfil the same role with sev-

eral advantages. The use of a formal language to specify SLAs can be expected to assist in reducing the

costs associated with SLM when attempting to manage outsourced services, reduce negotiation time by

identifying key performance indicators and reduce the cost of SLA preparation.

The following types of condition for electronic-service SLAs were proposed in an review of industry

SLAs provided by the industrial partner to the European project TAPAS [97]:

1. Timeliness – the amount of time the service takes to complete should be constrained.

2. Throughput – the client should not be able to overwhelm the service with requests.

3. Availability of the service – expressed as a proportion of the period of the agreement.

4. Maintenance and service schedule – when the service should not be accessed, or may legitimately

underperform.

5. Backup of data stored by the service

(a) Solution – the particular software product employed to backup the date.

(b) Frequency – when the backups should be performed.

(c) Facilities – where the backups should be stored to ensure their safety.

(d) Access – how the client can get at data backed up on its behalf.

(e) Data types to be backed up

6. Security policy

7. Monitoring and reporting policy – how conformance to or violation of the SLA should be reported.

8. Failure clauses – what should be done when the SLA is violated.

This list includes a number of conditions relating to the service in addition to timeliness and

throughput, and reliability is not explicitly mentioned. However, the list provides some validation of

this otherwise theoretical discussion of the ASP scenario. Availability and data backup conditions can

be seen to be attempts to constrain the overall reliability of the service, as the service is not delivering its

advertised results if it is inaccessible or if the data that it operates upon is corrupt. Security policy may

also define an aspect of the functional behaviour of the system.

A maintenance and service schedule represents a variation of the timeliness, throughput and avail-

ability conditions. The inclusion of failure clauses in the list indicates an understanding that SLAs are

only useful if they have some consequences, which I have assumed in this work relate to compensating

injured parties for harm received due to violations of SLA conditions.

However, the list is also somewhat naı̈ve. No mention is made of otherwise constraining the func-

tional behaviour of the service. Also, compliance with conditions such as specifying the frequency of

backups is hard to check because these activities are internal to the service and therefore cannot be

monitored by the client.

2.10. Other views on requirements for SLAs 48

Security risks, for example related to non-dissemination of confidential information, may be a disin-

centive for a party to use an outsourced application service. SLAs may potentially offer some assurances

to a client that the provider will either prevent security violations or pay compensation. However, I

have elected to exclude the consideration of risks of this type from the scope of this work. I discuss the

requirement for further research into this matter in Section 9.3.4.

In Appendix A I provide a review of previous languages with the potential to express SLAs for

ASP, summarised in Chapter 8. It is notable that in most of this work requirements are not discussed in

detail, suggesting that they may not have been considered in detail. However, there are exceptions.

Requirements for contract languages are considered in relation to the Business Contract Language

(BCL) in [74]. Here the authors touch on high-level requirements for business contracts such as the

inclusion of security provisions, access-control and obligation policies, specifications of standards for

precision of measurements, feasibility of checking contract provisions, conditions relating to adminis-

tration, and the need to have flexible specifications for states, events and temporal constraints. In the

statement of some of these requirements there seems to be a confusion between defining what is needed

in a contract and how it should best be expressed. For example, the authors state that a contract lan-

guage should be able to describe behavioural patterns with a similar expressive power to that normally

associated with process algebra. In fact, this is unlikely to be expressive enough for all cases. However,

the authors generally advocate a high level of expressiveness for the language, which accords with my

own observation that conditions may vary according to boundlessly variable factors. The inclusion of

requirements related to policies (e.g. access control), also indicates a wider intended scope than merely

SLAs. Like my own work, the authors observe that trust between parties may not be absolute. How-

ever, no consideration is given as to how reduced levels of trust may interact with monitoring, or policy

rules. Instead it is used to motivate requirements for security provisions. Overall, the requirements

stated largely accord with my own, although they are not systematically enumerated, and due to a lack

of a definitive specification for BCL, it is hard to assess how many of these requirements have been met

by the language. Certainly, no mention is made of measurement error in subsequent papers on the topic.

Requirements for agreements of several types are also considered in work related to the X-contracts

language [69]. This work focusses on the use of agreements at runtime, and therefore supports my

observation that SLAs may themselves be useful software-engineering artifacts. However, it also lists

requirements for agreements throughout their lifecycle, which is divided into five phases: specification;

provision; monitoring; adaptation; and resolution. Specification requirements include the need for a

balance between expressiveness and simplicity and provision for the definition of penalties. Monitoring

requirements include scalability, which may be considered to be related to my own requirements for

feasibility, and techniques to enhance trust. Resolution requirements include the need for termination or

renegotiation of SLAs, customer-credit schemes and non-repudiable exchange of information. Provision

and adaptation requirements are more concerned with systems that can use an agreement to configure

(or reconfigure) a service-provisioning architecture, and so presumably require an understanding of the

semantics of the agreement.

2.11. Summary 49

Once again, these requirements cover much of the same ground as my own, although precision

requirements are not emphasised, and measurement errors are not considered. Also, some of the re-

quirements seem dubious, as they appear to be based on the assumption that earlier requirements can be

met. For example, a need to specify third-party monitoring solutions is cited. However, as discussed in

Chapter 5, this will only be feasible in some common scenarios if trusted monitoring solutions can first

be implemented, and it is not yet clear that this is so. Again, a definitive specification for X-contracts is

not yet available, so it remains to be seen how the authors will address some of these requirements.

Some discussion of expressiveness requirements is also provided in relation to the Web-Service

Management Language (WSML) [111], in which it is observed that SLA conditions may be related to

arbitrary external factors, and several example conditions are described to support this argument.

2.11 Summary
In this chapter I have presented a discussion of ASP, SLAs and the role that SLAs can play in an ASP

scenario as a mechanism to mitigate the risks assumed by a client when choosing to use an outsourced

service. I argue that these risks have been a major factor limiting the adoption of the ASP model of

service provision. The discussion has established the assumptions upon which the work presented in this

dissertation is based.

The discussion has highlighted the fact that an SLA could be used as a mechanism for providers to

charge for their services, and that as a consequence of engaging in SLAs, providers will need to apply

conditions to the behaviour of the client to prevent the client from exploiting the SLA.

I considered the kinds of conditions that parties to SLAs were likely to find most useful, and em-

phasised the importance of timeliness and reliability for clients, and throughput for service providers.

I also observed that in a typical ASP scenario more than one provider contributes to delivering the

service to the client, and that therefore systems of multiple SLAs may be required to mitigate the client’s

risk, rather than assuming that all required conditions can be captured by a single SLA.

Proceeding from this discussion, I enumerated requirements for systems of SLAs, languages ca-

pable of expressing the SLAs in these systems, and the documents specifying these languages. In sub-

sequent chapters in this dissertation, I use these requirements to justify the importance of contributions

made to the theory supporting the specification of languages for SLAs, to inform the design and evalua-

tion of a novel language for ASP SLAs, and to contribute to the demonstration of my thesis by providing

a basis for comparison between the language-support I develop for ASP SLAs and that provided by

pre-existing languages for the same purpose.

50

Chapter 3

Domain-specific languages for ASP SLAs

In this chapter I first introduce the main standards and prior work on the specification of Domain-Specific

Languages (DSLs) upon which my efforts to produce a language for ASP SLAs depend. I then describe

the first major contribution of this thesis, which is an set of recommendations concerning how these

technologies should be combined to define a DSL for ASP SLAs, which will consequently exhibit good

properties of understandability, precision and expressiveness. In Chapter 6, I describe in detail the design

of a novel language for ASP SLAs, SLAng, according to these recommendations. However, in this

chapter I discuss the recommendations at a theoretical level.

The recommendations, first described in [119], are that a language for ASP SLAs should:

1. be specified using a combination of the standard technical languages EMOF and OCL, described

below, and natural-language descriptions;

2. be modelled using the model-denotational approach to provide both an abstract syntax for the

language, and a precise description of the semantics of the language; and,

3. be abstract and extensible to best address the tradeoff required between restrictiveness and expres-

siveness in the ASP SLA domain.

EMOF, OCL and the model-denotational approach – itself a recommendation concerning the use

of standards to define languages with precise semantics – are the contributions of other researchers. My

contribution therefore consists of the following:

• the identification of these technologies as being particularly suitable for defining DSLs for SLAs,

in comparison with other approaches to defining languages;

• the detailed explanation of how these technologies should be used to define a language for SLAs;

• the demonstration of the use of these technologies, in Chapter 6, to define an SLA language of

realistic complexity; hence contributing an example in a novel domain to the hitherto quite small

corpus of documented languages defined using this approach.

This chapter is structured as follows. In Section 3.1, I describe the standards and theory on which

the approach is based. In Section 3.2, I demonstrate with examples how these technologies can be used

to create a language for SLAs, and justify this approach according to its potential to deliver a useful

3.1. Foundations of the approach 51

language for ASP SLAs. In Section 3.3, I compare the approach to other possible approaches to defining

the syntax and semantics of formal languages. Finally, in Section 3.4, I summarise the material presented

in this chapter.

3.1 Foundations of the approach
3.1.1 Object-oriented modelling

Object-oriented modelling languages permit the modelling of any subject, abstracted into a system of

objects. Objects are conventionally regarded as things with measurable attributes, observable behaviours

and relationships to other objects. They may be tangible, like a house or a person, or intangible, like

an event, or the role somebody plays in a process. Object-oriented concepts are common in modern

programming languages. However, object-oriented models differ from object-oriented programs, in that

they can describe any system of objects in the real world, whereas object-oriented programs only describe

systems of objects representing the structure and behaviour of computer programs.

Probably the most commonly used object-oriented modelling language is the Unified Modelling

Language (UML) [81]. UML is a complicated language that allows a software system and its context to

be modelled using a number of convenient abstractions. Different aspects of a system may be modelled

separately, and the language facilities on which these views depend are to some extent independent of

each other. The most commonly used subset of UML is the static structure part, also known as class

diagrams.

Class diagrams, as a subset of the UML, are an object-oriented modelling language in their own

right. They are not restricted to modelling software systems alone, as they are also intended to be

used to model the context in which a software system operates. They are class-based, meaning that

they model categories of objects, rather than representing unique objects directly. UML also allows the

representation of unique objects in some other diagram types, but this is not as vital as it may seem, as a

unique object can always be regarded as belonging to a class that contains only itself.

package chapter3 bicycles[]

PennyFarthing

Wheel

+diameter : Real

Bicycle

{subsets wheels}

+backWheel

{subsets wheels}

+frontWheel

+wheels

2

Figure 3.1: A UML model of bicycles

Figure 3.1 shows a simple class diagram. The diagram contains three classes, one representing all

3.1. Foundations of the approach 52

the bicycles in the world, another representing all the wheels in the world, and a third representing all

penny-farthings, an old-fashioned design of bicycle characterised by a very large front wheel.

Various relationships between these classes of things are shown. Bicycles have wheels, indicated

by a composition relationship between the Bicycle class and the Wheel class. In the UML graphical

syntax, a line decorated with a black diamond at one end represents a composition relationship, with

objects of the class next to the diamond being the compositions, and objects of the related class the

components. According to the standard interpretation of UML, components can only be part of one

composition, and when the composition is destroyed, so is the component. This seems a fair model

of the relationship between bicycles and their wheels. Numbers near the ends of these relationships

represent multiplicity constraints: bicycles have two wheels.

Penny-farthings are a type of bicycle as indicated by the relationship between the PennyFarthing

class and the Bicycle class, decorated with an arrowhead to indicate the superclass. All penny-

farthings are bicycles, but not vice versa. Because the distinction will later be important, the relation-

ships between penny-farthings and their front and back wheels are explicitly represented, using ordinary

UML associations, which can be used to model any kind of relationship between two objects.

Wheels are modelled as having a diameter attribute, represented by a real number.

Note that I have only modelled a subset of all possible relationships between bicycles and wheels

in general – another relationship might indicate whether a wheel could be used as a replacement on a

bicycle. Neither have I modelled any other attributes that real bicycles and wheels have as a matter of

course, such as weight, colour, or number of spokes. This highlights the fact that object-oriented models

are abstractions of reality capturing only those aspects of interest to the modeller.

One of the strengths of UML class diagrams is that, given some preliminaries, it is reasonably easy

to understand what they mean just by looking at them. However, if we wanted to be sure what the diagram

in Figure 3.1 meant, we would have to refer to the UML language specification. This contains two

pertinent sections: one explains how the symbols in diagrams map to abstract concepts in the language,

e.g. boxes map to classes, and lines to relationships; and another defines the concepts, stating that a class

is a category of objects or concepts possible in the real world, having the same relationships to other

classes as shown in the model, and that beyond the structure of the model the dictionary definition of the

name of the class is helpful in determining what real-world objects are being referred to.

In this sense, the UML language specification, with help from the dictionary, establishes a relation-

ship between any diagram and all of the sets of objects or hypothetical situations that could be reasonably

said to conform to the model that diagram depicts. This conformance relationship is represented in Fig-

ure 3.2. Three possible relationships between a model and a situation are shown. In the first, a teapot

is very clearly found not to conform to the model of bicycles given earlier. According to the dictionary,

a teapot doesn’t resemble anything called a bicycle or a wheel. Moreover, the teapot considered alone

doesn’t have a structure similar to that in the model, in which the whole object includes two similar

subcomponents. In the second situation, an actual bicycle is straightforwardly found to conform to the

model. The bicycle itself conforms to the dictionary definition, as do both its wheels, and the wheels of

3.1. Foundations of the approach 53

UML
Language
Specification

English
Dictionarydelegation

no

UML
Language
Specification

English
Dictionary

delegation

UML
Language
Specification

English
Dictionary

delegation

Non-conforming:

Conforming:

Ambiguous:

no no

yes yes yes

maybe maybe maybe

Wheel

+diameter : Real

Bicycle

+wheels 2

Wheel

+diameter : Real

Bicycle

+wheels 2

Wheel

+diameter : Real

Bicycle

+wheels 2

Figure 3.2: The UML specification, with help from the dictionary, determines what real-world objects
conform to a model

the bicycle are in the the same relationship to the bicycle overall as specified by the diagram. Finally, a

steamroller with two rollers is considered. Realistically, it is unlikely that a dictionary would leave much

doubt as to whether a steamroller should be considered to be a bicycle, or whether a roller constitutes

a wheel, but let us assume that the dictionary consulted includes rather generous definitions of these

things. The model does not exclude the interpretation of the steamroller as conforming; certainly, the

rollers of the steamroller are in the same relationship to the overall machine as the wheels of a bicycle.

Therefore, the model may be said to be ambiguous in its relationship to steamrollers.

Adding more information to a model (refining it) can restrict the sets of objects that can be said

to conform to the model, hence making the model more precise. It might be a matter of philosophical

debate whether a two-rollered steamroller is a type of bicycle, but if it were important to do so, we

could add detail to the model to explicitly either include or exclude steamrollers from consideration, for

example by adding an extra class to represent steamrollers separately from bicycles.

UML class diagrams allow refinement in several ways. Additional classes, properties and relation-

ships can be defined. Multiplicity constraints can be specified for relationships, as can the uniqueness

and ordered-ness of members of those relationships. Properties can be added to classes, as can relation-

ships. Some relationships between relationships can be specified, such as the subset relationship used

3.1. Foundations of the approach 54

between the frontWheel and wheels properties in Figure 3.1. However, there are limitations to the

expressive power of class diagrams, which mean that sometimes it is difficult or impossible to rule-out

combinations of objects to which one does not wish to refer, or which would be illogical in the real

world.

To address this problem, an auxiliary expression language may be used to specify invariants over

classes specified in UML class diagrams. An invariant is a property of a class that always holds true.

The language most commonly used for this purpose is the Object-Constraint Language (OCL).

For example, it would be extremely inconvenient to have to express the relationship between the

size of the front and back wheels of a penny-farthing using class diagrams alone. However, in OCL it is

easily expressed as an invariant over the class of penny-farthings:

frontWheel.diameter > backWheel.diameter

This is a very simple example of the use of OCL. However, much more sophisticated constraints can

be written. OCL can also be used to express parametric calculations over objects of particular classes,

known as side-effect-free operations. For example, we might define the following operations on the

Wheel class to calculate the circumference, and the speed of the bicycle if the wheel is rotating at a

given rate while the bicycle is in normal motion:

circumference() : Real = {

let radius = self.diameter / 2
in
radius * radius * 3.1416

}

speed(revolutionsPerSecond : Real) : Real = {

revolutionsPerSecond * circumference()
}

Because invariants can refer to side-effect-free operations, and the operations can refer to them-

selves recursively, making use of this facility renders the combination of UCL class diagrams and OCL

version 2.0 Turing-complete, informally meaning that it is at least as expressive as the general-purpose

programming languages, for example Java, in common use today. OCL can therefore express any prop-

erty that can be checked by a conventional computer program, and this facility goes a very great distance

towards enhancing UML class diagrams in their ability to discriminate between any two real-world sit-

uations. Models can therefore be specified with very high precision.

In summary, class diagrams, combined with OCL, offer two advantages to an author attempting

to describe a situation clearly. They are potentially understandable, because they allow the direct de-

scription of the types and properties of objects which should be easily identifiable in the scenario being

described, and need include only those aspects that are of interest. There are also no significant limita-

tions on refining the diagrams to improve the precision with which they describe a scenario, at least in

terms of properties checkable using conventional computers. These characteristics suggest the potential

of these languages for defining SLAs, requirements of understandability and precision for which were

identified in Chapter 2.

3.1. Foundations of the approach 55

3.1.2 The Object Management Group (OMG) and the Model-Driven Architec-
ture (MDA)

In this section I briefly describe the Object Management Group (OMG), a standardisation organisation,

and its Model-Driven Architecture (MDA) initiative. The history of this organisation is relevant to

features of standards upon which I later depend, and I also discuss certain contributions of this work

with reference to the MDA, in later chapters.

UML is a standard of the OMG. The OMG is a standardisation organisation whose membership

consists of industrial and academic organisations, and whose stated purpose is to standardise technology

that can assist in the integration of distributed Enterprise Information Systems (EISs).

UML was originally the combined product of several independent research efforts to develop

general-purpose object-oriented analysis and design languages. The objectives of this work were to

improve the quality of domain analyses informing the requirements of software systems systems, reduce

the cost of developing software systems in object-oriented programming languages, and improve trace-

ability between analysis and design artifacts in such developments. To achieve widespread acceptance

the UML clearly required standardisation, but why did the OMG, with its mission to integrate distributed

systems find UML an attractive prospect for adoption?

In its early history the OMG standardised the Common Object-Request Broker Architecture

(CORBA), a sophisticated programming-language-independent middleware standard. The advantages

of middleware to integrating distributed computer systems are obvious: middleware establishes standard

communication protocols enabling systems to implement electronic services and thereby communicate

with each other; it also provides reusable libraries, services, and generative programming tools that re-

duce the cost of implementing a new electronic service or refactoring a legacy system into an electronic

service. However, it was found that middleware alone did not address all of the problems encountered

when integrating EISs, and a modelling language such as UML had a role to play.

Perhaps the strongest original motivation for the adoption of UML as a standard by the OMG was

that it was perceived to offer a solution to the common problem of reconciling the interfaces and data

models of two EISs. EISs may have several interfaces offering many different operations. The data-

model of such systems is often implicit, but is important because it governs the encoding and meaning

of data-structures and parameters passed to operations. The integration of two systems requires at least

that their interfaces to be understood, and the implementation of any translations required between the

data models of the two systems. UML offered the prospect of a common object-oriented language in

which interfaces and data-models could be defined. These models could then be made available in online

meta-data repositories, to allow services to be discovered and integrated by automated tools.

This ambition has never been fully realised, perhaps due to the extremely difficult theoretical chal-

lenges posed by reasoning with UML models, and also the fact that repository-based approaches to

automatically integrating systems tend to neglect important business considerations, such as the possi-

ble need to enter into SLAs, for example. However, the idea has its continuation in the OMG’s efforts

to standardise ‘Domain Specifications’. These standards define standard electronic-services interfaces

in CORBA’s Interface Definition Language (IDL) with supporting object-oriented models of data, for

3.1. Foundations of the approach 56

various application domains such as gene-expression data [84] or product life-cycle management [96].

By planning support for these standards in their EISs, organisations can reduce the expected costs of

integration with other EISs that also support the profiles.

A later and stronger argument for UML’s usefulness in the integration of EISs was presented when

the OMG announced its MDA initiative [78]. The key recommendations of the MDA approach are that

systems be developed primarily using models (usually UML models); and that these models should be

developed using a process of refinement whereby details relating to the application domain are added

earlier, and then details related to the chosen implementation technologies are added later, and preferably

automatically. The benefits of these prescriptions are two-fold: first, the availability of the early models

means that an application can more easily be re-implemented using different technology if this becomes

desirable at a later date; second, because refinement is automated as much as possible from early models,

the cost of implementation is reduced once the application domain has been modelled.

The MDA was proposed to address a perceived deficiency of CORBA, which was that in the years

following its standardisation a number of competitive middleware standards emerged, most significantly

Enterprise Java-Beans (EJBs) [131] and webservices [145]. If choosing to support standard middle-

ware can no longer be relied upon as a strategy to insure an EIS against future integration costs, then

it is necessary to plan the implementation of an EIS with a view to reducing the future costs of re-

engineering to support a new middleware when required. It is anticipated that developing a system

using an MDA approach will contribute to reducing these costs, as any models independent of middle-

ware technology can be used as the basis for a new process of implementation-by-refinement targeting

a new middleware. Efforts are also underway to define approaches and technology for the extraction of

technology-independent models from legacy systems that were not originally developed according to an

MDA process.

When the OMG adopted UML it consisted of a collection of diagrammatic notations, the structure

and meaning of which were described informally. To be useful for expressing meta-data in online repos-

itories, and as the input for tools able to automatically manipulate models in MDA developments, UML

required a degree of formalisation. Efforts to achieve this have resulted in several theoretical advances

in the definition of modelling languages, and the publication by the OMG of a family of standards of use

in defining domain-specific languages, introduced in the next section.

3.1.3 The syntax of modelling languages

An abstract syntax is a description of a language that is ‘analytic, rather than synthetic’ [59], in that it

establishes a set of rules whereby a statement may be regarded as conforming to a grammar rather than

a set of rules whereby smaller statements may be combined into larger statements, as is characteristic of

generative formal grammars [73].

An object-oriented abstract syntax is an object-oriented model of the information contained in the

statements expressible in some language. A very simple abstract-syntax for a language for cataloguing

the contents of warehouses containing bicycles is shown in Figure 3.3. A catalogue consists of an

identifier for the warehouse being described, and also a number of product descriptions, describing the

3.1. Foundations of the approach 57

contents of the warehouse. A product description includes the number of the shelf on which the product

is stored, and some more information about the product that is dependent on the type of the product. In

this example, I have only provided syntax for describing bicycles, and that only in the very limited sense

of being able to say whether the bicycle is a penny-farthing, or not.

productlanguagepackage chapter3[]

<<enumeration>>

BikeKind

+NORMAL : Integer = 1
+PENNY_FARTHING : Integer = 2

Catalogue

+warehouseId : Integer

ProductDescription

+shelfNo : Integer

BicycleDescription

+kind : BikeKind

1..*

Figure 3.3: An abstract syntax for a simple language for cataloging warehouses

The word ‘abstract’ in the term ‘abstract syntax’ refers to the fact that such grammars model what a

language expresses, but don’t say how this information must be represented. Note that an object-oriented

abstract syntax may contain both concrete and abstract classes (indicated by an italic class-name). Con-

crete classes represent identifiable pieces of information in a language statement. Abstract classes, such

as the ProductDescription class in my example, represent categories of statement elements with

common characteristics. In terms of the conformance relationship defined by UML, described in Sec-

tion 3.1.1, conformance to a concrete class can be determined by comparing a real-world object with

the properties of that class (its name, attributes and relationships). On the other hand, conformance to

an abstract class can only be determined by comparing a real-world object to a concrete subclass of the

abstract class. This is because abstract classes have some characteristics that are not fully defined. Prod-

uct descriptions, in the example, are expected to somehow represent a product, but this will necessarily

include more information than merely the product’s location. However, the structure of this extra infor-

mation will depend on the type of the product, so will not be a feature of all statements in the category

of product descriptions.

The notion of using an object-oriented abstract syntax for a modelling language was originally

introduced to address a pair of deficiencies in early versions of the UML [47], and was made possible by

the realisation that UML class diagrams are an appropriate formalism for modelling the structure of the

UML language as a whole, resulting in a recursive definition of the language.

3.1. Foundations of the approach 58

The problems addressed were as follows: first, although the graphical syntax of UML was stan-

dardised, there was no standard way to either exchange models between tools implemented by different

vendors (a common benefit of standardisation), or manipulate models programmatically via the interface

to a meta-data repository (an early objective of the OMG’s); second, the UML is based on the philosophy

that the best way to model a system is from a collection of viewpoints, each capturing an aspect of the

system. For example, one viewpoint may describe the static structure of a computer system, another its

behaviour, and yet another the way that it is packaged and deployed onto hardware resources. According

to this philosophy, the viewpoints are expressed in separate diagrams, each with a specialised visual lan-

guage. However, this raises the possibility that inconsistencies between the views may be introduced by

the modelling process. These inconsistencies could eventually result in flaws in the developed system,

so it was desirable to provide a mechanism whereby they could be either detected or prevented.

The provision of an abstract syntax for UML addressed both of these problems to a significant

extent. By regarding a model as a structure of objects two benefits accrued: first, well-understood tech-

niques for encoding objects as documents could be borrowed from the object-oriented programming

world, and standardised to create a document-interchange format, and a standard document-model that

could be manipulated via programmatic interfaces; second, in a given project, the several diagrams pro-

duced in UML could now be regarded as merely projections of a coherent underlying object-oriented

model of the system. This was analogous to another object-oriented programming technology, the

Model-View-Controller (MVC) pattern [48], used to maintain consistency between several user-interface

components by maintaining the data to be displayed (the model) separately from the visual representa-

tion of the components (the views). The problem of maintaining consistency between the diagrams in

a UML development is hence reduced to the problem of maintaining consistency within the model, and

consistency between the model and the diagrams.

OCL was also introduced as an early refinement to UML, first as an optional part of the UML

specification, and later as an independent standard. One of the most conspicuous early uses of OCL

was to define additional consistency constraints and side-effect-free operations on the abstract syntax of

UML as described in the UML language specification. However, since its introduction, OCL has also

has facilities that assist in modelling the dynamic behaviour of software in UML models, by defining

pre- and post-conditions for operations on classes.

Motivated by the desire to standardise a CORBA service for the provision of meta-data in EISs,

the OMG defined the Meta-Object Facility (MOF) standard, common services in CORBA being called

‘facilities’. This standard reproduced the static-structure (class diagrams) part of the UML standard, and

described a mapping from instances of this model (referred to as the MOF model) to sets of interfaces

defined in the CORBA Interface-Definition Language (IDL). This allowed for the possibility of defin-

ing meta-data structures as instances of the MOF-model, and then automatically generating a CORBA

service that could store, retrieve and edit data conforming to these structures.

Following the standardisation of the MOF, the OMG have adopted the policy that future language

standards should have abstract syntaxes defined using the MOF model. Since the MOF model essentially

3.1. Foundations of the approach 59

defines an abstract-syntax for an object-oriented modelling language, in most respects indistinguishable

from UML class diagrams, the term ‘MOF’ is often used to refer to the language that the specification

defines, and I use the term in this sense below. Moreover, UML class diagrams are commonly used to

represent MOF models.

Since UML 1.1, MOF has been used to define the UML. MOF also has an abstract syntax, similar

to the abstract syntax for UML class diagrams, which is recursively defined as an instance of the MOF

model. Because MOF defines the UML, which is a modelling language, instances of the MOF model

are frequently referred to as ‘meta-models’. Most meta-models in fact define the abstract-syntax of some

language, which may or may not be a modelling language.

This system of standards is described in the UML specification as a ‘four-level meta-modelling ar-

chitecture’, as shown in Figure 3.4. Objects at each level of the architecture represent a theory concerning

the structure of objects at the layer below. At level M0 are real-world objects. These are described by

UML models at level M1. The meta-model of UML is at M2, an instance of the MOF model at level

M3. This architectural model has some serious logical inconsistencies: the MOF, as an instance of itself

could plausibly also appear at level M2, and all levels above level M3; any language specification ar-

guably describes not only its own structure, but also its meaning, and therefore governs two meta-layers

beneath itself, rather than one; finally, models and language specifications are objects in the real-world,

so can equally easily be argued to exist at level M0. Nevertheless, the model is helpful in understanding

the relationship between the standards.

<<model>>
MyModel

UML meta-model

MOF model

M0: Real world

M1: Models

M2: Meta-models

M3: Meta-meta-model

Figure 3.4: The four-level meta-modelling architecture, as defined in the introduction to the UML 2.0
standard

The OMG’s solution to providing a document interchange standard for UML is the XML Meta-data

Interchange (XMI) standard. Similarly to the MOF standard, the XMI standard provides a mapping from

a MOF model, however in XMI’s case it is to an XML grammar. In earlier versions of the standard this

was a Document-Type Definition (DTD) [142]. Currently it is an XML schema [24]. Constructs in an

XMI grammar correspond to the concrete classes in the abstract syntax from which it is generated. The

advantage of this approach is that any language with a sufficiently refined abstract syntax defined using

the MOF is also implicitly defining at least one concrete syntax. For example, a sample statement in the

warehouse-cataloguing language shown in Figure 3.1, encoded in XMI is:

3.1. Foundations of the approach 60

<Thesis:Catalogue warehouseId="0" xmi.id="mofid:3040">
<Thesis:Catalogue.productDescription>
<Thesis:ProductDescription xmi.idref="mofid:3043"/>
<Thesis:ProductDescription xmi.idref="mofid:3041"/>
</Thesis:Catalogue.productDescription>
</Thesis:Catalogue>
<Thesis:BicycleDescription

kind="NORMAL" shelfNo="1" xmi.id="mofid:3041"/>
<Thesis:BicycleDescription

kind="PENNY_FARTHING" shelfNo="2" xmi.id="mofid:3043"/>

Unfortunately, the grammars produced by the XMI standard are not particularly easy to write by

hand. This means that in many cases, developers wishing to use UML or another languages have little

choice but to use graphical editors, which may be expensive to acquire or develop, and are difficult to

integrate into automated software development processes. To address these issues the OMG provided

yet another standard, the Human-Usable Textual Notation (HUTN), which like XMI also maps a MOF

model to a grammar, but in this case it is defined in Backus-Naur form, and results in a syntax for a

language that is more similar to a block-structured programming language like Java.

The HUTN version of the above equation-language statement is as follows:

Catalogue() {

productDescription = {

BicycleDescription() {

shelfNo = 1;
kind = NORMAL

},

BicycleDescription() {

shelfNo = 2;
kind = "PENNY_FARTHING"

}
}

}

In the most recent versions of the UML and MOF standards, the commonality between the language

defined by the MOF-model and class diagrams has been acknowledged. The extremely large meta-

model for UML version 2 and later has been subdivided into a number of reusable packages, and MOF

version 2 is defined with reference to the same packages that underlie UML class diagrams. However,

the introduction of novel package reuse mechanisms has complicated the MOF standard considerably.

Hence the OMG has subdivided the MOF standard into two sub-standards, or conformance levels. These

are the CMOF, or Complete-MOF, and EMOF, or Essential-MOF. EMOF is considerable simpler in

structure than the CMOF, and has seen much greater adoption by tool manufacturers. The version of the

EMOF meta-model [86] implemented by the UCL MDA tools (described in the next chapter) is depicted

in Figure 3.5.

Subsequent to the standardisation of MOF, the Java-Community Process standardised a very sim-

3.1. Foundations of the approach 61

package emof emof[]

MultiplicityElement

+isOrdered : Boolean
+isUnique : Boolean
+upper : UnlimitedNatural
+lower : Integer

Property

+isComposite : Boolean

Class

+isAbstract : Boolean

EnumerationLiteral

<<primitive>>

UnlimitedNatural

Element

+comment : String

+name : String

NamedElement

TypedElement

PrimitiveType Enumeration

<<primitive>>

Real

<<primitive>>

Boolean

<<primitive>>

Integer

<<primitive>>

String

Parameter

Package

+uri : String

Operation

DataType

Object

Type

+ownedAttribute

*

+raisedException

*

+ownedLiteral

1..*

+ownedType

*

0..1

+ownedOperation

*

+type

0..1

+superclass

*

+opposite

0..1

+nestedPackage

*

0..1

+ownedParameter

*

Figure 3.5: The EMOF meta-model from the draft MOF version 2.0 core proposal

ilar technology for generating Java interfaces from MOF models, the Java Meta-data Interface (JMI)

specification [129]. This standard specifies the structure and behaviour of interfaces for accessing in-

stances of a MOF model within a Java program. Several implementations of the standard are freely

available, and these include the ability to also generate classes implementing the interfaces to provide

an in-memory model repository. Various UML editors currently rely on a JMI implementation of the

UML meta-model to store the working copy of any models they manipulate. Probably the most popular

current implementation of the JMI standard is the Eclipse Meta-data Facility (EMF) which relies on a

simple meta-modelling language very similar to EMOF [21].

3.1.4 The semantics of modelling languages

In Section 3.1.1 I have described the way in which the UML language specification defines a confor-

mance relationship between UML models and real or hypothetical sets of objects. This relationship

3.1. Foundations of the approach 62

constitutes the semantics, or meaning, of the language. In this section, I discuss approaches to describ-

ing the semantics of such languages.

It is perhaps a surprising observation that English is currently the state-of-the-art language for defin-

ing full modelling languages, such as UML and MOF, in OMG standards. These languages have an

abstract syntax, several concrete syntaxes, and semantics. The abstract syntaxes are structured as MOF

models. However, they are not generally defined by a concrete artifact expressed in the MOF language,

such as a MOF XMI file. Instead they are described in a specification distributed in the Portable Doc-

ument Format (PDF). Although PDFs are machine-readable for the purposes of displaying and printing

a human-readable document, they do not allow the inspection and manipulation of the meta-models of

these languages as XMI would. In the UML version 1.5 specification, the structure of the meta-model

was definitely established using a combination of class diagrams and supporting natural language de-

scriptions, in English [87]. The English descriptions are necessary to disambiguate the diagrams, which

occasionally suppress details and which systematically omit any definition of their context. In UML 2.0

the use of diagrams is deprecated to purely informal [81]. The structure of the meta-model is definitively

established in ‘formal concept definitions’ associated with elements in the abstract syntax, and structured

according to the features of the MOF type of the element being defined.

The semantics of MOF and UML are described to a large extent by attaching natural language

descriptions to the elements in the abstract syntax in the PDF language specification documents. Part of

the semantics of these languages is also defined by the structure of their meta-models, and by the English

language names used to name the elements in these meta-models. These names and the relationships

between the elements evoke real world scenarios (involving objects and classes, activities etc.), and a

reader of these specifications can fairly interpret the meta-models as referring to these. However, the

semantics are are finally and definitively established by the English language comments associated with

these elements. In the case of UML 2, these are included in the formal concept definitions for each

element of the abstract syntax.

Structuring natural language semantics according to the meta-model of the language being defined

results in language documentation that is at least accessible and complete. In the case of MOF and

UML, I somewhat controversially argue that the semantics are also reasonably precise. Consider the

meta-model for EMOF shown in Figure 3.5: the abstract syntax of the language has very much the

same structure as the domain of real world objects being described. The model of EMOF could instead

be regarded as an abstract model of the real world as a continuum of classes of objects (ignoring the

package mechanism, which doesn’t have a semantic interpretation). The semantic relationship between

statements in the language and the domain of the language is hence a reasonably unambiguous one-to-

many mapping: a class in a model describes any real-world class of objects that has the same structure

and relationships as the class in the model, taking into account the interpretation of the natural-language

components of the model (conversely, any set of objects, matching the structure and natural-language

elements of a model, conforms to it). Given that this is the case, the descriptions of the meaning of each

element of the MOF model can be quite simple and unambiguous.

3.1. Foundations of the approach 63

Furthermore, any model, including meta-models, which may be regarded as models of languages,

must eventually be described using natural language if its correspondence to its subject is to be under-

stood. Even if the meaning of a model is described using a mapping to another formalism, that formalism

must eventually benefit from a natural language description, or it would remain forever an unintelligi-

ble mathematical structure. The relatively similarity between MOF models and their subject makes an

immediate description of their semantics in natural language an appropriate choice. This is also true for

some parts of the UML, obviously including the class language that it has in common with the MOF.

A purely natural-language approach is not always appropriate though. UML includes two ‘light-

weight extension mechanisms’, called stereotypes and tagged values. These are essentially syntactic

constructs without predefined semantics. Stereotypes allow the labelling of any UML syntax element

with a string. Tagged-values allow the same labelling with name-value pairs. A stereotype is used in

Figure 3.3 to label the class OperationKind as an enumeration, because UML requires extension to

support enumerated types.

Stereotypes and tagged-values must be declared in a UML model before they can be used, and a col-

lection of stereotype and tagged-value declarations may be packaged into a reusable language ‘extension’

known as a profile. Profiles are commonly used to mix some domain-specific expressive capabilities into

the UML, and a number of profiles have been standardised, such as the Profile for Schedulability, Perfor-

mance and Time Specification [89], which allows quantitative performance information to be included

in models, and the Enterprise Distributed-Object Computing Profile [82], which allows the inclusion of

technical information specific to the implementation of EISs using middleware.

The incapacity of profiles to modify the meta-model of the UML to reflect their own domain of

interest has led to the common practice of providing a domain model, with reference to which the se-

mantics of the profile are defined. A stereotyped element in a UML model is taken to imply the existence

of an instance of a class in the domain model, hence determining the semantics of the stereotype. Tagged

values specify the values of properties of these semantic objects. Domain models in profiles are often

defined using MOF, to permit their alternative use as an independent domain-specific language.

The style of semantic definition for meta-models, now widely referred to as ‘model-denotational’,

was pioneered by the Precise UML group [23], and employed in its submissions to the UML 2 standard-

isation effort, extends this notion by formalising the relationship between syntactic elements and domain

model elements using standard meta-model relationships and constraints. In practice the syntactic model

and the domain model form a joint meta-model for the language, in which the notion that all meta-model

elements are elements of the abstract syntax of a language is dropped.

The principle advantage of this type of definition is that there does not need to be a simple corre-

spondence between syntactic elements and the notions that underlie them to permit a precise description

of the semantics of a meta-model. Because the domain elements are atomic and well-understood, they

may be documented simply and unambiguously using natural language. However, the complex relation-

ship they bear to the syntax of the language is defined formally by the associations and constraints in the

model.

3.1. Foundations of the approach 64

productsemanticspackage chapter3[]

<<enumeration>>
BikeKind

+NORMAL : Integer = 1
+PENNY_FARTHING : Integer = 2

Catalogue

+warehouseId : Integer

ProductDescription

+shelfNo : Integer

BicycleDescription

+kind : BikeKind

PennyFarthing

Wheel

+diameter : Real

Bicycle

Warehouse

+id : Integer

Shelf

+no : Integer

Product

Semantics-de�ning
associations Domain modelSyntactic model

{subsets wheels}
+backWheel

{subsets wheels}
+frontWheel

+wheels

2

1..*

*

*

Figure 3.6: Model-denotational semantics for the warehouse catalogue language

The meta-model of a language specified using the model-denotational approach is depicted in Fig-

ure 3.6, in which the syntactic model of the warehouse-catalogue language, described in Section 3.1.3

has been associated with the model of bicycles, originally introduced in Section 3.1.1. This domain

model has been expanded to add the notions of warehouses and shelves, and a generalisation of bicycles

as products that may occupy shelves. To complete the definition of the language, the following invariants

are needed:

On the Catalogue class:

warehouse.id = warehouseId
and
productDescription->forall(p : ProductDescription |

warehouse.shelf->exists(
no = p.shelfNo
and
product->includes(p.product)

)
)

This establishes that to conform to a catalogue, a warehouse must have the same identifying num-

ber as listed in the catalogue, shelves corresponding to the shelves listed in product descriptions, and

products on those shelves matching the product descriptions.

On the BicycleDescription class:

product.oclIsKindOf(Bicycle)
and
kind = BikeKind."PENNY_FARTHING"

3.2. Abstract, extensible, domain-specific languages for SLAs 65

implies product.oclIsKindOf(PennyFarthing)
and
not (kind = BikeKind."PENNY_FARTHING")

implies not product.oclIsKindOf(PennyFarthing)

This establishes what it means for a bicycle to conform to a description of a bicycle in the catalogue.

Trivially, if the catalogue says that the bicycle is a Penny-Farthing, then the bicycle must be a Penny-

Farthing, and not otherwise.

If this language were to be put into use, the various classes in the language specification should also

be commented in natural language to definitively establish their correspondence to real-world objects, in

some definitive language specification document.

Note that the structure of statements in the language (i.e. catalogues of warehouse statements), is not

identical to the structure of the semantic domain. For example, the product description of a bicycle con-

tains no information pertaining to the number of wheels that a bicycle has, or the relationship between the

diameters of the wheels on a penny-farthing. However, these details are provided by the domain model,

in a precise manner. This means that these details do not need to be described informally in comments

associated with the BicycleDescription class. Neither does the BicycleDescription class

need to be extended with additional structure to allow these details to be specified by the author of a bi-

cycle description, which would be redundant, as they would need to be present in all bicycle descriptions

(assuming these details are genuinely of relevance to the application of the catalogue language).

The approach was not adopted in UML 2, perhaps due to the perceived lack of a strong need to

define an intermediate semantic model to describe UML.

The model denotational approach has found some adoption in standards. The OCL 2 specification

provides such semantics [88]. The semantics of OCL 2 are defined in terms of expression evaluation

events which are somewhat different in structure to the underlying expressions (loop evaluations are

rolled out, for example). Also, the style is used to define an ‘abstract semantics’ for CMOF in the MOF

2 specification [79].

A number of attempts have been made to introduce more traditional styles of semantic definition of

languages with MOF-defined abstract syntaxes. A popular option has been to employ a traditional math-

ematical approach based on logic and set theory. A ‘formal’ semantics has been proposed for OCL, for

example, although it is not definitive, nor is equivalence with the definitive model denotational semantics

proven [109]. Alternative approaches to defining semantics for modelling language are discussed further

in Section 3.3.2.

3.2 Abstract, extensible, domain-specific languages for SLAs
3.2.1 Modelling SLAs

The conformance relationship between real-world situations and class diagrams described in the Sec-

tion 3.1.1 suggests a way in which SLAs could be specified. The agreed behaviour of all parties and the

service in a service-provisioning scenario could be modelled using class diagrams. This model could be

included in an SLA, or even constitute the SLA, with the following stipulation to the parties: if your be-

haviour and that of the service conforms to the model, then you are complying with the SLA, otherwise

3.2. Abstract, extensible, domain-specific languages for SLAs 66

you are violating the SLA.

package example3chapter3[]

ServiceUsage

+duration : Real

Service

+name : String

Party

+name : String

Provider

X

Client

Y

+usages

*

* +owner

+usages *

Figure 3.7: A UML model of a service-provisioning relationship

For example, consider the service scenario modelled in Figure 3.7. Let us assume that the hypo-

thetical parties X and Y wish to enter into a relationship with respect to a service Z. The following

additional invariants are required to fully constrain the relationship between X and Y , expressed using

OCL.

On class X:

name = ’X’

On class Y:

name = ’Y’
and
service->exists(name = ’Z’)

And on the class of services:

name = ’Z’
and
owner.name = ’Y’
implies
usages->forall(u : ServiceUsage |

u.client.name = ’X’
implies
u.duration < 10

)

This model therefore represents an agreement between X and Y , such that when Y provides its

service Z to X , it takes less than 10 seconds to complete, each time it is used. Of course, the model as

proposed is still very ambiguous. It is not clear, for example, how the duration of a service usage should

3.2. Abstract, extensible, domain-specific languages for SLAs 67

be measured, or in what units recorded. These problems could be addressed by further refinements to

the model, as discussed in Section 3.1.1.

Adopting a combination of UML and OCL is attractive for specifying SLAs because these lan-

guages together meet a number of requirements of SLA languages quite well. They are highly expres-

sive, and so should be able to capture any requirement that the client has for the behaviour of the service,

or any requirements that the parties have regarding the behaviour of their peers. They are fairly under-

standable, and should be at least somewhat familiar to anybody with the expertise to specify an SLA for

an application service. They also have the potential to express precise SLAs, are supported by a range

of tools, improving their ease of use and usefulness in software-engineering activities, and benefit from

a machine-readable syntax thanks to the XMI standard.

However, the principal deficiency of this combination of languages is that although it is capable of

expressing good SLAs, it provides no real support for doing so. Almost all of the details concerning the

scenario to which the SLA applies must be completely specified in the SLA, despite the fact that it might

have a lot in common with scenarios for which previous SLAs have been specified. The languages are

also not restrictive, so it is very easy to express SLAs that are ambiguous, as in the above example, or

that fail to correctly capture the intent of the parties with respect to the agreement. Verifying that an SLA

encodes the required conditions, and does so in a way that is unambiguous, monitorable and difficult to

exploit, will always be be the sole responsibility of the author. This may increase the cost of preparing

an SLA, because of the extra effort required to validate that these properties hold, or result in residual

flaws in the SLA.

In the next section I look at how these deficiencies can be addressed without losing the benefits of

object-oriented modelling for expressing SLAs.

3.2.2 Reusable models of SLAs

A common approach to providing reusable domain-specific facilities in a general-purpose language (or a

general-purpose programming language) is to provide libraries. For example, legal contracts often reuse

boiler-plate text; the Java programming language includes an extensive standard library to support many

common programming tasks, such as providing user-interfaces, processing documents, and interacting

over a network.

Like Java, UML includes a package mechanism that can be used to hierarchically subdivide mod-

els. This allows models, and parts of models, that have developed separately, to be combined without

introducing ambiguities caused by name clashes. The package mechanism could be used to encapsulate

and redistribute reusable models of service scenarios, thereby reducing the effort required to apply the

approach described in the previous section. Ignoring for a moment its many faults, let us see how this

would work using the example service model previously described.

It would not be sensible to redistribute the details of the relationship between X and Y , which may

be private. The model will therefore have to be parameterised somehow, with the parts that are common

to several relationships redistributed, and the parts that are specific to a single relationship elided, or

referred to only in abstract.

3.2. Abstract, extensible, domain-specific languages for SLAs 68

Let us assume that the redistributed model of service usage becomes very commonly used, and

hence well known. If this happened, then SLAs relying on the model would not need to redistribute the

model themselves, they could merely refer to it. An SLA itself would only consist of any extensions

to the model required to make it specific to a particular service-provisioning relationship. Because the

model was well known, and presumably also easy to obtain, anybody receiving such an SLA would

know what it meant.

One possibility for parameterising the model is therefore to locate all of the parameters in a sin-

gle element, modelling an SLA that contains only the information specific to a particular relationship.

Figure 3.8 shows the service-provision model from the previous section adapted in this way.

package example4chapter3[]

SLABetweenXAndYRegardingZ

SLA

+clientName : String
+providerName : String
+serviceName : String
+maxDuration : Real

ServiceUsage

+duration : Real

Party

+name : String

Service

+name : String
Provider

Client

+usages

*

* +owner

+usages *

Figure 3.8: A more reusable UML model of a service-provisioning relationship

The invariants governing the relationship can now be moved into the SLA class. The first establishes

that certain information in an SLA defines its relationship to the service provisioning scenario to which

it will apply.

client.name = clientName
and
provider.name = providerName
and
service.name = serviceName
and
service.owner = provider

The second ensures the SLA contains a meaningful limit on the duration of service usages:

maxDuration > 0.0

The third governs the relationship:

3.2. Abstract, extensible, domain-specific languages for SLAs 69

service.usages->forall(u : ServiceUsage |

u.client.name = clientName
implies
u.duration < maxDuration

)

By way of example, the SLA between parties X and Y has been re-implemented, by extending

the SLA class. The parameters for the SLA are now constrained in the class SLABetweenXAndY-

RegardingZ using another invariant:

clientName = ’X’
and
providerName = ’Y’
and
serviceName = ’Z’
and
maxDuration = 10

The SLA class in the modified scenario can be regarded as more than just a convenient point of ex-

tension for parameterising the scenario. The model, consisting of the type structures shown in Figure 3.8

and the invariants listed above, represents a description to which exactly one (non-empty) situation in the

real world is expected to conform - if no scenarios conform to the model, then it either contains an error

or the SLA has been violated; if multiple scenarios conform to the model, then it must be ambiguous

in identifying the parties or service expected to be involved in the relationship. Moreover, the parties

to the SLA have agreed that the service-provision scenario should in principle conform to this model.

Therefore, the inclusion of the class SLA represents the expectation that a concrete SLA document will

exist in the scenario, and will have particular contents, in this case defining the participants, identifying

a service provided by the provider to the client, and a limit on the duration of the service usages for the

service.

The SLA class therefore represents the extension of the model that is needed to specify details of the

relationship specific to a particular relationship. In the example above this is the definition of the class

SLABetweenXAndYRegardingZ, which provides all of the requisite information in its invariant,

thereby conforming to the definition of the SLA class both as a subclass and an instance. The model

does not say how an SLA needs to represent this information, merely that it must convey it somehow. In

this sense, the model has defined an abstract syntax for these types of SLA. The definition of the class

SLABetweenXAndYRegardingZ is therefore the SLA in this case, and the subset of OCL used in

its invariant can be regarded as conforming to this abstract syntax.

The model has also defined what the SLA, in this case the definition of the class SLABetweenX-

AndYRegardingZ, means. In any situation where the SLA is not violated, there will also be a service

and participants meeting the constraints as parameterised by the SLA. The meaning of the SLA is defined

by the model, and in a situation conforming to the model, the existence of an SLA necessarily implies the

existence of the parties and service associated with the SLA. We can say that a particular SLA denotes

a particular service situation, and the model hence constitutes a model-denotational description of the

semantics of the language.

3.2. Abstract, extensible, domain-specific languages for SLAs 70

This approach to supporting the specification of SLAs is an improvement on the approach suggested

in the previous section in that it has improved the power of the approach, in the sense that having obtained

a reusable model for a class of SLAs, less work needs to be done to create each new SLA within that

class. The restrictiveness of the approach has also been improved, because the structure of the SLAs

is tightly defined by the SLA class, and constraints, such as that requiring the maximum duration for a

usage to be non-negative, have been included. These features combine to make it more difficult to define

a bad SLA based on the model.

The principle drawback to this approach is that SLAs must be specified as classes extending a

core element. This is not as restrictive as having a dedicated syntax in which SLAs can be written.

However, the example in this section has highlighted the fact that producing a reusable model for SLAs

can be equivalent to defining an SLA language with model-denotational semantics. In the next section,

I describe this approach in detail, and discuss its advantages.

3.2.3 Recommendations for developing languages for ASP SLAs

I now present the principle contribution of this chapter, which is to argue that adhering to the following

three recommendations when defining a language for ASP SLAs will tend to result in a language that

meets the requirements described in Section 2.8 well:

1. a language for ASP SLAs should be specified using a combination of the technical languages

EMOF and OCL, and natural-language descriptions;

2. a language for ASP SLAs should be modelled using the model-denotational approach to provide

both an abstract-syntax for the language, and a precise description of the semantics of the language;

3. a language for ASP SLAs should be abstract and extensible to best address the tradeoff required

between restrictiveness and expressiveness in the ASP SLA domain.

The first and second recommendations represent a minor philosophical adjustment to the approach

presented in the previous section.

Continuing the argument of the previous section, a specification of an ASP SLA language that

consists of an abstract syntax plus a model-denotational definition of semantics is equivalent to a model

of a set of service scenarios in which some statements (the SLAs) have an impact on what is considered

to legitimate behaviour from a scenario (i.e. that behaviour required for the scenario to conform to the

model). The principal difference between a language defined according to my recommendations, and

the type of model described in the previous section is that the language specification will be expressed

using EMOF rather than UML. This represents an attempt to conform to the standard style of the OMG

when defining languages, and to benefit from compatibility with standards such as XMI, HUTN, and

JMI which provide concrete syntaxes for the language, and offer the possibility of tool support.

This differences is essentially trivial. UML class diagrams and EMOF have very similar expressive

powers. Moreover, the discussion in the previous section supports the assertion made in Section 3.1.1

that there is little semantic difference between specifying a unique object, and specifying a class which

can contain only a unique object. Because the distinction between models and meta-models, or languages

3.2. Abstract, extensible, domain-specific languages for SLAs 71

and statements, can be blurred in this fashion, it becomes clear that distributing an EMOF model of a

language expressed in the model-denotational style is essentially equivalent to distributing a reusable

object-oriented model in a general-purpose modelling language.

The differences have an important practical implication however. Regarding a redistributed model

of a scenario as a language specification introduces a categorical distinction into the activities required

to produce a concrete SLA.

According to the approach described in the previous section, to produce an SLA, it is necessary

to obtain an appropriate reusable core model and then extend it until it precisely describe describes the

scenario upon which the parties wish to agree.

However, by treating part of the reusable model as an abstract syntax, to produce a concrete SLA

it is now necessary to instantiate concrete classes in the abstract syntax by writing statements in some

concrete syntax, such as HUTN. In Figure 3.7, the SLA class is concrete. An HUTN statement could

therefore instantiate it as follows:

SLA() {

clientName = "X";
providerName = "Y";
serviceName = "Z";
maxDuration = 10.0

}

However, specifying SLAs in this manner raises a difficulty when defining a language for ASP

SLAs, as concrete classes must be included in the abstract syntax for every type of statement that the

author of an SLA wishes to write. Because a general language is needed to express all SLAs, this

implies that an ASP SLA language should have general expressive capabilities. This could be regarded as

implying that we should just use UML and OCL to express our models. Alternatively, general modelling

language facilities could be embedded in the ASP SLA language.

Instead of following either of these approaches, I have chosen to resolve this issue by deciding that

the abstract syntax of an ASP SLA language will need to be “doubly abstract”. Not only will it not

completely describe the concrete syntax in which an SLA should be written (the usual interpretation

of the word ‘abstract’ in the term ‘abstract syntax’), nor can it be expected to completely specify the

content of SLAs (the sense of the term ‘abstract’ applied to classes in object-oriented models). It will

rather expresses as much as can be anticipated about the categories of statements that will be needed,

using abstract classes and operations.

This means that in order to express many SLAs, such a language specification will first have to be

extended, to add concrete abstract-syntax classes capable of expressing the desired SLA. These concrete

classes will provide details which previously could not be anticipated, such as the detailed functional

behaviour of a service, the nature of any real-world activity being constrained, the scheme by which

timeliness, reliability and throughput clauses should be parameterised, or the details of a compensation

scheme.

3.2. Abstract, extensible, domain-specific languages for SLAs 72

Note that in cases where complex or unusual SLAs are required, this activity will always be unavoid-

able, and the distinctions between extending a language specification, adding detail to a reusable object-

oriented model, or otherwise writing SLA terms in a general-purpose language are irrelevant. Relying

on language extension rather than embedding a general-purpose language in the ASP language seems

to lead to less redundancy in the overall set of language specifications used, since a meta-modelling

language will always need to provide general modelling capabilities if it is to express semantics.

The relegation of extensibility to the definition of the language, rather than the language itself seems

to better accord with the observation that the design of SLA conditions can be a complicated matter, in

which a highly expressive language is required to produce a statement that must meet several exacting

requirements, including those for monitorability, precision and non-exploitability.

Modifications to the language to allow the expression of new types of constraints require extra

language facilities that can be delivered in the meta-modelling language but kept separate from the SLA

language. They will hopefully be reused in several SLAs, and can therefore be made the responsibility

of a language designer, rather than that of individual negotiators of SLAs.

What is therefore important is to structure an abstract SLA language in such a way that, for any

new situation, as little extension as possible is required to the core language, and in such a way that it

is obvious how extensions should be provided. It is in this sense that I recommend that an ASP SLA

language be designed to be extensible. The facility of EMOF (and UML) to include abstract classes and

operations in a meta-model has the potential to support extensibility in an efficient manner: first, they

may be used to provide a framework of abstract classes and operations so that it is clear to the author of a

language extension how it should be integrated with the base language – and so that for most extensions

it is possible to identify appropriate extension points from which to proceed; second, abstract classes

can incorporate concrete elements, in the form of properties and operations, which may implement any

anticipated facilities upon which an extension will necessarily depend.

These recommendations may be justified with respect to the requirements for ASP SLA languages

as follows:

1. Expressiveness – an ASP SLA language specified according to my recommendations will not be

capable of expressing all SLAs meeting my SLA requirements. However, extensions of the core

language should be;

2. Understandability – such languages will have a language specification that may be regarded as

an object-oriented model of the way that SLA terms parameterise correct behaviour in a service

provision scenario. It should therefore be highly understandable;

3. Precision – since such a language will be written in a combination of natural language, EMOF and

OCL, it has the potential to be very precise.

4. Restrictiveness – extensions to such a language will produce highly restrictive abstract syntaxes,

capable of expressing a small range of good SLAs. The combination of these extensions with stan-

dard generic concrete-syntax standards such as XMI and HUTN will result in concrete languages

3.2. Abstract, extensible, domain-specific languages for SLAs 73

amenable to a high degree of automated checking.

5. Ease of use – the HUTN standard, and the high automatability of language specifications extended

from the core language should make the language easy to use.

6. Power – individual extensions to the core language should have extremely high expressive power,

as most of the details of the scenario will be captured by the language specification, with only SLA

parameters relegated to a concrete SLA artefact.

7. Automatability – language specifications in EMOF and OCL are intrinsically highly automatable.

In particular, the use of the JMI standard allows the automatic generation of meta-data repositories

that can form the basis for tools to manipulate language statements;

8. Analysability – the combination of EMOF, OCL and natural language is an extremely expressive

language in which to describe a language. This presents formidable reasoning challenges. How-

ever, language specifications produced in this manner are no more expressive than the domain

models presented in OMG domain standards and profiles. Therefore, the language specifications

should benefit from any automated analysis theory developed to support the use of multiple DSLs

in an MDA development. This may include consistency maintenance, and the ability to transform

models in order to derive analyses [115]. Being machine-readable, such language specifications

will be amenable to automated analysis themselves, such as the calculation of metrics as proposed

in Section 4.5.

3.2.4 Consequences of the recommendations

The problem with defining a language that requires extension to express all required statements is that it

arguably doesn’t meet its expressivity requirements. Extensions of the language may be, in effect, differ-

ent languages. This is very much the case for previous SLA languages such as WSLA [34], WSOL [132]

and WSML [112], which rely on extension so much that the core languages provide virtually no prac-

tical support for defining SLAs. The authors of these languages enthusiastically promote them as being

appropriate frameworks for new languages, a claim which is hard to refute.

This raises the question of how to assess how much benefit an extensible core language for SLAs

provides. Furthermore, although a language designed to anticipate extension in this manner is relieved

of the burden of providing general expressiveness, which is assumed by the meta-modelling language,

the language need not be entirely abstract. An initial version of the language should include all that the

support that can be reasonably anticipated for expressing SLAs, given what can be anticipated about the

domain. However, over time it may become clear that the same extensions are frequently required. These

may be integrated into future versions of the language in an attempt to improve its expressive adequacy.

However, this will raise the question of whether the language is genuinely being improved by such

additions, or merely being rendered more complicated and harder to use. This question is addressed

further in Section 4.5, in which I develop a set of metrics that attempt to measure the usefulness of a

language specification, which may be extensible.

3.3. Other approaches to defining languages 74

3.3 Other approaches to defining languages
3.3.1 Specification of syntax

A good deal of prior research concerns the specification of syntaxes that are more or less concrete. This

work can be broadly divided into two categories: that which is primarily concerned with investigating

the theoretical properties of syntaxes; and that which is concerned with providing support for engineer-

ing language tools, in particular compilers, interpreters, serialisers and deserialisers, and consistency

checkers.

The former category is of little relevance to this work. Probably the most commonly used approach

to specifying the structure of a language for theoretical purposes is to use a constructive formal gram-

mar, which specifies a language consisting of a (possibly infinite) set of strings [73]. Formal grammars

are typically not abstract, as they usually contain terminal symbols from some alphabet. They are not

universally practical as the basis for producing tools as efficient algorithms for parsing them do not exist

for all classes of formal grammar.

Context-free grammars are a restriction of formal grammars, commonly expressed using a notation

called Backus-Naur Form (BNF) [45]. BNF can easily be encoded in a machine-readable form, and

is probably the most venerable approach to specifying concrete syntaxes in a manner that is useful for

automatically generating language tools. Further restrictions to such grammars enable efficient parsing

algorithms to be implemented. These restrictions rely on limiting the amount of lexical context needed to

determine what grammatical production is currently being parsed, and tend to result in languages similar

in style to most modern programming languages, many of which are defined in this manner.

This approach to defining the syntax of languages is practical, and can be used in conjunction with a

traditional style of semantic definition, as described below, to define a language with precise semantics.

However, it also has its deficiencies, in that, in comparison to abstract syntaxes, a generative syntax

typically only admits of a single representation. This is inconvenient in the case of ASP SLAs where

we may wish to have several representations that are more suitable for either human-use (e.g. HUTN),

or machine processing (e.g. XMI). Also, this approach would rule-out the use of model-denotational

semantics, which require an object-oriented abstract syntax, and which, as discussed below, have several

advantages compared to more traditional approaches. The HUTN standard maps an object-oriented

abstract syntax to a BNF grammar, so some of the usability properties of a context-free grammar may

also be obtained when specifying an abstract syntax.

The other major approach to defining syntaxes for use in practice is that taken to define markup

languages, such as the Hyper-Text Markup Language (HTML) [138] and dialects of the eXtensible

Markup Language (XML), which derives from an approach originally defined for the Standard Gener-

alised Markup Language (SGML) [35]. These approaches assume that a document conforms to a loose

‘concrete reference syntax’ which typically subdivides the document into tags, which define a labelled,

hierarchical structure for a document. A document so structured is deemed to be well-formed. However,

further constraints specific to HTML or XML dialects then restrict the structure and content of tags,

resulting in a stricter standard of validity to which documents must conform. Since well-formedness is

3.3. Other approaches to defining languages 75

assumed, validity rules can be expressed concisely in a special language, resulting in a Document-Type

Definition (DTD). DTDs, the structure of which is defined by the SGML standard, are not highly ex-

pressive of structural constraints. The XML Schemas specification has been proposed as an alternative

for XML dialects [24].

Various versions of the XMI specification provide a mapping from abstract syntaxes to both DTDs

and XML schemas, so again, defining a language using an abstract syntax expressed using EMOF can be

regarded as equivalent to defining an XML grammar. However, OCL constraints, which may be included

in an object-oriented abstract syntax, are more expressive than the constraints that may be included in

XML schemas. It is therefore possible to specify a syntax with more precision using a combination of

EMOF and OCL than using an XML schema.

3.3.2 Specification of semantics

A number of approaches have been developed to provide a specification for the meaning of languages

that is in some sense ‘formal’ or precise. Although specifying the syntax of a language using an abstract

syntax is not radically different from other popular approaches to defining syntaxes, due to the mappings

provided by the XMI and HUTN standards, choosing to use a model-denotational approach to specify

the semantics of a language requires more justification in comparison to the alternatives.

Informal approaches
The most rigourous approach taken with previous efforts to define SLA languages has been to attach

natural language descriptions to syntactical elements in a systematic manner directed by the structure

of the syntax (see the survey of SLA languages in Appendix A). Variations on this approach are driven

by variations in the style of syntactic definition. WSLA and WSML use XML schemas, and hence

document each XML schema type. Other languages may use a syntax expressed in BNF, and so will

tend to document the meaning of individual productions in the grammar. Languages such as UML and

MOF that rely on object-oriented meta-models attach descriptions to the types and relationships in their

meta-models. As discussed in Section 3.1.4, these approaches begin to suffer from ambiguity when the

structure of the language is dissimilar from the structure of the domain, as is the case with SLAs.

Classical formal approaches
More formal approaches tend to introduce an intermediate model between the language and the natural-

language description of the domain. Classical examples of this are axiomatic, operational, and deno-

tational semantics, all of which introduce an abstract model of a domain independent of the syntax of

the language, normally expressed using traditional mathematical logic or set notations. Each approach

defines in a different way the effect of statements in the language on elements in the domain, and are

typically applied to programming languages.

Axiomatic semantics [123] define the effect of operations in the language by defining a set of

statements that are always true about the state of a system and the operations that it can perform. These

axioms can be combined with a program specification to derive information concerning the effect of the

program on the state of the system. Axiomatic definitions are primarily useful for proving properties

of algorithms, and it is not clear how they could be usefully applied to the definition of a language for

specifying constraints on behaviours, such as an SLA language.

3.3. Other approaches to defining languages 76

Operational semantics [106] define the effect of a language by identifying the changes in state

effected by an operation, or by sequences of operations. An operational semantic definition has been

successfully employed in languages for performance analysis. Two very similar examples are PEPA [33]

and TIPP [32], both of which are stochastic process algebras. Statements in these languages define

abstractly concurrent processes active in computing systems as sequences of actions having approximate

completion rates. Processes can be synchronised on shared action, and may also branch depending on the

value of state variables or non-deterministically. Operational semantics define the effect on the current

state of the system caused by the completion of actions, effectively defining finite graphs of states, the

nodes of which represent combinations of actions contending to complete next.

These languages are highly amenable to analysis, as the state graphs implied by the semantics

can be rolled out, completely or heuristically, to detect problems with processes, such as deadlock or

livelock waiting for contended resources, and quantitative properties such as average response time and

throughput for processes.

Such an approach could conceivably be the basis for the definition of an SLA language, and the

benefits in terms of analysability would be considerable. Several problems render this approach undesir-

able. The semantics of languages such as TIPP and PEPA are approximations of the real behaviour of the

system, incorporating assumptions, such as the notion that actions have a constant risk of completion,

that are simply untrue of the systems that are being analysed. This degree of approximation is inappro-

priate for SLAs, the intent of which is to define constraints on actual systems. Removing the assumptions

renders analysis computationally infeasible, eliminating the original advantage of the approach. More-

over, although actions, or operations are clearly performed in ASP services, it is not clear that this is the

ideal primitive notion for expressing behavioural constraints. Actions are typically performed within the

infrastructure of a single party, and hence are not monitorable. Of more interest are the events arising

from actions, which may be observable by multiple parties as a result of interactions.

In a denotational approach [123], syntactic elements are defined as being indicative or equivalent to

the presence of elements in some domain model, or in the case of operations, to functions transforming

the state of a domain model. Although originally developed to describe the behaviour of imperative

programming languages, a denotational approach is quite appropriate for more declarative language (as

needed for SLAs) due to its ability to describe the way that syntax implies either static or dynamic domain

elements. However, a traditional denotational approach typically defines its semantics using a function

that maps from statements conforming to a formal grammar, into an abstract mathematical domain, for

example a tuple-space. The function and the domain may or may not have an intuitive interpretation, as

the principle objective of a denotational approach is often to prove various types of formal equivalence

with an operational semantic description, for example that every distinct program in a language produces

a distinct result (i.e. has a distinct denotation).

The model-denotational approach can be seen as a straightforward application of the denotational

semantics approach, encoded into an object-oriented formalism (the meta-modelling language). It is not

traditional in the sense that the domain model is not expressed using a mathematical domain, but instead

3.3. Other approaches to defining languages 77

using a similarly expressive combination of meta-modelling and logical constraint language. Although

less theory exists to support reasoning with model-denotational semantic descriptions than is the case

with formal mathematical descriptions, the advantage is that the domain of the language is described in

a more understandable manner, and is more immediately suitable as an artifact in software engineering

activities. Moreover, the model-denotational approach associates a semantic domain model with an

object-oriented abstract syntax, rather than a formal language, conveying the benefits of this approach to

defining syntax, as discussed above.

Reusable domain models

The inclusion of a domain model in an ASP SLA language meta-model requires a development effort

in similar category to previous work to produce reference models for various types of systems or infor-

mation. The intent of such efforts is usually to standardise vocabulary or data-models to allow greater

inter-operability of development efforts or systems. Two such efforts that are notably similar to our work

are the Common Information Model (CIM), and the Reference Model of Open Distributed Processing

(RM-ODP).

CIM [18] is a model of management information in a computer system. It is defined in a textual

syntax called the Managed-Object Format (MOF), which is similar but distinct from the OMG Meta-

Object Facility (MOF) language. CIM’s specification consists of the definition of CIM’s MOF, plus an

extensible model of system management information. This large model includes classes of metric and

measurement information, and other information similar to SLAs such as policy goals. It could poten-

tially be extended to include SLA information. The model is intended to be instantiated as a database,

in a similar manner to instantiating a JMI repository from an OMG MOF meta-model. The semantics of

the elements in the model are hence primarily defined in terms of instantiated data-structures. However,

the CIM MOF definitions of elements allow the embedding of human readable documentation that also

defines the intent of the element with respect to the representation of a managed system.

The RM-ODP is an extremely influential specification. It defines a collection of five related view-

point languages for describing distributed systems:

• enterprise viewpoint – focussing on purpose, scope and policies for the system;

• information viewpoint – focussing on information structure and processing;

• computational viewpoint – object-oriented descriptions of systems;

• engineering viewpoint – the relationship of the system with software infrastructure, such as mid-

dleware;

• technology viewpoint – the deployment of systems.

The standard can be considered a reference model in itself in so far as it describes the semantics of

each of the viewpoint languages with varying degrees of formality. The concepts on which the languages

are based could be referred to in the definition of SLA languages. For example, the technology viewpoint

can describe the deployment of systems distributed across a network. QoS is defined as a property of

3.4. Summary 78

object systems, and related to a notion of contracts that express the expected behaviour of those systems.

The Business Contract Language (BCL) [54] bases its definition of a legalistic contract on an extension

of the semantics for communities included in the enterprise language.

RM-ODP is defined using a mixture of English-language descriptions and a formal operational

semantics specification for the computational language. Reusing the semantics in a model denotational

approach could be achieved via the intermediary of the EDOC profile [82] for UML. The purpose of

this profile is to extend UML with RM-ODP. However, according to the current fashion for profile

documentation, it also defines domain models directly using the MOF language, effectively defining a

meta-model for RM-ODP concepts. These models could be augmented with SLA concepts and related

to the syntax of an SLA language.

Reusing part or all of the structure and semantics of these models in a reference model for ser-

vice provision (the semantic part of an ASP SLA language specification) would confer various inter-

operability advantages, as well as lending the language the authority conferred by these specifications.

Using the CIM model would make it easy for monitoring solutions for the language to inter-operate

with existing CIM repositories. Indeed, CIMs reliance on extension and its support for instantiating

custom information repositories suggest a possible implementation strategy for SLA monitors. Simi-

larly, greater compatibility with the RM-ODP standard would improve the utility of the specification in

software development projects relying on that model.

However, the integration of either of these specifications into a language meta-model has draw-

backs. The SLA language may become less specific to the expression of SLAs. Favouring one model

over the other may result in adoption challenges for the community associated with the model that was

omitted. Finally and most importantly, the world view of SLAs typically deals with interactions between

parties (as discussed extensively in Chapter 5), which are necessarily largely located at the interface

between parties, and is not directly compatible with the views of CIM and RM-ODP, which focus on

providing a vocabulary for service infrastructure and provisioning, which are largely contained within

the respective administrative domains of individual parties in the ASP scenario. Therefore I have not

pursued this approach in this work. However, integration with standard models should not be ruled

out in the future, and the recommendations for the development of ASP SLA languages presented here

are not incompatible with such an effort. The object-oriented approach taken is compatible with the

meta-theories of CIM and the EDOC profile, and with the object-oriented world-view of RM-ODP.

3.4 Summary
In this chapter I have developed a set of three recommendations for the definition of a language for ASP

SLAs, as follows.

1. a language for ASP SLAs should be specified using a combination of the technical languages

EMOF and OCL, and natural-language descriptions;

2. a language for ASP SLAs should be modelled using the model-denotational approach to provide

both an abstract-syntax for the language, and a precise description of the semantics of the language;

3.4. Summary 79

3. a language for ASP SLAs should be abstract and extensible to best address the tradeoff required

between restrictiveness and expressiveness in the ASP SLA domain.

To support these recommendations, I have described the role of the EMOF and OCL language

within the broader context of the standards supporting the OMG’s MDA initiative, permitting a justifi-

cation of these languages as appropriate for the specification of DSLs. The discussion of the MDA also

provides the context for contributions discussed in the next chapter.

I have also looked at object-oriented modelling using a combination of class-diagrams and OCL.

This serves two purposes: first, as a foundation for the explanation of the model-denotational approach

to defining languages, which involves the combination of two object-oriented models defining the syntax

and domain of a language; second, it allowed me to argue that object-oriented modelling benefits from

good properties of understandability and precision.

I demonstrated that an attempt to develop reusable object-oriented models of SLAs would tend

to result in models which resembled language specifications using the model-denotational approach.

Therefore, this approach will benefit from the same properties of precision and understandability, and

should be preferred over the use of plain object-oriented modelling because it also enables the use of

standard concrete syntaxes, such as XMI and HUTN, for expressing SLAs, and introduces a categorical

distinction between specifying SLAs and developing new SLA syntax, which may be promote a more

responsible approach to producing good SLAs.

However, this approach suffers from a conflict between the expressiveness requirements of ASP

SLA languages, which must encode conditions relating to a range of external factors of boundless di-

versity, and the requirements that a DSL be powerful and restrictive to reduce the cost of producing

statements. I argued that ASP SLA languages, if they are not general (harming restrictiveness), must

necessarily be extensible, and proposed that abstract classes and operations should be included in the

language specification to guide the production of extensions, and to allow the specification to contribute

to defining conditions even though the complete details of what is required cannot be known in advance.

Finally, I provided additional arguments in support of these recommendations by considering how

following them would influence the degree to which a language would meet the requirements described

in Section 2.8, and by comparing the approach favourably to alternative approaches for defining the

syntax and semantics of domain-specific languages.

80

Chapter 4

Domain-specific language specifications

In the previous chapter I have described an approach to defining a DSL for SLAs by modelling the

syntax and semantics of the language using a combination of the EMOF and OCL standards. Defining a

language according to these recommendations results in both a formal meta-model artifact and a natural

language description of a language that ultimately establishes the semantics of the language. It may also

result in some other sources of information concerning the language, such as requirements or design

documents. Some of these, the designer of the language will consider to be definitive of the language,

some will merely be useful for understanding the language, and others may be irrelevant or obsolete. The

definitive sources of information concerning the language must somehow be delivered to a user of the

language, and confusion must be avoided between definitive and non-definitive artifacts. In this chapter

I assume that the definitive sources of information concerning a language can be grouped together into a

single artifact that will be made available to the language user, which I call a language specification.

In this chapter I present a collection of contributions to the state of the art in defining, utilising and

reasoning about language specifications, of the kind that naturally result from following the recommen-

dations presented in the previous chapter.

As discussed in the previous chapter, the approach used by the OMG, the foremost standardiser

of languages defined using object-oriented abstract syntaxes, is to publish a PDF document describing

both formal and natural-language components of a language description. This has the disadvantage that

that the software-engineering benefits of having a formal specification of the language are largely lost.

Moreover, these specifications, although definitive of a language, are typically not referenced in an op-

erational context. Therefore the association between artifacts defined in a language specified in this way

and the language itself is often unclear, potentially resulting in misinterpretation of the artifacts. In this

chapter I first describe some modifications to the MOF standard, and related concrete-syntax standards,

that are required to address these issues. These modifications improve the potential of the specification of

an SLA language defined using these technologies to meet the language-specification requirements de-

fined in Section 2.9, and SLAs written according to the specifications to meet the precision requirements

specified in Section 2.7.3.

Next, I describe the tooling that is made possible by choosing this approach to defining DSLs, which

I have implemented in an open-source project called the UCL MDA tools. I describe the use of these

kinds of tools to automatically generate a checker component, capable of determining whether a model

4.1. Language specifications as first-class entities 81

of service provision complies with an SLA. Such checkers allow the testing of a language specification,

and I also evaluate the performance of a checker employed as part of a runtime monitoring system for

SLAs.

Finally, I describe a set of metrics helpful in evaluating the usefulness of DSLs. These metrics are

types of measurements made over language specifications and statements in DSLs.

4.1 Language specifications as first-class entities
A concrete SLA is intended to capture and preserve the intent of some parties with respect to an agree-

ment concerning the provision of some service. This raises two potential problems:

First, as described in the previous chapter, a reasonable approach to balancing the conflicting needs

for a highly expressive language, able to capture any SLA terms, and a language that reduces the cost of

SLA preparation by providing reusable domain knowledge is to provide an abstract, extensible, domain-

specific language. However, to make use of such a language, extensions to it will frequently have to be

defined. This means that the author of an SLA will need to keep careful track of what extensions they

are using, what the extensions mean, and how the extensions combine with the core language.

Language extensions must therefore be understandable and precise, just as a core-language speci-

fication must be understandable and precise, so that the author of an SLA does not introduce errors due

to a lack of familiarity with a particular extension, or confusion between the meaning of several similar

SLA-language extensions, and also so that the precise meaning of a concrete SLA, defined with the help

of language extensions, can later be recovered.

Second, the requirement that SLAs be precise also implies a particularly strong need to preserve

traceability from the concrete expression of the SLA to the semantics of the language, including the

specific extensions being used. As potential components of legal agreements the meaning of an SLA

must be as completely and precisely defined as possible. Clearly if an SLA contains no reference to

its semantics then the meaning of the concrete document can be disputed after an agreement has been

made. Asserting a link between an SLA and the language in which it is defined becomes more difficult

if the definition of that language is spread across a standard core-language specification and several

non-standard extensions.

The approach to defining an SLA language presented in the previous chapter advocates the use of

a combination of EMOF, OCL and natural language to define a language for SLAs. I recommended that

in the case of an SLA language it was helpful to use the model-denotational approach to provide precise

semantics for the language. I also described the way that these (or similar) languages are used to specify

existing OMG languages: MOF is used to define an abstract syntax; OCL to refine the abstract syntax

with constraints; these formal definitions are then described in a specification document, typically a PDF,

using natural language, usually with the assistance of diagrams; natural language is used to establish the

semantics of the language, with or without an intermediate domain model of some kind.

From the need for language extensions to be as understandable and precise as core-language spec-

ifications, it follows that these extensions must be documented to the same standards. Adopting the

OMG’s approach to producing language specifications, it would be necessary to produce at least one

4.1. Language specifications as first-class entities 82

new PDF document for each new extension defined. The relationship between any extension and the

core-language that it extends must also be clearly defined. This could documented with the extension, in

an additional document, or the combination of the extension and the core language could be treated as a

new language and re-documented in a stand-alone language specification. Clearly, any of these choices

requires a significant effort in document preparation. Whilst the resulting PDF documents may very well

be helpful, they would be expensive to produce manually. Moreover, in contrast to a formal language

definition such as a MOF XMI document, these PDF documents cannot be automatically checked for

consistency, or used to support the automated reconfiguration of tools for editing and checking SLAs,

facilities that will be important if numerous language extensions are being defined.

Conversely, choosing to rely on one of the standard formal sources of information concerning a

language is also unsatisfactory. Standard MOF XMI documents do not include the natural language

commentary necessary to understand the semantics of a language, and may not include important auxil-

iary definitions such as OCL constraints.

An additional problem with existing standards is that the concrete-syntax standards compatible with

an approach to defining languages using object-oriented abstract syntaxes, such as XMI and HUTN, do

not adequately preserve traceability between statements that make use of them, themselves, and the

language specifications by which they are parameterised. Therefore, an SLA encoded using the standard

XMI approach will not have any explicit link to the XMI standard, or the SLA language specification in

which the meaning of the SLA is defined. Hence, it may be possible to contest the meaning of such an

SLA, reducing its effectiveness as a means to mitigate risk.

These deficiencies in the OMG’s standards and its approach to defining languages also adversely

affect languages defined for other purposes. For example, in a software development effort, it is fre-

quently important that a document in some language both adequately captures the author’s intent and

reliably preserves that intent across time and space. For example, this is true of requirements specifica-

tions, models, and even program code. Several people may work in a software development endeavour,

and they will communicate not only verbally but through shared artifacts. These artifacts also serve as

repositories for knowledge that may not be faithfully preserved in the memories of developers.

It is reasonable to expect that any reader or modifier of a statement in a technical language should

be able to understand it in the same terms as its original author. Although in broader contexts it may

be appropriate to assume that a subjective component exists in the interpretation of any text, in SLAs,

software development, and engineering more generally, this can lead to expensive mistakes. Where

ambiguity exists in an artifact, disambiguation may be possible by contacting the author of the artifact,

but this is not always true. The author may be unavailable for some reason, or the author and recipient

may be the same person, separated only by an interval of time during which the vital information has

been forgotten. Therefore, properties of precision and understandability must inhere in the artifact.

A lack of semantic ambiguity is particularly important in the context of an MDA development.

Although no strong definition of what constitutes such a development exists, it seems likely that the

primary type of artifact in such developments will be models, expressed in languages defined using

4.1. Language specifications as first-class entities 83

OMG meta-modelling technologies. Furthermore, given the dichotomy that exists in most formulations

of the MDA approach between concepts that are in some sense generic, or ‘platform-independent’, and

those that are specific to particular concrete implementations of a system, it seems likely that several

languages, or language variants will be used in any given development [85]. Because the meaning of

software development artifacts is partly determined by the meaning of constructs in the languages in

which they are defined, this proliferation of languages introduces several pitfalls for development. The

true intent of a developer may not be captured by an artifact because a developer has failed to correctly

understand the meaning of a language construct that they have employed, a possibility that increases in

likelihood with the number of languages used. A failure to preserve an explicit link between artifact and

a full syntactic and semantic definition of the language in which it is written may lead to errors in later

interpretations of the artifact. The latter issue is of acute importance in MDA development, described in

Section 3.1.2, as it is a principal claim of the approach that systems can be redeployed as hardware and

middleware standards change, depending on the reuse of models over an extended period of time.

This section reproduces material first presented in [118] to argue for some relatively minor revisions

to existing OMG standards to address these issues.

In Sections 3.1.3 and 3.1.4 I have considered the way in which DSLs are specified in OMG stan-

dards, both in terms of their syntax and semantics. These approaches all conform to two observations.

First, the definitive reference for a language is the specification document, not a technical artifact such

as an XMI encoding of a meta-model. Second, the semantics of the languages are always ultimately de-

fined, directly or indirectly, by natural language statements. Remove these statements from any formal

description of a language, and the description is likely to become impenetrable and useless, regardless

of the sophistication of any intermediate models employed.

In the next section I consider various schemes by which definitions of syntactic elements are asso-

ciated with instances of that syntax.

Based on these analyses I propose that all meta-models should embed some definitive documenta-

tion that is at least expressed in natural language, or some form that is ultimately documented in natural

language, and encodings of these meta-models in a concrete syntax should replace PDF documents as the

definitive artifact for a language. I call such documented meta-models language specifications because

in practice they resemble the specification documents published by the OMG, but unlike the OMG’s

specifications it is straightforward to retrieve the structure of the language, its constraints and semantic

documentation automatically. Making use of the packaging mechanism provided by MOF, it is easy to

incorporate the definition of extension elements into copies of these documents, resulting in new, com-

bined language specifications that can serve as a definitive point of reference for concrete artifacts using

the extended language. I describe in detail the contribution of this prescription to addressing the twin

problems of capturing and retrieving developer intention.

4.1.1 Referencing languages from models

Arguably, only three standards for concrete syntax for MOF-defined languages are published by the

OMG. These are the XML Metadata Interchange (XMI) standard [94], the Human-Usable Textual

4.1. Language specifications as first-class entities 84

Notation (HUTN) standard [91], and the diagrammatic concrete notation recommendations included

in the UML superstructure specification [81]. Also of note is the UML Diagram interchange stan-

dard [95], which allows the encoding of UML diagrammatic notation as XMI or Scalable Vector Graph-

ics (SVG) [141]. However, it does not introduce any new concrete syntax. Standard profiles also render

legitimate the use of certain strings for stereotypes and tagged-values in UML diagrams. However, the

syntactic rules governing such extensions are fully defined in the UML superstructure specification.

In this section I consider the degree to which concrete artifacts expressed in these syntaxes reference

the syntax and semantics of the language in which they are written.

The XMI standard has undergone a number of revisions, and implementations are in use according

to several of these. XMI standards map MOF models to XML grammars. In XMI 1.2 a mapping to

an XML DTD is defined [83]. According to standard XML syntax, this DTD may be referenced in

the header of any document, thereby identifying the syntax of the language in which the document is

written. Furthermore, the XMI 1.2 standard acknowledges that DTD syntax is not as expressive of

syntactic constraints as MOF models. Therefore an XMI specific header element may be included that

includes an optional reference to an XMI file containing the MOF model for the language, providing a

better reference for the expected syntax.

In this scheme, interpretation of the link to the abstract-syntax of the language relies on the se-

mantics of the document header, as prescribed by the XMI standard, being understood. However, no

unambiguous reference is made to the XMI standard, so an interpreter is not guaranteed to be able to

identify a sound basis for interpreting the document. This may hinder the identification and interpretation

of the meta-model XMI as a reference for the syntax of the document.

Another important inadequacy in the XMI 1.2 language referencing scheme is that the semantics of

the meta-model are not referred to, either from the instance document, or from the referenced XMI for

the meta-model. In fact, in the cases of both UML and MOF, the referenced meta-model cannot even be

considered to be a definitive statement of the abstract syntax of the language being used, as this is finally

established by natural language statements in the PDF standards document for the language.

XMI versions 2.0 [93] and 2.1 [94] revise the standard to generate XML schema, rather than DTDs.

Schema specifications of the grammar of an XML file are more expressive than DTDs, and can therefore

capture more of the constraints inherent in the source meta-models. Perhaps as a result, the ability to

reference the meta-model XMI has been dropped from the standard. This is deeply to be regretted, as no

link is preserved to the true syntax of the language. Also, a clue as to the possible applicable language

specification has been removed.

XMI version 1.2 and 2.0 depend on version 1.4 of the MOF standard [80]. Version 2.1 of the

XMI standard depends on version 2.0 of the MOF standard [79]. Both versions of the MOF standard

allow the embedding of syntactic constraints in an arbitrary constraint language. A common constraint

language employed is OCL, which is more expressive than XML schema. In no version of XMI are these

constraints mapped into either DTD or XMI schema. Therefore XMI version 2.0 and 2.1 are seriously

negligent in not referencing the meta-model definition, as some syntactic constraints will be entirely

4.1. Language specifications as first-class entities 85

inaccessible.

The HUTN standard also maps MOF models to a grammar, in this case specified using BNF. The

mapping from meta-model to grammar is customisable using a ‘configuration’, an instance of a configu-

ration meta-model. Details of the configuration used can be included in a discriminated comment at the

start of a document in a HUTN syntax. Although configurations can reference elements in a meta-model

using their fully-qualified MOF names, nothing in the configuration or elsewhere in a HUTN document

references the location of a concrete artifact defining the meta-model for the language used. More-

over, no reference need be made to the HUTN standard, and the inclusion of configuration information

is optional, so confusion can potentially arise regarding the syntax to which the document is intended

to conform. Finally, no reference need be made to any semantic specification of the language in the

document.

UML diagrams are an extremely well-known notation. However, they are potentially highly am-

biguous artifacts. No reference need be made to the UML standard in diagrams conforming to any

revision of the concrete syntax standard. Moreover, since diagrams only ever display projections of a

model, a diagram in isolation is frequently not enough information to determine the true intent of the

author. For example, attributes, associations and classes may all be suppressed in class diagrams. To

eliminate this ambiguity, diagrams should at minimum refer to a concrete representation of the model

that they represent. This concrete instance could then identify information about the language being

employed, such as the revision of UML being used, and any profiles being employed.

The concrete instance of a UML model will also contain any profile packages, enabling the use

of particular stereotypes and tagged values. Profile packages, stereotypes and tagged-values have no

properties referring to any definitive statement of their semantics.

4.1.2 Suggested revisions to OMG standards

To interpret a concrete artifact, it is necessary to understand its concrete and abstract syntaxes, and its

semantics. Faced with a concrete artifact, a human interpreter should not have to guess what concrete

syntax is being employed, in order to establish a basis for an initial interpretation of the artifact. There-

fore all concrete artifacts should include a human-readable comment referencing the specification of

their concrete syntax.

Generic concrete syntax standards, applicable to multiple abstract syntaxes, can be adequately

defined in current human-readable standards documents. Specialised concrete syntaxes may be docu-

mented with other aspects of the language to which they apply. In either case, having established the

concrete syntax of an artifact, the abstract syntax and semantics of the artifact must then be identified

to obtain a complete interpretation. The concrete syntax standard should permit the artifact to be inter-

preted sufficiently that unambiguous links to specifications of the abstract syntax and semantics can be

followed if they are separate from the concrete syntax standard.

Clearly there are a number of different possible schemes whereby abstract syntax and semantics

can be referenced. The meta-model of the language and the specification document for the language

could both be referenced. The meta-model could be referenced, and contain a reference to the specifi-

4.1. Language specifications as first-class entities 86

cation, or vice-versa. Alternatively, because the specification documents both syntax and semantics, the

specification alone could be referenced.

I prefer the final approach because a language specification provides the definitive documentation

for a language. Hence I argue that language specifications, not meta-models should be regarded as

first-class entities in MDA developments.

Abandoning the use of meta-models as a language definition is potentially problematic, because

existing language specifications cannot be machine interpreted in a useful way. For example, the descrip-

tions of the abstract syntax included in the UML specification cannot be used to populate the meta-layer

of a JMI repository without first undergoing manual translation into a more formal representation such

as XMI. I address this issue by proposing that the use of MOF and natural language be inverted. Instead

of describing a MOF model using natural language in a specification, a specification should consist of

a concrete representation of a MOF model with natural language descriptions embedded, to provide an

informal commentary on the aspects of the language that are defined technically, and to define the se-

mantics where a technical language is inadequate. In this respect I propose that the MOF specification

be revised to define a language which is somewhat similar to a programming language used for literate

programming, in which technical and human-readable aspects provide mutual support [46].

Following this approach also addresses the issues arising from the use of multiple language ex-

tensions. Because these meta-models benefit from the packaging mechanisms included in the meta-

modelling language (MOF), it is straightforward to combine extension elements with a core-language

specification in a new joint model, which can then be referenced as the definitive source of meaning from

concrete statements expressed in this extended language.

My proposals are captured by the following particular revisions to existing OMG standards:

1. The MOF 2 standard already allows the inclusion of comments in meta-models. The Comment

class should be extended with an attribute that indicates whether the comment is intended to be

definitive of the semantics of the associated model element, or is merely an informal remark. A

constraint should be added to the specification that all types, associations and references should

be associated with a non-empty definitive comment that defines the semantics of the element in a

manner that can ultimately be understood by a human interpreter.

2. The MOF standard should be redistributed as an XMI concrete specification, with documentation

included.

3. Future revisions of all OMG standards that rely on MOF meta-models should have a definitive

form published as a concrete specification, for example in XMI form, rather than the definitive

version being a PDF.

4. The XMI standard should be revised to incorporate a reference to the specification of the lan-

guage used. All XMI files should be required to include an XML comment in natural language

identifying the location of the XMI specification so that this link can be interpreted.

4.1. Language specifications as first-class entities 87

5. The HUTN standard should be revised, making it mandatory to include syntax configuration infor-

mation in instance documents if a syntax configuration is being used, and also making it mandatory

to refer to the specification of the language being used. All HUTN documents should be required

to include a comment in natural language identifying the location of the HUTN standard so that

this link can be interpreted.

6. Future concrete-syntax standards should respect the principle that instances should refer both to the

concrete-syntax standard, and to the concrete specification of the language being used (if separate

from the concrete-syntax standard as is the case with XMI and HUTN). The reference to the

concrete syntax standard must be human readable.

7. Diagrams should unambiguously reference a concrete representation of the complete model that

they depict.

8. Profile packages in UML 2 should unambiguously reference a specification of the semantics of the

extensions they contain.

The contents of definitive comments associated with elements should permit the interpretation of

the element by a user. They may do this by introducing some intermediate formalism, encoded in the

comment text in some manner. It may also unambiguously reference external documentation. However,

the semantics should ultimately be interpretable by a human. Note that it is hard to imagine a circum-

stance under which interpretability by a human is not a requirement for a language. A language may

be essentially descriptive, and therefore aimed at human interpretation. However, even if this is not the

case, humans will typically need to build tool support for interpreting the language (or an alternative

language, in terms of which the semantics of the first language are specified). Humans must also either

write statements in, or define mappings to, the language.

I do not prescribe any particular scheme by which unambiguous references should be made between

concrete artifacts. However, URIs would be an appropriate choice [38].

4.1.3 Consequences of the proposed revisions

In practice these modifications would be relatively painless to implement. Existing specifications could

be revised into conforming concrete specifications by editing the existing specifications into comments

in an XMI file of the meta-model, simultaneously identifying those parts of the documentation that

are definitive, and those which are informal. XMI concrete artifacts can be commented using XML

comments to identify the XMI concrete syntax specification.

Existing language specifications, such as UML and MOF, include OCL and diagrams in addition to

natural language statements and descriptions of meta-models. It is desirable to include this information in

machine-readable specifications. OCL statements form part of the definitive specification of the abstract

syntax. They also have a semantic character, in that they rule out instantiations of the meta-model

that would be illogical given the language semantics. If a model-denotational approach is taken, OCL

constraints may also contribute to the semantic definition. Diagrams are typically informal and assist

with the explanation of the language and its semantics.

4.1. Language specifications as first-class entities 88

Three approaches can be taken to including this information in concrete specifications. The OCL

and diagrams could be included in documentation elements in an unstructured manner. Existing mech-

anisms for including this information could be employed: CMOF supports the inclusion of constraints

with a constraint meta-element; XMI 2.1 supports the inclusion of any kind of auxiliary information

using an extension element, or XML namespaces. Finally, the information could be incorporated by ex-

tending the MOF specification with the OCL and diagram interchange specifications. Future work will

consider trade-offs between these approaches. In terms of the standards I make no recommendation as to

which of these approach would be most suitable. However, I took the latter approach to integrate OCL

and EMOF in the UCL MDA tools (described in the next section), as it avoids the need for continual

re-parsing of OCL embedded in a meta-model.

The need to document MOF version 2 according to its own standards assumes a new significance in

this scheme. For a language specification to be understood the meta-language used to document it must

also be understood; in the case of MOF this is MOF. The revised MOF specification will be machine

readable, and recursively defined, which might seem to make it harder to understand. However, the XMI

specification will still be human readable. On this basis, a structural interpretation of the specification can

be obtained. The embedded comments in the MOF specification will therefore be extractable, enabling

the full semantics of the language to be understood.

These proposals address the issue of capturing developer intent by ensuring that in any context in

which the meta-model would otherwise have been employed, for example to populate the meta-layer

model in a JMI repository, the semantic definition of the language is available. Additionally the avail-

ability of OCL and diagram types ensures that the semantic documentation is available in as machine-

readable a form as possible, maximising the potential for using this information intelligently in tools. As

a first measure, presenting this information to developers in the same context in which they are using a

novel language should assist in ensuring that they use the language correctly. The use of a specification

in this manner is illustrated in Figure 4.1. In illustration (a) the relationship between a JMI repository

and a language specification is shown. The specification parameterises the generation of the reposi-

tory interfaces (and potentially implementation). The specification is then loaded when the repository

is created to populate the meta-model of the repository, enabling the reflective capabilities mandated by

the JMI specification. Illustration (b) shows these capabilities used to good effect in an Eclipse editor

plug-in for UML version 1.5 generated by the UCL MDA tools. The tree component is a simple model

editor. It has a generic implementation that relies on JMI reflection. Here it has reflectively retrieved

the documentation for the Package type, which according to my recommendations is embedded in the

language specification loaded by the underlying repository. The documentation is presented in a tool-tip,

triggered by hovering the mouse over the tree element representing the Package class.

The proposals address the issue of recovering developer intent from an artifact by ensuring that

artifacts always refer to both any relevant concrete syntax standard employed, and to the concrete spec-

ification of the language being used. The concrete syntax is referenced in as unambiguous a manner as

possible, using natural language statements included in the artifact. Understanding the concrete syntax

4.2. The UCL MDA tools 89

Language specification

Abstract syntax Semantics

Compilation: Access:Access:

JMI Repository

(a) (b)

Figure 4.1: A specification used as input to a JMI generator. Abstract syntax and semantic documentation
are available to the repository user via reflection

Concrete artifact:
Concrete-
syntax
standard 1

Concrete-
syntax
standard 2

Specification:

Header

Abstract syntax

Semantics

MOF:

/* I am a model.
My concrete syntax
is defined by ...
*/
<AbstractSyntax
 ref=”...”/>

Model information

References
Provides interpretation for

Figure 4.2: Recovering the meaning of an artifact by navigating links to concrete-syntax standards and
language specifications

permits the recovery of the concrete specification of the language, which is totally definitive of the lan-

guage. The concrete specification is constructed on similar lines to the original artifact, so can ultimately

be understood in the context of a higher-level language, or in the case of MOF, recursively in terms of it-

self, and whatever concrete syntax standard is being used to describe it. Figure 4.2 illustrates the process

of interpreting a concrete artifact. References in the concrete artifact to documentation for the concrete

syntax, and the language specification, provide a basis for interpretation of the document, traversing up

meta-layers until a well-known standard such as MOF is encountered.

4.2 The UCL MDA tools
The UCL MDA tools [135] are an open-source project implementing the tool-support on which the

evaluation of my thesis depends. The project currently provides:

• a parser and type-checker for a textual concrete syntax of EMOF, in which invariants and side-

effect-free operations may be specified using OCL 2; the parser outputs XMI for a conjunction of

the EMOF and OCL 2 meta-models;

4.2. The UCL MDA tools 90

• A JMI repository generator, taking as input the XMI output of the EMOFOCL parser and capable

of producing:

– standard JMI interfaces for the EMOF meta-model encoded in the input;

– Java-classes implementing the JMI interfaces to provide an in-memory repository – the im-

plementation uses Java dynamic class-loading to simplify the overriding of the default im-

plementation for specific instance, class-proxy or package-proxy types;

– standard XMI writers and readers for the language defined by the EMOF meta-model en-

coded in the input, integrated with the JMI repository to provide serialisation and de-

serialisation facilities;

– an editor plug-in, integrating the repository with the Eclipse IDE, and allowing the editing of

repository contents using the generic SWT tree-editor;

– a stand-alone repository editor implemented in Swing, allowing the editing of repository

contents using the Swing tree-editor;

– extended JMI interfaces implementing the listener and visitor patterns, simplifying the imple-

mentation of applications that need to track changes in, or traverse data in a JMI repository.

• a generic tree-editor component implemented in Swing, allowing the modification of the contents

of repositories generated by the UCL MDA tools;

• a generic tree-editor component implemented in SWT, allowing the modification of the contents

of repositories generated by the UCL MDA tools;

• a generic HUTN reader, allowing the population of any standard JMI repository from a HUTN

document conforming to the meta-model used to generate the repository;

• an OCL 2 interpreter, including an implementation of the OCL 2 standard library, that can be

combined with JMI repositories generated using the UCL MDA tools to evaluate invariants and

side-effect-free operations embedded in language specification, or arbitrary expressions parsed at

runtime;

• a translator from the output of the EMOFOCL parser to HTML formatted documentation;

• a translator from the output of the EMOFOCL parser to LATEX formatted documentation;

• a language specification for UML version 1.5, translated from the PDF specification.

The EMOF parser relies on the EMOF meta-model from the draft version 2.0 core proposal of the

MOF standard, shown in Figure 3.5, pg. 61. These tools implement the recommendations provided in

the preceding section pertaining to the relevant standards, with the exception of explicitly identifying

definitive comments, as this is not compatible with this version of the EMOF meta-model.

The textual syntax for EMOF taken as an input to the EMOFOCL parser is similar to Java class dec-

larations, and also somewhat similar to an equivalent HUTN specification. The syntax embeds definitive

4.2. The UCL MDA tools 91

comments in a special syntax similar to JavaDoc comments for Java, which leads them to be associated

with elements in the resulting model.

The EMOF and OCL meta-models are combined in the meta-modelling tool. OCL constraints can

hence be embedded in a language specification also. The whole specification can be parsed to an XMI

representation (including XMI for the OCL constraints, and the embedded comments). Syntax checking

is performed according to the OCL 2 specification, and my own syntax for textual EMOF specifications.

Type checking of all elements is performed according to the semantics of EMOF and OCL 2.

One application of the specification is to reformat it into a format more suitable for human compre-

hension. I have hence developed a tool, similar to the JavaDoc tool that generates a webpage from an

EMOF/OCL/English specification of a language. The structure of the page resembles the structure of an

OMG language specification, with each element in the meta-model presented along with its documenta-

tion. The page also benefits from hyper-links that cross-reference related elements.

There follows a short example of the tools in use, using the UML version 1.5 language specification.

Here is the definition of the UML meta-model class Class included in the specification in my textual

syntax for EMOFOCL models:

/[
A class is a description of a set of objects that share the same
attributes, operations, methods, relationships, and semantics. A
class may use a set of interfaces to specify collections of
operations it provides to its environment.

...
]/
class "Class" extends Classifier {

/[
Specifies whether an Object of the Class maintains its own
thread of control...
]/
isActive : ::Foundation::"Data Types"::Boolean

/[
[1] If a Class is concrete, all the Operations of the Class
should have a realizing Method in the full descriptor. (Corrected)
]/
invariant {

not self.isAbstract
implies
self.allOperations()->forAll(op |

self.allMethods()->exists(m |

m.specification = op
)

)
}

/[
[2] A Class can only contain Classes, Associations,

4.2. The UCL MDA tools 92

Figure 4.3: Editing a UML class in the Eclipse editor plug-in generated by the UCL MDA tools

Generalizations, UseCases, Constraints, Dependencies,
Collaborations, "Data Types", and Interfaces as a Namespace.
(Corrected)
]/
invariant {

...
}

}

Note that the definition of Class contains the documentation from the semantics section of the

UML version 1.5 standard (abbreviated here). The meta-class itself defines one attribute isActive of

boolean type, in addition to those inherited from Classifier, and two additional invariants, of which

the second has been omitted here for brevity.

This class declaration is parsed and type-checked by the EMOFOCL parser, resulting in the follow-

ing fragment of EMOFOCL XMI (from which the comment has been omitted):

<EMOFOCL:Class comment="..." isAbstract="false" name="Class"
owningPackage="mofid:2457" xmi.id="mofid:1422">
<EMOFOCL:Class.invariant>
<EMOFOCL:OclExpression xmi.idref="mofid:8171"/>
<EMOFOCL:OclExpression xmi.idref="mofid:12465"/>
</EMOFOCL:Class.invariant>
<EMOFOCL:Class.superClass>
<EMOFOCL:Class xmi.idref="mofid:1427"/>
</EMOFOCL:Class.superClass>
<EMOFOCL:Class.ownedAttribute>
<EMOFOCL:Property xmi.idref="mofid:2799"/>
</EMOFOCL:Class.ownedAttribute>
</EMOFOCL:Class>

The EMOFOCL XMI for the language as a whole is then used as the input to the JMI generator,

which also generates XMI readers and writers, and the implementation for an Eclipse editor plug-in.

Figure 4.3 shows the editor being used to specify an active class called Example. When saved, this

4.2. The UCL MDA tools 93

model results in the following UML XMI document:

<?xml version="1.0" encoding="UTF-8"?>
<XMI xmlns:UML=
"file:///C:/workspace.jws.3.2.1/UCLUML/gen/uk/ac/ucl/cs/
uml/specification/uml.emofxmi" xmi.version="1.2">
<!--This document is in XMI format according to the OMG XML
Metadata Interchange (XMI) Specification v.1.2, OMG Document
formal/02-01-01 (http://www.omg.org/)-->
<XMI.header>
<XMI.metamodel href="file:///C:/workspace.jws.3.2.1/UCLUML/
gen/uk/ac/ucl/cs/uml/specification/uml.emofxmi"/>
</XMI.header>
<XMI.content>
<UML:Class isAbstract="false" isActive="true" isLeaf="false"
isRoot="false" isSpecification="false" name="Example"
visibility="public" xmi.id="mofid:13783"/>
</XMI.content>
</XMI>

Note the XMI header, which implements my recommendation to include a reference to the concrete-

syntax standard used, and because XMI is parameterised by a language specification, also the language

specification.

This model could equally have been specified with the following HUTN document:

// This document is encoded according to the HUTN version 1.0
// specification OMG document formal/04-08-01
// (http://www.omg.org)

specification =
"file:///C:/workspace.jws.3.2.1/UCLUML/gen/uk/ac/ucl/cs/

uml/specification/uml.emofxmi"

::Foundation::Core::Class() {

name = "Example";
visibility = public;
isActive = true

}

4.2.1 Alternative MDA tool support

A number of JMI repository generators have been developed with varying degrees of flexibility in terms

of the input format they require and the type of code that they can generate. However, I found none to

be ideal for my purposes, and elected to produce my own implementation of the standard.

One of the earliest available JMI generators was that produced by Novosoft [76]. The imple-

mentation code that the Novosoft JMI generator produces is hard-coded into the implementation of

the generator. Probably the most commercially significant generator is the Eclipse Modelling Frame-

work (EMF) [21]. The EMF generates specific repositories from meta-models according to a pattern

similar to JMI. However, it is not template driven, so offers no control over the implementation of the

repository. It is also not standards compliant, expecting languages to be defined according to a model

called ECORE, which is similarly expressive to EMOF, and producing interfaces that do not comply

with the JMI standard.

4.3. Testing language specifications 94

Another alternative is the AndroMDA tool [2], implemented using Velocity templates. Custom

templates can be configured by the user, and the tool parses XMI representations of models and makes

available standard context objects. However, Velocity templates do not have powerful control structures.

Without the ability to modify the structure of the context objects to preprocess model information it

is impossible to generate some desirable outputs using AndroMDA. For example, generating an XML

DTD for an XMI reader requires the use of transitive closure across inheritance relationships in the

model, which cannot be achieved in the template.

A powerful alternative is that implemented in the Kent Modelling Framework, version 3 [44]

(KMF). This tool evaluates string-typed OCL expression over models to generate program text. This

approach is potentially very powerful, since OCL is recursive so can calculate arbitrary functions of the

model. However, the OCL expressions are hard to write, particularly when a ‘generation state’ has to be

maintained, containing things like a list of unique identifiers used.

The need to maintain the flexibility to change the implementation code generated by a JMI reposi-

tory generator is an important requirement for these tools. It is generally assumed that repositories will

be contained wholly in memory. However, as discussed in Section 4.4, there is likely to be the need in

future to implement JMI repositories that are backed by a database to support storage of large models.

Moreover, flexibility in the implementation code allows the implementation of non-standard function-

ality in the repository, such as support for the listener and visitor patterns. The JMI generator in the

UCL MDA tools specifies its outputs using a simple template format similar to Java Server-Pages [130].

Embedding of Java code in these templates allows information to be extracted from a JMI repository

generated for the EMOF meta-model. The templates are rewritten as Java classes using a process of

regular-expression replacements, and when compiled are integrated into the JMI generator.

In early work with these modelling technologies I relied on the KMF for OCL evaluation. Unfortu-

nately I found the implementation to be defective, and it also relied on closed-source libraries. I therefore

later implemented my own OCL compiler and interpreter in the UCL MDA tools. However, the design

of my interpreter, which uses the visitor pattern to traverse the abstract syntax of the OCL language is

very similar to that of the KMF OCL interpreter.

4.3 Testing language specifications
According to my proposals, language specifications may contain both definitive and non-definitive doc-

umentation. They may also contain both repository types that are part of the abstract syntax of the

language being specified, and other types for the purpose of semantic exposition.

Non-definitive comments included in a specification remark on aspects of the specification already

inherent in some definitive part. For example, a human-readable explanation is often given for OCL con-

straints included in a specification. However, the meaning of the OCL constraint is completely defined

by the OCL standard, so this explanation does not refine the specification in any way.

However, non-definitive elements should not be misleading. Ideally the non-definitive parts of a

specification should be entirely consistent with the definitive parts. Although such consistency will be

extremely difficult to prove conclusively, a language developer may wish to develop confidence that the

4.4. Runtime monitoring of ASP SLAs 95

correspondence holds by testing the language.

Testing is clearly straightforwardly enabled for language specifications defined according to my

recommendations. As discussed above, by defining a language using EMOF, it is possible to generate a

JMI repository capable of storing statements in the language. This in itself provides a testing mechanism,

as it makes it possible to check that a number of desired statements can in fact be constructed according

to the abstract syntax of the language.

Testing of semantic elements in specifications is also possible. Although these would not normally

be included in a repository, this constraint can be relaxed to allow these elements to be represented

explicitly in the repository.

As well as testing structural properties of the language defined by the EMOF elements in the lan-

guage specification, it is also desirable to test that the OCL constraints used to refine the syntactic and

domain models, and to define the semantics of the language, correspond with the intent of the language

designer. This can be achieved by combining an OCL interpreter with the repository, as implemented by

the UML MDA tools. Test cases can then be devised to check for under- and over-constraining invariants,

and to determine that the results of evaluating side-effect-free operations are as expected.

The possibility to test not only the syntactic but semantic properties of a DSL is a significant advan-

tage of my approach to defining language specifications, and comes without requiring any restriction on

the domains of the languages which can be defined (such as only allowing languages with operational

semantics that can be executed by a computer).

Checking of this kind has not been scrupulously performed in prior OMG standards. In [9] for

example, a significant number of syntactic and type errors are discovered in the OCL constraints included

in the latest version of UML, as a result of their formulation without the aid of a parser. It seems

highly likely that OCL definitions also exist in the specification that do not perform as expected, or as

documented in the informal comments accompanying the constraints in the language specification. An

investigation into the semantic correctness of constraints in the UML specification would be productive

future research.

This type of testing is of course highly useful for an SLA language, where the parties will wish to

be sure that a concrete SLA captures the true intent of their agreement. Since the meaning of the SLA is

in part defined by the language in which it is specified, testing the language will increase the confidence

the parties have that this is so.

A language tested in this manner from the outset will benefit from an additional source of infor-

mation concerning itself: the test cases. These will constitute an additional resource for understanding

the intent and meaning of the language. They may also be of use in developing conformance tests for

automated tools that rely on the semantics of the language.

4.4 Runtime monitoring of ASP SLAs
Parties engaging in ASP SLAs may wish to monitor electronic services. The client of an SLA will wish to

know whether the SLA is being violated, in order to take action to claim compensation. The provider will

wish to know whether the client is violating the SLA, for example by violating a throughput constraint,

4.4. Runtime monitoring of ASP SLAs 96

and also if the service is performing in such a way that there is a danger that the SLA will be violated,

enabling the provider to take remedial action.

In the previous section, I discussed the fact that a language specification implemented according

to the recommendations included in Section 3.2.3 could be tested by generating a JMI repository from

the specification, loading that repository with objects representing the syntax of an SLA and also with

objects representing the real-world entities and events with respect to which the SLA is defined, and

then evaluating some or all of the OCL constraints included in the language specification to determine

whether or not the situation as modelled conforms to the SLA. Moreover, the results of side-effect-free

operations defined in the specification can be tested similarly.

Of course, once a language specification is tolerably free from errors, the results of such checking

can be used to assess whether a given model of a service scenario conforms to the terms of an SLA.

Runtime requirements-monitoring systems typically consist of a set of software instruments for

gathering the raw event data pertinent to the properties of interest, some logic for checking that this

data meets requirements, and possibly a repository for data if requirements checking needs data gath-

ered over an extended period. Clearly, a JMI repository generated from an SLA language specification

has the potential to implement the requirements-checking logic and repository parts of such a system.

In [116] and [117] I proposed and investigated the practicalities of taking this approach. This work relied

on an early version of the SLAng language, the most recent version of which is described in Chapter 6.

The version used benefitted from a abstract syntax supporting latency and throughput conditions, with

model-denotational semantics that had been tested to some extent to generate confidence in their cor-

rectness. The version differed from the latest version of SLAng in that it was not abstract or extensible.

I summarise the findings of this work here.

4.4.1 Architecture of the SLA checker

The SLA checker used in these investigations consisted of three major components:

1. The automatically generated JMI interfaces and implementation for holding SLAs and event data.

2. The Kent OCL implementation, with SLAng constraints loaded, for checking whether SLAs have

been violated.

3. An API wrapper, that allows checks to be requested, and returns lists of violations that have been

found. This part is hand-written in our implementation, because it is independent of the structure

and semantics of the SLAng language.

These investigations predated the implementation of an OCL interpreter in the UCL MDA tools, and

hence used the Kent implementation of OCL, which, as discussed above, I later abandoned for reasons

of maintainability. The JMI generator was an early version of that now included in the UCL MDA tools.

The checker may be incorporated in electronic service systems wherever SLAs need to be moni-

tored. It is used as follows:

1. The checker is instantiated.

4.4. Runtime monitoring of ASP SLAs 97

2. The static elements from the semantic model are instantiated or loaded from an XMI file. These

elements, with types such as ElectronicService, ServiceClient and Operation, represent

knowledge that the checker has about the service or services being monitored. The model is

manipulated using the generated JMI interfaces.

3. One or more SLAs are instantiated or loaded from an XMI file, again using the JMI interfaces.

4. Associations are established between the service components defined in the SLAs and those com-

ponents in the service model created in Step 2.

5. Monitoring data is provided to the component by invoking the various ‘create’ methods found on

the JMI API (e.g. createServiceUsage() on the ServiceUsage class proxy interface). These

data are associated with the relevant static elements in the service model, created in Step 2.

6. Periodically, the check methods on the violations API may be invoked. These return lists of

violations, if any exist.

The instruments measuring the performance of the service are not part of the SLA checker, so must

be implemented separately. For a given SLA, a combination of the descriptions included in its terms

section, and the reference model of the service included in the language definition provide the guidance

as to what data these instruments must provide.

SLAng
JMI

Kent
OCL

inter-
preter

Reflective
browser

MOF
JMI

SLAs/
Service
models

SLAng
meta-
model

XMI

SLAng
Constraints

Violations
interface

Violations
reporting

User interface

Checker component

SLAng
XMI

reader

MOF
XMI

reader

Figure 4.4: Design of the SLA checker

Deployment of the checker component
I tested the SLA checker by deploying it to monitor the performance of an EJB application. The ap-

plication is an auction management system developed by an industrial collaborator. The application

is deployed in the popular application server JBoss, which implements the Java 2 Enterprise Edition

(J2EE) specification [127], using Apache Tomcat to serve the web front-end [5].

The architecture of JBoss is based on the Java Management eXtensions library (JMX). In this

component-based architecture, all functionality is deployed as ‘managed beans’ (MBeans), Java compo-

nents that expose meta-data, configurable properties and lifecycle management methods. The JBoss

distribution and default configuration includes MBeans implementing EJB containers, JNDI naming ser-

vices, transactions, and many other services. The SLA checker is deployed as an MBean, meaning that it

4.4. Runtime monitoring of ASP SLAs 98

has one instance per instance of the JBoss server. It is made available to other MBeans and to deployed

EJBs via the JNDI naming repository.

To provide external access to the SLA checker, I implemented a small J2EE application called ‘The

SLAng Control Panel’. This consists of a single JSP page providing an interface to a stateless session

bean. This bean in turn delegates operations to the SLAng checker. The main operation provided by

the checker over this interface is checkAll(), which causes the component to evaluate the SLAng

constraints over its internal model of SLAs and service data, and return a list of violations, if any exist.

Auction
Application

JSP

SLAng
Control
Panel

JSP

Tomcat JBoss

Apache
JMeter

Web
browser

HTTP

HTTP

Auction
Applica-
tion EJB

SLAng
Checker
Compo-
nent

SLAng
Control-
Panel
EJB

Client-side
proxies

Server-side
interceptors

TIm
er

Figure 4.5: The SLA checker component deployed to monitor an EJB application

Service performance information is passed to the SLAng service by a server-side interceptor con-

figured as an option of the JBoss container configuration. Interactions with EJBs hosted within JBoss

are implemented using a stack of interceptors on both the client and server side. These allow different

types of functionality to be added to the communication channel independently, such as transaction man-

agement, security, and the communication protocol itself, which is managed by the outermost interceptor

on client and server sides. For the purposes of evaluating the SLAng component, I added an interceptor

on the server side to measure time spent processing EJB requests. The interceptor accesses the SLAng

service using JNDI and invokes the createServiceUsage(), method on its JMI interface to record

the measured time. Apache JMeter was used to generate a variety of loads on the service [6].

4.4.2 Evaluation of the checker component

The SLA checker was evaluated on three points: The ease of implementation of the checker; the ease of

deployment of the checker in its intended context (in this case to monitor the auction application); and

the performance of the checker.

Implementation
Effort in implementing the checker falls into three categories: implementing the JMI generator; imple-

menting the SLAng language specification that is the input to the generator; and implementing the re-

maining code for the component, which mainly involves the integration of the OCL evaluator component

and the provision of an API for requesting checks and reporting violations. Of these three categories, the

first two can be discounted on the grounds that they are separate efforts from the implementation of the

actual checker component. Taking this into account, the implementation of the component took around

4.4. Runtime monitoring of ASP SLAs 99

1 man-week of labour. The SLA checker consists of approximately 115, 000 lines of code (including

blank lines and comments) outside of standard libraries, of which 77, 000 were generated, 36, 500 form

the implementation of the OCL evaluator and 1, 500 were hand written.

Deployment

The checker was straightforward to deploy into the JBoss application server. This is mainly because

JBoss’s architecture is expressly designed to support the deployment of new services and components.

However, the JMI interfaces also contribute by providing a clear API through which to deliver service

performance data, and the XMI reader interface and implementation makes loading SLAs and service

models into the component simple. Implementing the SLAng control panel application and integrating

the component into JBoss took 2 weeks for a programmer not previously intimate with the workings

of JBoss.

Performance

The major problem with the SLA checker is its inability to scale with the amount of monitoring data

provided. This is manifest in two ways: first, and most seriously, the time taken to evaluate the OCL

constraints is highly dependent on the amount of monitoring data provided, and is far too long for models

containing realistic amounts of service data. For example, for a data set of 1000 service usages, the

evaluation of a throughput constraint takes 20 minutes on a PC with a 1.7GHz Intel Pentium 4 processor.

The second issue is that the checker has an unrealistically small capacity for monitoring data. In

the implementation of the JMI interfaces on which this experiment was performed all data is represented

as Java objects stored in main memory. Since no policy for removing or persisting old data was imple-

mented, this leads inevitably to memory exhaustion as the application continues to be used. The amount

of service usage data that can be checked is restricted by the amount of main memory available to the

virtual machine in which the component is deployed.

Both of these issues represent theoretical challenges that need to be overcome if this approach is to

be used in practice.

The first issue is perhaps the most profound. Evaluation of OCL constraints in the version of SLAng

used in this test may have been slow for a number of reasons:

1. interpretation of a language is usually slower than the execution of some compiled form, so the fact

that I chose to use an OCL interpreter represented a performance overhead. However, this overhead

can be assumed to be more-or-less constant, in the absence of bugs in the OCL interpreter;

2. the OCL interpreter used does not implement any optimisations in the way it interprets expressions.

An obvious optimisation for OCL is to cache the results of expressions that may be evaluated more

than once;

3. the constraints evaluated were badly written, in the sense that no OCL interpreter could optimise

their evaluation;

4. OCL may be fundamentally difficult to interpret efficiently, in that the most natural way to express

a calculation for which an algorithm of manageable complexity is known to exist (having, for

4.4. Runtime monitoring of ASP SLAs 100

example, linear complexity), may not be interpretable with the same complexity.

Of these problems, the last two are the most significant, as they affect the algorithmic complexity

of evaluating a constraint. The first problem represents a constant penalty that can be improved by better

engineering of the checker. An interpreter cannot be expected to perfectly optimise a constraint due to

the high level of expressiveness of OCL, so although the second problem is irritating, a solution to it will

not also solve problems three and four.

There is reason to believe that both problems three and four manifest themselves to some extent

in this case. An example of a commonly-used, but hard to optimise constraint in OCL is the exists

operation on collection types, which, analogously to the existential quantifier in predicate logic, searches

for an element in a collection satisfying a boolean condition, and evaluates to true if such an element is

found, false otherwise. The condition specified in an exists operation can take any form. Therefore,

the design of a general algorithm by which an OCL interpreter can perfectly optimise these searches is

extremely difficult, and possibly theoretically impossible. The problem is compounded if these oper-

ations are nested. Searching for a pair of elements within a collection satisfying some condition will

typically have complexity O(n2), regardless of what is known concerning the ordering of elements in

the collection.

This particular issue can be worked around, for example by using recursive functions to implement

a binary search. In my opinion, it is possible that an SLA language could be expressed in such a way that

its constraints could be evaluated efficiently using my approach and the current OCL standard. However,

to do so would mean avoiding a number of standard constructs provided by OCL, and would result

in a language specification containing large quantities of complicated recursive functions, reducing its

understandability. This assertion is as yet untested. However, if true it would imply that OCL was failing

to meet an important requirement, that it should be possible to express constraints that are both easy to

understand and efficient to evaluate. The capacity of OCL to meet this requirement in an SLA language,

and in general to express consistency constraints that can be evaluated in a scalable manner, should

clearly be the subject of future research.

The issue of maintaining large amounts of data in memory also represents a theoretical challenge.

The limit on the amount of data storable could be raised by backing the repository with a database,

although in cases where the amount of monitoring data was very large an even more elaborate solution

might be required. However, storing monitoring data in backing storage would radically slow down

its retrieval via the standard JMI interfaces. If efficient evaluation of OCL constraints were possible

in theory, to remain practical a much tighter integration between the OCL evaluator and the repository

would be needed, to ensure that data was accessed in a sensible order, that loading was achieved in an

efficient manner and that appropriate caching of data was used to avoid delays.

4.4.3 Other runtime requirements-monitoring approaches

My approach to generating part of the implementation of a runtime requirements monitor from a lan-

guage specification bears some resemblance to other efforts to embed requirements monitors in software

for runtime validation of systems. Systems for this purpose typically consist of a language for expressing

4.4. Runtime monitoring of ASP SLAs 101

the requirements, coupled with a mapping onto monitoring solutions. Representative examples are: the

Java-MaC system [43] which automatically embeds monitors in Java code using a combination of byte-

code rewriting and runtime libraries; and the KAOS-FLEA [25] system in which requirements specified

using the KAOS methodology are monitored using the FLEA monitoring system coupled with manu-

ally implemented event detectors. These approaches are of comparable expressive power to the use of

UML/OCL to describe constraints on a system. JavaMaC seems to provide extra advantages in terms of

automating the instrumentation of the system, but in fact the requirements must be expressed in terms of

the structure of the Java code being instrumented. The degree of abstraction at which the requirements

are specified tends to determine the degree to which the placement of monitors can be automated.

A monitoring system directly related to WSML is proposed in [112]. Similar to the architecture

proposed for monitoring in the WSLA specification, it consists of business management agents present

at the interface to the client or the service provider or both. One of these agents is responsible for

SLA monitoring and uses a specialised protocol to request monitoring data from the other agent. The

agent-oriented approach taken is clearly an attempt to avoid duplication of monitoring effort, but is only

appropriate under the most optimistic of assumptions regarding the trustworthiness of the parties. The

SLA monitoring agent maintains a ‘service model’ which is a database containing SLA and scenario

information as well as monitoring data. The types in this model database are described in the paper

using a UML model, and the approach is therefore conceptually similar to our instantation of a JMI

repository from the meta-model of SLAng. However, the schema for the model database is derived in

an ad-hoc manner from the informal specification of the language semantics. It is also stated that new

software components must be implemented to evaluate new types of conditions, a consequence of the

reliance of WSML on semantic extensions provided by the user.

An approach similar to my own has been proposed in [53], a position paper that begins to elaborate

the requirements for specifications supporting the use of contracts in an MDA process. The paper pro-

poses that contracts can be transformed into one or more meta-models whose semantics are ultimately

those of the Business Contract Language (BCL) [54], a very flexible contract definition language based

on the notion of ‘communities’, a kind of modelling template for collaborations described in the RM-

ODP. It is proposed that these models could then be processed in various ways, including implementing

monitors, by tools that implement the BCL semantics. It is unclear how the transformation of contracts

into these meta-models provides a benefit over simply defining a contract in BCL directly, since the

expressiveness of the contract and the meta-models is likely to be equivalent. However, it is correct to

identify BCL as an alternative to MOF/OCL to describe runtime requirements. In cases where require-

ments are primarily related to the ordering of events, BCL provides considerable semantic assistance.

In more general cases, the contract-oriented nature of BCL may be hinderance to the expression of the

requirements.

In response to the poor performance of the generated SLA checker, two alternative approaches to

implementing monitoring solutions for the types of constraints included in various versions of the SLAng

language have been tried. In [72], a monitoring solution was implemented by hand. Measurement

4.5. Metrics for domain-specific languages 102

instruments were injected into an application server in the same manner as described in Section 4.4.1.

The logic for checking conformance to throughput, reliability and latency requirements was implemented

by hand, and was shown to perform adequately. In [108], a monitoring solution for timeliness and

latency was implemented using timed-automata, and shown to have both good theoretical and good

practical performance characteristics. Again, instruments were implemented by hand and injected into

an application server. The principle objection to the approach taken in both of these cases is the need for

human interpretation of the SLA specification document, which introduces an element of uncertainty as

to whether the results produced by the monitoring solution are consistent with the intent of the agreement

being monitored. If an automated monitoring solution proceeding from the specification of that SLA

language could be perfected, this uncertainty would not be present.

In [56] the authors describe the dynamic reconfiguration of a cluster of EJB servers in response

to the monitoring of performance characteristics relevant to an SLA. The monitoring system described

consists of a component for determining SLA violations, another for determining whether thresholds

indicative of imminent SLA violation being exceeded, and performance monitors injected into the con-

tainer architecture. The SLA information used is a set of fixed parameters based on the very first version

of SLAng, described in [49], and includes latency and availability parameters. The monitoring compo-

nent is implemented by hand, as this version of SLAng did not benefit from a formal semantics.

4.5 Metrics for domain-specific languages
The purpose of developing a DSL is to enable certain things to be expressed. Those things might be

anything at all, for example, some computer programs, some designs for bridges, accountancy data,

or a catalogue of household products. The things that the DSL needs to express will have features in

common, thereby delimiting the ‘domain’ of the language, and it is this that distinguishes DSLs from

general-purpose languages, like UML class diagrams, or natural language.

Why choose to write a DSL rather than use a general-purpose language? Since UML classes can

represent anything, why not just have a class diagram for everything that we want to say? The most

common answer is that statements in the language are to be processed by some program. It is therefore

convenient to have a language that can be easily processed, and provides some restrictions on what can

be expressed to avoid authorial errors. However, from a more general utilitarian point of view three

types of activities associated with the desired statements can be considered: developing the language for

the statements, authoring the statements, and processing the statements automatically for some purpose.

Clearly, developing a language implies a cost as opposed to choosing to use a general language, so for

this to be desirable we must expect to make savings in the cost of either authoring or processing.

Much good work has been done to reduce the costs of processing DSLs, including general compiler

development technologies and architectural support for processing in the form of document-models and

automatically-generated meta-data repositories. This support to some extent also enables reduction in the

cost of authoring statements in DSLs. Sophisticated editors require less development effort to produce

and generic syntax standards such as XMI or HUTN, or languages with a common syntactic structure,

such as XML, if employed may reduce the effort needed to learn a new DSL.

4.5. Metrics for domain-specific languages 103

However, the benefits provided by these technologies can be easily eclipsed by a poorly-designed

DSL. Such a language may increase costs by being hard to author, or hard to process in the sense that

developing programs capable of processing the language may be costly. If the language fails to anticipate

required statements then it may need extension, implying increased authoring and processing costs. The

initial design of a DSL and the management of change during its lifetime is hence of commercial concern

to an enterprise relying on the language, and a mature enterprise should therefore attempt to manage these

processes with the help of measurements.

Starting from these assumptions, in this section I describe a novel set of metrics applicable to

DSLs. I argue that these metrics provide quantitative support for qualitative judgements concerning the

usefulness of a language or trade-offs in the design of a language.

4.5.1 Language specifications, extensions and statements

Any statement can be regarded as a chunk of information that must be captured in such a way that it

can be recovered in the future, preferably without ambiguity. The information will be encoded using

a language of some sort, resulting in an arrangement of chosen syntactic elements. To understand the

syntax, and therefore recover the original information conveyed by the statement, we must refer to the

definition of the language. However, the definition of the language alone does not convey the original

information, because some of the information is inherent in the choice and arrangement of the lexical (or

otherwise syntactic) elements constituting the statement. We can therefore observe that when expressing

a statement in a language, the information burden of the statement is divided between the definition of

the language and the syntax of the statement.

In the case of a DSL, it is not possible to encode all possible information into statements; informa-

tion that lies outside the domain of the language cannot be encoded. However, if a DSL can express most

of the information in a required statement, it might be cost-effective to reuse some of the definition of

the language, by defining a language extension, as opposed to designing a new language for the desired

statement, or employing a general language. In this case the information burden will be divided between

the core language definition, the definition of the extension, and the syntax of the resulting statement,

which uses the extended language. This division of information is depicted in the Venn diagram in

Figure 4.6 in which the two-dimensional space of points represents a mapping of all concepts.

All concepts

Language
concepts

Extension
concepts

Expressed
in syntax

All statement
concepts

Figure 4.6: The conceptual burden of a statement is divided between the language in which it is expressed
(including any extensions used) and the choice and arrangement of syntactic elements in the statement
itself.

In the next section I formally define metrics that estimate how the information burden of a statement

4.5. Metrics for domain-specific languages 104

has been distributed across the language specification, any extensions used and the syntactic structure of

the statement.

4.5.2 Power, adequacy and specificity

Let us assume the following:

1. we wish to develop a language in which to make some statements;

2. we have chosen to develop a domain-specific rather than general-purpose language;

3. we have an initial set of known statements that we wish to make in the language;

4. statements will have a concrete representation that can be stored on a computer;

5. language specifications will have a concrete representation that can be stored on a computer;

6. we will conscience future extensions to the language;

7. language extensions will be encoded in the same manner as the specification of the language being

extended;

8. we will regard languages as being freely reusable across multiple statements, whereas the syntactic

part of statements will not tend to be reused. Note that this assumption may be invalidated by the

common practise of providing libraries for languages. However, as I demonstrated in Section 3.2.1,

for modelling languages at least, providing a library of models and providing additional language

vocabulary are sometimes similar activities;

9. the cost of expressing some information in a statement, language specification or language exten-

sion is proportional to the amount of information being conveyed;

10. the measured size of a statement or language-specification is a reasonable corollary of information

content, within a particular encoding scheme.

Based on these assumptions, my metrics are defined as follows:

By assumption, DSLs are reusable whereas statements are not. Therefore it is preferable to place

information into a DSL whereby it may be reused, thereby reducing the cost of making statements in

the future. This would tend to suggest that it is preferable to have a large DSL specification defining

the syntax and semantics of relatively terse statements. I therefore define the power of a language with

respect to a statement as being the size of the parts of the language used in the statement in proportion

to the sum of the sizes of the statement and the language parts used. Given a language specification L,

a statement s in the language, a function used that maps a language specification and a statement to the

subset of the language specification used by the statement, and a function size that maps statements or

subsets of language specifications to real numbers, the power is hence defined as:

power(L, s) =
size(used(L, s))

size(used(L, s)) + size(s)
(4.1)

4.5. Metrics for domain-specific languages 105

Power calculations alone are not adequate to assessing the worth of a language. Consider a language

required to express n different known statements, with meanings that possibly share concepts. One

possible design for such a language is that each known statement is represented by a unique integer,

which provides an index into the language specification in which is written separate definitions for each

of the n different statements originally anticipated. Such a language is clearly powerful, but may be

criticised in two ways. First, when reading any new statement, an amount of the language definition must

be read in proportion to the amount of information carried by the statement, regardless of how familiar

the reader is with the definition of other statements in the language, with which the new statement may

share concepts. By reading, here, I also imply any effort required to develop automatic interpreters for

the language. Second, any extension to the language will be unable to reuse concepts, so the extension

will also be of a size in proportion to the information borne by the new statement.

The problem with this hypothetical language is that as it grows, the language definition becomes

less and less specific to the individual statements that are being made. For each of the n statements, there

are supporting semantic descriptions for n−1 other statements that are effectively irrelevant. Therefore,

I define the specificity of a language with respect to a statement as the proportion of the size of the

language elements used by the statement to the size of the language overall. Clearly a more specific

language is desirable, as the cost of developing and interpreting the language definition is minimised.

specificity(L, s) =
size(used(L, s))

size(L)
(4.2)

Specificity itself may come at a cost. An increase in specificity may result not only in a conden-

sation of concepts captured by the language definition, but also in the omission of concepts. Improving

specificity may mean leaving out features of the language that are anticipated as being useful but haven’t

found application in any currently known statement. This could be a mistake since a large class of state-

ments required in the future may rely on these features. On encountering these statements, assuming that

it is cost-effective to do so, it will be necessary to rely on extensions to implement the missing concepts.

It could be argued that defining these extensions is no more expensive than simply implementing support

for the concepts in the first place, so this is not an additional cost. However, if the extensions are not then

incorporated into the original language, perhaps because the original language has become standardised,

or because it is deemed that the extension would unduly harm the specificity of the original language,

there is the danger that a similar extension may need to be defined again in the future, resulting in a

repeated cost.

It is therefore relevant to ask: to what extent is a language adequate to a new statement? If the new

statement will require an extension to the language to enable its expression, then the language is clearly

not completely adequate, and the relative size of the elements used from the language, and the size of

the elements used from the extension indicate the magnitude of the contribution of the language to the

statement. Given, in addition to the language, a language extension E, I state that the adequacy of a

language with respect to a statement is given by:

4.5. Metrics for domain-specific languages 106

adequacy(L,E, s) =
size(used(L, s))

size(used(E, s)) + size(used(L, s))
(4.3)

Note that in each case I have defined power, specificity and adequacy in terms of a single state-

ment. Clearly, measures for average power, specificity and adequacy over sets of statements can also be

obtained and used to assess the quality tendencies of a language over several statements.

Measurements are principally useful for comparisons between various subjects, so the metrics as

proposed may be helpful when evaluating candidate languages or language-design choices. What con-

stitutes a good design for a DSL will remain a largely subjective matter and present a considerable

challenge to empirical investigation in the future. However, valuations of my metrics could reinforce the

following subjective judgements:

• a language with a low average power is likely to be more expensive to use than a language with a

higher power for the same statements. The extra cost is in preparing larger statements;

• a language with a low average specificity is likely to be more expensive to use than a language

with a higher average specificity for the same statements. The extra cost will be in interpreting the

more redundant language specification;

• a language with a low average adequacy for a set of statements is likely to be more expensive to

use than a language with a higher average adequacy for the same statements. The extra cost will

be in defining extensions to the core language;

From the point of view of evolving DSLs the objective of improving measurements based on the

metrics may also be used to suggest candidate changes to a particular language. Clearly a language

designer should seek to improve values for each of my metrics, therefore hoping to reduce costs, but

must do so without invalidating the assumptions on which the metrics are based (e.g. that the cost of

preparing a statement is proportional to its size – it might be that a language change that improves the

power of the language makes statements unfeasibly difficult to formulate), and without compromising

too drastically on one measure in favour of another. Possible courses of action are:

• to improve the power of a language by introducing more specialised constructs, with greater se-

mantic refinement. This may have the effect of reducing specificity since the constructs will only

be usable in certain statements;

• to improve the specificity of a language by combining constructs which share a conceptual basis.

This has the potential to reduce the power of the language by requiring subtle distinctions between

concepts to be discriminated in statements;

• to improve the specificity of a language by removing infrequently used constructs. This may

reduce the adequacy of the language by obliging the use of extensions for certain statements;

• to improve the adequacy of the language by introducing new constructs for concepts commonly

encountered in extensions to the language. This may reduce specificity by introducing constructs

that will only be reusable in certain statements.

4.5. Metrics for domain-specific languages 107

All of the metrics rely on the definition of two functions size and used: size is a mapping from

the concrete representation of a language specification, extension or statement to the range of real num-

bers; used is a mapping from the concrete representation of a language specification or extension to

the concrete representations of those parts of the specification or the extension upon which a statement

depends.

The definition of both mappings are dependent on how language specifications and statements are

encoded. According to the assumptions upon which the metrics are based, the cost of specifying some

information is proportional to the quantity of the information being specified, and the size of a statement

or language specification is proportional to the amount of information they encode. The size metric,

upon which the definition of my metrics depend, takes a statement, or all or part of a language specifica-

tion or language extension, and maps it to a real number. For the economic interpretation of the metrics

to remain valid, it is therefore important that for a particular set of statements, language definition and

extension, the size function is defined in such a way that the values that it returns are proportional to the

information encoded in the artifact that it is measuring, despite the fact that language specifications and

statements may be encoded differently. Clearly the size metric should increase monotonically with the

amount of information represented by an artifact.

If the size function tends to overestimate the effort required to define the language, in comparison

to a statement, or vice versa, then it may be biased, and measurements for power will therefore be

misleading. Bias of this kind is less problematic when considering specificity, as only the language

is being measured. This is also the case for adequacy, as I have assumed that extensions are encoded

according to the same scheme used to encode to core language. The design of the size metric becomes

more difficult when attempting to compare languages encoded according to different schemes, as then

bias between the encoding schemes must be considered.

In the next section I discuss how the size and used functions can be defined for DSLs with meta-

models defined using the EMOF model.

4.5.3 Defining size and used functions for EMOF and OCL-based languages

Previous work by other authors (discussed below) has highlighted the possibility of defining metrics for

modelling languages using extensions to the meta-models of those languages. In particular, additional

measurement classes are defined with properties typed to refer to the model-elements being measured.

Side-effect-free operations are then defined on these types using the Object-Constraint Language (OCL)

to calculate values for the metrics. According to the four-layer meta-modelling architecture, discussed in

Section 3.1.3, the procedure for calculating measurements of M1 elements is described in terms of their

M2 types.

This approach is ideal for providing a formal definition for language-specific metrics, assuming a

meta-modelling language incorporating OCL. Coupled with a standards-compliant JMI generator and

OCL interpreter, such formal specifications are adequate input for the automatic generation of a tool

capable of calculating metric values from models.

However, without modification the approach is not ideally suited for metrics that are both language-

4.5. Metrics for domain-specific languages 108

independent, and involve the comparison of statements and language specifications, or in the terminology

of the MDA, models and meta-models. Power, adequacy and specificity are of this type.

However, providing a common language for encoding language specifications can be assumed,

language-independent metrics may be defined using the same approach, but by embedding the definition

of metric types in the meta-meta-model. If EMOF and OCL are used, the metric types can be defined in

extensions to the EMOF meta-model using OCL. This provides the opportunity to reason about the types

of objects present in meta-models, and hence compare languages. This is placing metric definitions at

the M3 layer to reason about the M2 layer.

The residual problem is defining metrics that describe the comparison of languages (at the M2 layer)

with the models (or statements, at the M1 layer) that are expressed. To achieve this using OCL requires

an apparent violation of the four-layer meta-modelling architecture, since OCL evaluation (according to

the OCL 2 standard) only acts on a model from a single layer. However, by observing that meta-model

syntax and model syntax may both be modelled in an abstract, object-oriented fashion, this distinction

can be avoided.

Stated otherwise, consider that models conform to meta-models according to the semantics of the

meta-modelling language, which may be defined at the M3 layer using the model-denotational approach

of associating the model of the syntax of the meta-modelling language with a model of its semantic

domain. The MOF 2.0 standard takes this approach and defines an ‘abstract semantics’ for the CMOF

model. The types used in these semantics are apparently defined at the M3 layer, but instances of these

types must correspond to model elements at the M1 layer. This apparent contradiction highlights the

artificiality of the four-layer meta-modelling paradigm.

In my approach to defining a size metric for models and meta-models, I make use of the model-

denotational approach to define a similar semantics for the EMOF model (regrettably no standard se-

mantics are available) along the same lines as that provided for CMOF. This semantic model is used to

extend the syntactic model of EMOF, with associations between meta-model and model types represent-

ing type-instance relationships. The semantic model for EMOF is shown in Figure 4.7.

Note that both models and meta-models can be regarded as instances of the types in the semantic

model, because both models and meta-models are instances of types defined according to the EMOF

model. In the case of meta-models, these instances represent the types in the EMOF model itself, because

EMOF is defined recursively.

Because models and meta-models can be represented using the same types, it is possible to define

a size metric precisely, which can be applied equally to both models and meta-models and therefore

plausibly reduces bias in measuring the size of each. Moreover, the joint model of EMOF syntax and

semantics can be compiled into a JMI repository capable of containing any combination of model and

meta-model, without recompilation. Models and meta-models can be loaded into such a repository and

used to calculate metrics. Some additional coding is required to import a model as instances of the

semantic types, since a standard XMI reader will expect to be instantiating classes generated from the

model’s meta-model, rather than the semantic types.

4.5. Metrics for domain-specific languages 109

package semantics semantics[]

PrimitiveValue

+valueRepresentation : String

Property

(emof)

+isComposite : Boolean

EnumerationLiteral

(emof)

Class

(emof)

+isAbstract : Boolean

EnumerationValue

PackageExtent

InstanceValue

ClassExtent

Package

(emof)

+uri : String

Type

(emof)

Value

Slot

+values

*

+definedBy

0..1

+allOfClass

*

+extent

+type

+definingProperty

+classExtents

*

+slots

*

+literal

Figure 4.7: A semantic model for the EMOF language

4.5. Metrics for domain-specific languages 110

Model instances, according to my semantics for EMOF, consist of a number of different types of

elements. These are: package extents; class extents; instance values, consisting of a number of slots,

each containing one or more values; primitive values, which may be strings, integers, reals or booleans;

or enumeration values, which identify a literal of an enumerated type.

Package and class extents exist for each of the packages and class-types defined in the meta-model

for a model. They are automatically generated in a repository for the purpose of navigating the values in

the model, and do not express any meaning in a model. I therefore argue that they do not contribute to

the size of the model.

The values of different types are clearly the result of effort spent specifying the model. The question

is, what effort? If we assume that the effort specifying the existence of any two instances is the same,

which I implicitly have by assuming that effort is proportional to model size, then we still need to

determine the relative effort involved with specifying primitive values, including strings, whose length

may vary, the relative sizes of instance values for which property values have been specified, and the

contribution to model size of nulls, which may be interpreted as either not specifying a property (leaving

it with an unknown value) or asserting that it has no value.

With these considerations in mind, I propose that any size metric for models should be paramet-

ric, providing the opportunity for the user of the metric to specify weights for each of the elements

corresponding to their assessment of the distribution of effort.

My size metric is therefore defined as the sum of all weighted elements in a model, possibly taking

into account the length of strings. Elements that the user chooses to omit may be weighted 0. The size

metric is therefore defined as an additional class in the EMOF syntactic and semantic meta-model as

follows (this definition relies on a non-standard extension to EMOF that disambiguates the identification

of the type of a primitive):

class ModelSizeMetric {

instanceWeight : ::emof::Real
referenceWeight : ::emof::Real
enumerationWeight : ::emof::Real
nullWeight : ::emof::Real
integerWeight : ::emof::Real
booleanWeight : ::emof::Real
realWeight : ::emof::Real
stringWeight : ::emof::Real
stringElementWeight : ::emof::Real

instanceSize(instanceValue : ::semantics::InstanceValue) :
::emof::Real = {

instanceWeight +
instanceValue.slots->collect(s : ::semantics::Slot |

if s.values->size() = 0
then nullWeight
else s.values->collect(v : ::semantics::Value |

if s.definingProperty.type.oclIsKindOf(

4.5. Metrics for domain-specific languages 111

::extensions::OCLEquivalentPrimitiveType)
then

let primitiveTypeKind =
s.definingProperty.type.oclAsType(

::extensions::OCLEquivalentPrimitiveType
).kind

in
if primitiveTypeKind =

::extensions::OCLEquivalentKind.STRING
then
stringWeight +
v.oclAsType(::semantics::PrimitiveValue

).valueRepresentation.size() *
stringElementWeight

else
if primitiveTypeKind =

::extensions::OCLEquivalentKind.INTEGER
then
integerWeight
else
if primitiveTypeKind =

::extensions::OCLEquivalentKind.REAL
then
realWeight
else
booleanWeight
endif endif endif

else if s.definingProperty.type.oclIsKindOf(
::emof::Enumeration)

then enumerationWeight
else

referenceWeight +
(if s.definingProperty.isComposite
then instanceSize(

v.oclAsType(::semantics::InstanceValue))
else 0.0
endif)

endif endif
)->sum()
endif

)->sum()
}

}

The joint meta-model also provides the opportunity to define a useful used mapping. Since in-

stances are associated with the types to which they conform, it is straightforward to determine the set of

meta-model types used directly by any statement. Unfortunately, it is not totally straightforward to then

measure the size of these types, since the size metric defined above relies on having instance objects,

not type objects to measure. However, a minor additional extension to the meta-model, also shown in

Figure 4.7 allows types in meta-models to preserve a link to instance-objects representing them. A small

amount of additional programming adds functionality to the repository to convert any meta-model types

into instance objects referring to an instance of the EMOF model, and sets the definedBy properties

for the meta-model types with references to these instances. A given instance object explicitly uses one

4.5. Metrics for domain-specific languages 112

type to define its own structure, and one type for each of its attributes. It is debatable whether the types

for null attributes should be considered to be used, so this can be a parameter of the definition of used

chosen. EMOF types may inherit properties from other types, so super-classes of explicitly used types

should also be considered to be used. For a given instance object, used may therefore be defined by the

following side-effect-free operations, declared on the type InstanceValue:

typesUsedExplicitly(countNullAttributeTypes :
::emof::Boolean) :
::emof::Type[*] unique = {

Set(::emof::Type) { type }->union(

slots->collect(s : ::semantics::Slot |

if s.values->notEmpty()
then

if s.definingProperty.isComposite and
s.definingProperty.type.

oclIsTypeOf(::emof::Class)
then s.values->collect(v : Value |

v.oclAsType(InstanceValue).
typesUsedExplicitly(

countNullAttributeTypes))->asSet()
else Set(::emof::Type) { s.definingProperty.type }
endif

else
if countNullAttributeTypes
then Set(::emof::Type) { s.definingProperty.type }
else Set(::emof::Type) { type }
endif

endif
)

)->asSet()
}

inheritanceClosure(explicitTypes : ::emof::Type[*] unique) :
::emof::Type[*] unique = {

let moreExplicit = explicitTypes->collect(
t : ::emof::Type |

let setOfT = Set(::emof::Type) { t }
in
if t.oclIsKindOf(::emof::"Class")
then
setOfT->union(

t.oclAsType(::emof::"Class").superClass->asSet())
else
setOfT
endif

)->asSet()
in
if moreExplicit = explicitTypes
then explicitTypes
else inheritanceClosure(moreExplicit)
endif

4.5. Metrics for domain-specific languages 113

}

used(countNullAttributeTypes : ::emof::Boolean) :
InstanceValue[*] unique = {

inheritanceClosure(typesUsedExplicitly(
countNullAttributeTypes)
)->collect(definedBy)->asSet()

}

Unfortunately, this definition of used, although helpful, does not represent a definitive solution

for defining this function for languages specified according to my approach. Languages that benefit

from a model-denotational semantics will contain semantic meta-model classes that are never directly

used by a statement, but nevertheless provide an important contribution to defining the meaning of the

language. The structure of the meta-model may be used to some extent to determine which of these

semantic classes are relevant to a particular statement, but this is not completely satisfactory as it fails to

discount types that are only relevant depending on the value of the statement. Perfect reasoning for the

usage relationship would require the hypothesis of semantic structures consistent with the constraints on

the syntactic types used directly by a statement. The success or failure of such reasoning with OCL is

almost certainly undecidable in general due to the high expressive power of OCL. Therefore, evaluating

the used relationship for statements in EMOF-defined languages remains a matter of human judgement.

An implementation of this meta-model and all supporting code is available as part of the UCL MDA

tools [135].

4.5.4 Related work in metrics

The study of metrics is a large field. Prior work particularly related to my own falls into several cat-

egories: the specification of metrics for modelling languages; the validation of metrics; metrics for

object-oriented systems in general; metrics for modelling languages; and metrics for software reuse.

In the first category, several approaches have been specified for defining metrics for modelling lan-

guages. The formalisation of object-oriented metrics over UML models using side-effect-free operations

defined on classes in the UML meta-model was first proposed by [8]. The minor additional generalisation

of introducing metrics classes (as I use for the size metric in the preceding section) was first proposed

by [62]. The authors of this second work also describe in [61] the definition of metrics over the Dagstuhl

Middle Metamodel [52], a model representing the union of features from a number of object-oriented

languages and intended to support refactoring activities that involve translation between languages. [61]

establishes the feasibility of defining metrics over a meta-model other than the UML meta-model, and

also describes the automated generation of a repository incorporating Java code compiled from the OCL

expressions embedded in the meta-model to calculate the metrics.

Other approaches to defining metrics for modelling languages have also been proposed. [64] pro-

poses a set of object-oriented metrics that are defined as specialisations of operations on graphs. These

metrics have the advantage of being formally defined. Also the underlying graph formalism is compat-

ible with several object-oriented formalisms, so the authors argue that the metrics are to some extent

language independent. However, to fully understand how the metrics apply to any given language, it

4.5. Metrics for domain-specific languages 114

is necessary to first defining a mapping from the structure of the language to the graph structure. This

is inconvenient, and there is no way of determining whether any two mappings from two different lan-

guages produce results that are in any way equivalent, so it is not clear that calculations over graphs for

statements in different languages can be compared in this case. However, since the metrics defined are

primarily counts of elements of various types, this may not be problematic.

[136] proposed the use of a model transformations language, specifically ATL [42] to define met-

rics, effectively transforming a model into another model representing the results of metric calculation.

Although ATL has elements with both an imperative and declarative character, this alternative proposal

can be seen as representative of a division within modelling research between those that prefer to describe

actions performed on models, and those that prefer to describe relationships between models.

[31] describes a meta-model for a metrics-definition language. A graphical syntax allows the def-

inition of metrics and taxonomies of metrics. The semantics of the metrics may either be defined using

expressions based on a fundamental set of metrics that assume that a language has an object-oriented

abstract syntax, or may be coded using Python [107], assuming access to a model repository gener-

ated by the tool AToM [67]. The approach is essentially tool specific, since AToM uses a non-standard

meta-modelling language.

Validation of metrics is the process of determining whether the tendencies of a metric correspond

to the tendencies of the real world quantity that they are presumed to measure. A useful survey is [39].

What would be required for power would be a demonstration that statements in a more powerful language

tend to be cheaper to author than statements in a less powerful language for the same purpose, since the

cost-effectiveness of authoring a statement in a given language is the real-world property that power

is attempting to measure. Similar properties would need to be proven for specificity and adequacy.

Naturally, such validation would require empirical studies outside the scope of this work, particularly

given that producing languages and models are time-consuming and expensive activities. I have therefore

relied on an informal justification of my metrics. However, if the metrics become widely used to aid

decision of real commercial value, such validation may become cost-effective.

Since meta-models are typically object-oriented, it is reasonable to consider what benefit may be

derived from applying traditional object-oriented metrics to their measurement. The classic suite of

object-oriented metrics were proposed by Chidamber and Kemerer, and are well-known as the CK met-

rics [13]. [60] offers OCL definitions of these metrics. The problem with the use of these metrics is

that it is highly debatable whether knowing such values for such properties as weighted-methods per

class, or depth of inheritance tree allows any useful conclusions as to the quality of a meta-model to be

derived. However, in [58], the authors showed the use of simple object-oriented metrics to assess two

quite useful properties of the evolving UML meta-model: first, by measuring the change in quantity of

various types of meta-model element, the authors were able to produce a composite metric that reason-

ably corresponds to a subjective judgement of the relative dissimilarity between consecutive versions of

the language; second, by calculating standard object-oriented metrics and producing weighted compos-

ite metrics for reusability, flexibility, functionality, extendibility and effectiveness, they argued that the

4.6. Summary 115

design of the UML meta-model is tending to improve as the version number increases. These composite

metrics have a similar character to my metrics, but attempt to measure different qualities of a language.

However, their subjective value is encoded into the weighting of the more primitive object-oriented met-

rics from which they are calculated, and does not have the justification of a straightforward economic

argument, so they may be harder to validate.

Finally, since my metrics may be interpreted as measuring the reusability of a language-

specification, a comparison with metrics for software-reuse is possible. A good survey of this field

is [27]. Here some direct analogies are possible. What I have defined as power is closely equivalent to a

product-reuse percentage, which is the ratio of reused code in a product to the combined size of reused

code and new code. Specificity is equivalent to a quantity of reuse metric for a library or program,

namely the ratio between reused code and total code. There seems to be no direct analogy for adequacy,

since reuse metrics only deal with two categories of artifact, the new and the reused, where as adequacy

relies on three things, a language, an extension and a statement. Moreover, all of my metrics seem to

differ from the reuse metrics by being specific a particular usage of a language, rather than to the static

properties of the language. In this sense they are more similar to measuring executed code using runtime

monitoring. Nevertheless, the similarity between reuse metrics and my metrics suggests that other reuse

metrics may have useful analogies in modelling languages.

4.6 Summary
In this chapter I have presented a number of research contributions related to language specifications,

which I have defined as being a single definitive point of reference concerning the syntax and semantics

of a language. In particular I have focussed on the type of language specification that will naturally arise

from following the recommendations developed in the preceding chapter, with respect to the definition

of a domain-specific language for ASP SLAs. Such a language, and languages defined along the same

lines, will have an abstract syntax, one or more concrete syntaxes, and a description of its semantics.

The abstract syntax will be defined using an object-oriented model. The semantics will be defined using

a combination of the model-denotational style, which relies on an object-oriented domain model, and

natural language statements.

I described two pervasive problems with the approach used by the OMG to document languages

of this kind: first, definitive language specifications tend to be defined in documents that are predom-

inantly human-readable, and not amenable to automatic processing. Although formal models of some

languages are available, or in some cases can be inferred, these models are not regarded as definitive, and

nor are they adequate to define a language, as they typically do not contain sufficient semantic documen-

tation; second, although concrete statements in these languages may in some cases reference a formal

description of the syntax of the language in which they are defined, the link between the statement and

the definitive language specification is usually non-existent. This is almost certainly due to confusion

concerning whether the human-usable documentation of the language or the formal description of the

syntax should be regarded as being definitive.

I also observed that these problem compounded the difficulties faced when dealing with exten-

4.6. Summary 116

sible languages, in which extensions must regularly be defined, documented and combined with core

languages.

To address these issues I proposed a raft of relatively minor changes to core OMG standards, in

particular the MOF, XMI and HUTN standards. The MOF should be changed so that definitive human-

readable semantic documentation can be included in meta-models, and these meta-models can then fulfil

the role of language specifications. They will be amenable to automated processing, can be used to

provide context-sensitive assistance, and can easily be combined with the specifications of extensions

to produce new combined language specifications. In addition, the relevant concrete-syntax standards

should mandate the inclusion of links not only to themselves, but to the language specification being

used in any concrete statement, thereby ensuring that a statement can be interpreted according to the

definitive documentation of the language in which it is written. I described the UCL MDA tools, which

implement these recommendations. I compared the UCL MDA tools to available alternative MDA tools.

I next described the potential for tools such as the UCL MDA tools to be used to test language

specifications by evaluating OCL constraints. In the case of ASP SLA languages, this type of evaluation

can also be used to check conformance of a model of service provision to the conditions included in ASP

SLAs, as part of a runtime monitoring system. I described an initial attempt to construct such a system

using an early version of the SLA language SLAng, the latest version of which is discussed in more

detail in Chapter 6. Although easy to implement, this system was impractical due to the computational

complexity associated with evaluating OCL constraints. This problem may be the fault of the OCL

interpreter or the formulation of the constraints, and addressing it remains the topic of future work. I

discussed this work in the context of other work to provide runtime monitoring solutions.

Finally, I described novel set of metrics, intended to be helpful in the evaluation and evolution of

domain-specific languages. These metrics, called power, adequacy and specificity, rely on the obser-

vation that the information conveyed by a statement in a DSL, and therefore, by my assumption, the

authorial effort required to convey that information, is divided between the choice and arrangement of

lexical elements constituting the statement, and the description of the language in which the statement

is written. I discussed how these metrics might indicate problems in a DSL, and how their values may

be improved by redesigning the language. I described how the calculation of these metrics could be im-

plemented in an unbiased way for languages defined according to my language-specification approach.

I discussed the metrics in the context of previous work on the measurement of meta-models, and more

generally of object-oriented systems. The metrics are used to assist in the evaluation of SLAng, in

Section 8.3, and to demonstrate its evolution, in Section 8.4.

117

Chapter 5

The Monitorability of ASP SLAs

In Chapter 3 I have described an approach to defining domain-specific languages for SLAs that has,

amongst other advantages, the potential to specify SLA languages that are precise, and hence express

SLAs with a precise meaning. Precision is one of two fundamental requirements for SLAs that stem

from the requirement that an SLA be protectable, in the sense that any disagreement concerning the

SLA should be resolved according to the original intent of the agreement. Precision is necessary so

that an unambiguous intent can be retrieved from the agreement in the event of a dispute. The other

necessary condition for protecting the agreement is that reliable evidence can be collected and presented

that is relevant for determining how the intent should be applied, and which is convincing to the parties

involved in the dispute. Depending on how an SLA is written, such evidence may be more or less easy

to obtain. I refer to the property of an SLA that determines how easily relevant and trustworthy evidence

may be obtained as its monitorability.

In Section 2.6 I have discussed the fact that to mitigate the risks of all of the parties in a service-

provisioning scenario, a system of several SLAs may be required. In this chapter I introduce a technique

for analysing systems of SLAs to determine the degree of monitorability possible, according to a classi-

fication of monitorability that I describe.

I apply this technique to identify the most monitorable system of SLAs capable of insuring time-

liness constraints (a common requirement in the ASP scenario) for the three-role Application-Service

Provision (ASP) scenario, described in Chapter 2.

The system contains SLAs that are at best mutually monitorable, and of all the possible systems

of SLAs that might be established in the scenario, only a single system of SLAs achieves this level of

monitorability. I also show that this level of monitorability is possible for electronic-service provision

scenarios involving networks administered by multiple ISPs, although I do not prove that no higher level

is possible.

This result has several significant implications:

First, the system of SLAs that achieves mutual-monitorability in the three-role scenario is not one

that is in common usage. I discuss the practical implications of this further below.

Second, all SLAs in an identified system of SLAs require only guarantees related to the behaviour

of the service as experienced at a certain point in the network, not end-to-end guarantees. This implies

that a language supporting only mutually-monitorable SLAs in the ASP scenario will not need to address

5.1. Monitorability 118

the provision of network-services, only the provision of electronic-services and the real-world behaviour

of an application service.

Finally, SLAs that are at best mutually-monitorable imply the potential requirement for reconcilia-

tion of monitoring data between the parties, and hence the need to constrain the parties to report honestly.

Honest reporting is made more difficult both to achieve and to assess by the inevitable presence of mea-

surement error in any measurement of a physical system. Since true values of physical quantities can

never be known for certain, this implies the need for a constraint that bounds error in reported values,

and which can be approximately monitored, in the sense that confidence in the belief that the constraint

has been either met or violated can be obtained, even if this can never be known for certain. Therefore, I

also describe a constraint on the precision and accuracy of reported measurements, and its approximate

monitorability using a statistical hypothesis test.

The material in this chapter is largely reproduced from [120]. Jason Crampton assisted in the

formalisation of the monitorability model. Allan Skene assisted in demonstrating the approximate mon-

itorability of the accuracy constraint.

5.1 Monitorability
Three parties participate in the basic ASP scenario introduced in Chapter 2: the client, the service-

provider, and the network service provider. Discounting for the present the real-world behaviour of the

service, and assuming that the interface to the service is a simple, synchronous electronic-service, let us

consider what could go wrong for the client in this situation.

One possibility is that having submitted a request, no response is received by the client within some

reasonable interval of time. The client complains to the service provider that a timely response was

not received. The provider claims that no request was received, produces a log of requests as evidence

supporting this claim, and directs the client to complain to the ISP who was responsible for conveying

the request to the service. The ISP insists that the request reached the service provider and produces

a log supporting this claim. Who can the client trust? Both the ISP and electronic-service provider

have delivered easily fabricated evidence concerning an event, the delivery of the request at the service-

provider’s interface, that the client was incapable of independently monitoring.

Let us assume that for their own reasons, the client chooses to mistrust the service provider, and

requests that they enter into a service-level agreement. In this agreement the client seeks to reduce the

costs that they expect to incur when the service fails to perform as expected, by receiving a penalty from

the provider, also giving the provider a disincentive to poor performance. The client perceives that the

problem with the service is a lack of availability due to an erratic maintenance regime on the part of

the provider. The provider duly commits to provide 95% availability over the lifetime of the contract of

which the SLA forms a part.

Over the period of the contract, the client uses the service frequently and frequently responses are

not generated following requests. At the termination of the agreement the client seeks compensation

from the provider, who refuses to pay. The provider argues that although the service was unavailable

when requests were made for which responses were not received, at all other times the service was

5.1. Monitorability 119

available. Accumulating the microscopic intervals during which the (numerous) failed requests were

being delivered and the service was admittedly unavailable still does not amount to 5% of the lifetime of

the contract, and hence the provider need not pay. In this second example, the client has entered into a

agreement which is, possibly implicitly, defined in terms of events that the client cannot directly observe,

namely the passing of the service from an available to unavailable state, and vice versa. Since the client

cannot observe these events, it must take the word of the service provider with respect to the availability

of the service, or else pursue compensation with very little support from the original SLA.

These examples highlight monitorability as an important requirement for SLAs. In both cases, the

client became concerned with an event that they fundamentally could not observe: in the first example,

the delivery of the request to the service; in the second, the transition of the service between availability

states. In both cases, the concern arose because another event that they could observe, the delivery of the

response to the client, failed to occur when expected. Had the client complained about this latter event,

they would have had a stronger argument, because no party could convince them of a falsity concerning

the event in question.

If the client complained about the quality of the service in relation to the delivery of responses, to

whom should they complain? Without being able to monitor events within the network and service, it will

not be apparent to the client which party, the ISP or service provider, is responsible for poor performance.

Neither ISP nor service provider may wish to take responsibility for the overall QoS delivered to the

client when the actions of the other could cause any constraints on the QoS to be violated. On the other

hand, it may be possible for one of the service providers to mitigate this risk by obtaining an SLA from

the other. In this case the monitorability of the second SLA must also be considered.

Considerations of this kind for a particular scenario beg the question: is any system of SLAs pos-

sible to guarantee a particular requirement in which all SLAs are monitorable, and represent acceptable

risks to the providers? In the next sections I present an abstract mathematical model of such scenarios

and describe how it may be refined and permuted to answer this question, and provide other insights,

for a particular scenario. An analysis of the monitorability of systems of SLAs containing timeliness

constraints over electronic services is used both to gain insights into the requirements for languages

expressing such SLAs, and demonstrate the use of the monitorability model.

5.1.1 Modelling systems of SLAs

I assume that two or more parties participate in some form of interaction comprising a sequence of actions

each performed by one of the participants. Examples include electronic service provision, resource

provisioning in virtual organisations, etc. Particular parties may have certain expectations about the

execution of particular actions. For example, a party may specify a requirement that these actions are

executed within a certain amount of time, as in the case of service provisioning. Another participant may

agree to pay penalties to this first party if these requirements are not met.

Definition 1 An interaction between two or more entities belonging to a set of participants P is modelled

as a sequence of actions, A. Each action a is associated with an actor α(a) ∈ P , the party that may

perform the action.

5.1. Monitorability 120

Figure 5.1 depicts the interaction model for the electronic service scenario. Interactions with the

real world and any database have been elided, and a simple synchronous model of communications has

been assumed. Formally, the model is expressed as follows:

• in the three party scenario: C is the client, I the ISP and S the service provider; P = {C, I, S};

• the client occasionally takes action to invoke the service by dispatching requests into the network;

• the ISP conveys requests through the network, eventually delivering them to the server (operated

by the service provider);

• having received a request, the server performs some service and injects the result back into the

network;

• the ISP is then responsible for the delivery of the result to the client.

• the actions are A = {dispatch, send, process, respond}, and responsibility is allocated as

follows: α(dispatch) = C, α(send) = I , α(process) = S, and α(respond) = I .

x

C
I

S

y

zw

Figure 5.1: An interaction model for application service provision showing actions and their associated
events

Definition 2 An action a may give rise to any number of events ε(a) ⊆ E, where for all pairs of actions

a and a′, ε(a) ∩ ε(a′) = ∅ if a 6= a′.

The events modelled for a given scenario depend on the requirements of interest to the parties. I

now restrict my analysis of application service provision to systems of SLAs governing the timeliness

of service provision. I therefore define events corresponding to the completion of each of the events in

the scenario E = {x, y, z, w} in relation to our actions such that ε(dispatch) = {x}, ε(send) = {y},

ε(process) = {z}, and ε(respond) = {w}. These events are chosen because service provision should

be deemed to begin when a request has been fully submitted, and end when a response has been fully

received. It is easy to see that this simple model meets the requirement that no event is the result of more

than one action.

Monitorability analysis using the model will be supported by the notion that particular events are

only visible to a subset of the parties in the interaction:

Definition 3 Each event e ∈ E has a set of observers ρ(e) ⊆ P , the parties that may observe the event.

It is assumed that for all e ∈ ε(a), α(a) ∈ ρ(e).

5.1. Monitorability 121

The events in our model occur at network interfaces, so I define the observers for each event as

follows: ρ(x) = ρ(w) = {C, I}, and ρ(y) = ρ(z) = {I, S}. Naturally, each event is visible to the actor

responsible for that action that causes it.

I now describe a model for requirements over events:

Definition 4 Events may have attributes. A set of observations, O, may be defined over these attributes,

with each proposition o ∈ O pertaining to a subset of events π(o) ⊆ E. These observations can be

considered to be logical predicates concerning the values of attributes of observed events.

Latency constraints in SLAs will potentially place restrictions over the timing of the events x, y, z

and w. I now state that occurrence time is an attribute of the events, and define observations that capture

the requirements of the parties and the constraints that we may wish to include in SLAs.

Specifically, I wish to express the client’s requirement that w occurs within some interval following

x. I denote the observation that this occurs in abstract as w − x < t, where t may take any positive,

non-zero value.

This constraint can potentially be achieved by constraining the relative times of events occurring

between w and x, the intuition being that the overall time taken to complete a request is acceptable if

the times taken to complete each action required to service the request are also acceptable. For example,

w − x < t will hold if y − x < t1, z − y < t2 and w − z < t3, in all cases where t1 + t2 + t3 < t.

Even supposing that the delay between events x and y exceeds the arbitrary bound t1, this does not

imply that the client’s overall requirement will be violated. w − x < t will be met if z − x < t1 + t2

and w − z < t3, and other combinations of constraints are also possible. The total set of observations

with which we will be concerned is hence O = {y − x < t1, z − y < t2, w − z < t3, z − x < t1 + t2,

w − y < t2 + t3, w − x < t}, where t1 + t2 + t3 < t and t, t1, t2, and t3 are all positive and non-zero.

The mapping π from observations to the events over the attributes of which the observations are

defined is obvious in this case from the naming of the observations, e.g. π(y − x < t1) = {y, x}.

Clearly, if observations are predicates over a scenario, then the truth values of observations are

potentially related. In the ASP case, we can state that w − x < t will always hold if y − x < t1,

z − y < t2 and w − z < t3 hold, amongst other relationships.

Definition 5 Observations are related by an entailment relation, |=⊆ 2O × O, where U |= o is inter-

preted as stating that o is always true when all observations in U are true.

To more conveniently describe relationships between observations, a minimal dependency mapping

D may be defined based on the entailment relationship. I say U ⊆ O entails observation o if U |= o and

I say U is minimal with respect to o if for all U ′ ⊂ U , U ′ 6|= o. Hence D(o) = {U ⊆ O − {o} : U |= o,

and U is minimal with respect to o}.

In our scenario, the dependency mapping may be enumerated as follows:

5.1. Monitorability 122

D(w − x < t) = {{y − x < t1, z − y < t2, w − z < t3} ,

{z − x < t1 + t2, w − z < t3} ,

{y − x < t1, w − y < t2 + t3}}

D(z − x < t1 + t2) = {{y − x < t1, z − y < t2}}

D(w − y < t2 + t3) = {{z − y < t2, w − z < t3}}

D(y − x < t1) = ∅

D(z − y < t2) = ∅

D(w − z < t3) = ∅

Definition 6 A party c ∈ P may impose certain requirements on the execution of a sequence of actions.

The pair (c, o) denotes a requirement by c that o should hold. I denote the set of requirements by

r ⊆ P ×O.

The client’s latency requirement is the fundamental requirement addressed in this analysis. Hence

(C,w − x < t) ∈ R.

Definition 7 A party p can provide an SLA to insure any requirement. The SLA states that the party

with the requirement will receive compensation from p if the requirement is not met. SLAs are modelled

as a pair (p, (c, o)) ∈ L where L is the set of SLAs in a particular scenario and (c, o) represents a

requirement.

For example, I could offer C an SLA matching C’s requirement: (I, (C,w − z < t3)). Any

combination of parties with requirements is possible, so for example, C might also offer S an SLA of

the form (C, (S,w − y < t2 + t3)).

Having now established definitions for SLAs and the observability of events in our model, I now

define the levels of monitorability possible in a given model.

Although parties may not be able to observe an event themselves, they may have the event reported

to them by a party that they trust. However, I suggest the conservative restriction that a party p should

not be trusted to report on an event if p has a financial interest in that event. A party has a financial

interest in an event if they provide or receive an SLA that insures an observation to which the event is

pertinent. The interest arises from the desire of the client to receive penalty payments, and the desire of

the provider to avoid paying such penalties.

Definition 8 A party p may reliably report on event e if there is no SLA (p, (c, o)) ∈ L or SLA

(c, (p, o)) ∈ L for any other party c such that e ∈ π(o). The set of parties in a given scenario that

may reliably report on an event e is denoted τ(e) ⊆ P .

Provided that a party may reliably report on an event, another party may choose to trust them:

5.1. Monitorability 123

Definition 9 A party q may choose to trust a party p to report on an event e, if p can reliably report on

e. For each party p and each event e, I define τ(p, e) ⊆ τ(e) to be the set of participants that p trusts to

report on the event e.

Definition 10 A party p may monitor an event e if p ∈ ρ(e) or there exists a party q ∈ τ(p, e) who can

monitor the event independently of p and who p trusts to monitor that event. For an arbitrary subset of

all parties M ⊆ P I recursively define a generic mapping from events to parties in M that can monitor

the events, µM (e) = {p | p ∈M ∧ (p ∈ ρ(e) ∨ ∃q.(q ∈ τ(p, e) ∧ q ∈ µM−{p}(e)))}. I therefore define

µ(e) = µP (e) as the set of all parties that can monitor an event e.

Note that the set of parties who may be trusted depends on the set of SLAs issued. Therefore, in

our scenario, C can only choose to trust I or S to report on events y and z (which C cannot monitor

directly) if I or S do not offer or receive any SLAs related to these events.

Definition 11 Given an SLA (p, (c, o)), a party q can monitor the SLA if it can monitor all events e ∈

π(o).

For example, to monitor an SLA related to the observation y − x < t1 a party must be able to

monitor both y and x, in order to determine the arrival and departure times of a request. If S issues

s1 = (S, (C, z−x < t1 + t2)) to C and I also offers s2 = (I, (C,w−z < t3)) to C, and no other SLAs

are made, then s1 will possible be monitorable to S, because S can directly observe z and might choose

to trust I to report on x, because I offers no SLAs pertinent to x. C on the other hand cannot monitor s1

because it cannot trust either S or I to report on z. Similarly s2 is directly monitorable by I but cannot

be monitored by C for the same reason as s1.

Monitorability of an SLA is particularly desirable for a party that is the client or the provider of the

SLA, as that party can know what penalties should be paid. In a fair scenario it would be desirable for

both parties to be able to monitor the SLA, since then neither party could cheat the other without the

other party being aware of it.

Definition 12 An SLA, (p, (c, o)), is mutually monitorable if p and c can monitor the SLA.

Supposing that S offered C, s = (S, (C, z − y < t2)) and I and C offered nothing. s would be

mutually monitorable if C trusted I to report on z and y.

Ideally an SLA would be monitorable by a third party, trusted by both client and provider to report

honestly. Since the third party was trusted, it could be relied upon to arbitrate disputes between the client

and provider.

Definition 13 Given an SLA (p, (c, o)), if there exists a third party t such that for all e ∈ π(o), t ∈ τ(c, e)

and t ∈ τ(p, e) then I say the SLA is arbitratable by t, since both parties trust t to monitor the SLA.

Supposing that S offered C, s = (S, (C, y − x < t1)) and I and C offered nothing. s would be

arbitratable by I providing that I was trusted by both C and S.

In the preceding example, and others above, there seems to be something intuitively wrong with

the SLAs offered, in that parties attempt to insure the behaviour of actions that they do not themselves

5.1. Monitorability 124

perform. To avoid this I introduce a notion of guarantees, and subsequently characterise safe SLAs as

being those that rely either on guarantees of which the provider is capable, or subordinate guarantees

acquired from elsewhere.

Definition 14 A party g ∈ P may, by their actions, be able to guarantee that an observation holds.

Guarantees are modelled like requirements as a pair (g, o) ∈ G. The guarantor must be able to monitor

all events pertinent to the observation. The guarantor must also perform actions that cause a subset of

the events pertinent to the observation, i.e. there must exist e ∈ π(o) and a ∈ A such that g = α(a)∧e ∈

ε(a).

Recalling that observations are predicates over the attributes of events, it is clear that to guarantee

that an observation holds a guarantor must meet the two conditions defined in the observation. By

causing some pertinent events, the guarantor can vary the values of the attributes of these events, thereby

causing the observation to hold. However, to determine how this should be done, the party must also be

able to determine the values of the attributes of the other pertinent events. In general, a party’s capacity

to guarantee observations may therefore depend on what events are monitorable to that party, and hence

on the SLAs that are offered in a scenario.

In our example, the ISP and the service provider can guarantee several observations regardless

of what SLAs are offered. The ISP can control the time taken to deliver the request to the server,

once it has been received by the network. Note that the ISP performs the action that causes y and can

always monitor x directly. The service provider controls the time taken to perform processing once the

server has received the response. The ISP again controls the time taken to deliver the response once

it has been received by the network. The following guarantees are therefore included in the model:

G = {(I, y − x < t1), (S, z − y < t2), (I, w − z < t3)}.

Definition 15 An SLA (p, (c, o)) is safe to issue if p can guarantee o, i.e. if (p, o) ∈ G, or p can obtain

an SLA (q, (p, o)) from a second party q, or if these conditions can be satisfied for all observations in any

set of observations upon which o depends. I.e. for all o′ ∈ U where U ∈ D(o), p can either guarantee

o′ or obtain an SLA for o′ from a second party.

If an SLA is safe to issue, the provider p may be liable to pay penalties when requirements are not

met due to the actions of other parties, but will also receive penalties, which, appropriately negotiated,

will obviate their risk. In the case of an SLA that is unsafe to issue, the provider may have to pay

penalties due to the actions of other parties without receiving compensation themselves.

Having defined and motivated a set of characteristics for individual SLAs, I also describe systems

of SLAs as follows:

Definition 16 Let Gp = {o | (p, o) ∈ G}, Sp = {o | (q, (p, o)) ∈ S} and Rp = {o | (p, r) ∈ R}, then

the system is satisfactory to p iff Gp ∪ Sp |= Rp. A system is satisfactory overall if it is satisfactory for

all parties that it contains.

In other words, a system of SLAs may be characterised from the point of view of a party contained

in it as satisfactory if all requirements of the party are insured by a combination of SLAs offered to the

5.1. Monitorability 125

party and guarantees that the party provides themselves.

Definition 17 A system of SLAs is safe from the point of view of a party if all SLAs that the party issues

are safe to issue. A system of SLAs is safe overall if it is safe for all parties.

Definition 18 A system of SLAs is monitorable from the point of view of a party if all SLAs issued or

received by the party are monitorable by the party. A system of SLAs is monitorable overall if it is

monitorable by all parties.

Definition 19 A system of SLAs is arbitratable if all the SLAs it contains are arbitratable.

Finally it may be desirable in an analysis to rule out the following types of system of SLAs:

Definition 20 A system of SLAs S may also be characterised as redundant if there exists S′ ⊂ S and S′

is both satisfactory and safe.

Definition 21 A system of SLAs may be characterised as reciprocal if it contains two SLAs s1 =

(p, (c, o)) and s2 = (c, (p, o)). In other words, two parties exchange SLAs with respect to an obser-

vation.

5.1.2 Monitorability analysis

A particular system of SLAs may be characterised as described in the previous section, depending on

the degree of satisfaction, safety and monitorability afforded to its parties, and the possible redundancy

or reciprocity of its SLAs.

Searches for systems of SLAs with particular characteristics are possible by keeping most of the

model constant, then varying the set of SLAs used. For example, we might ask for a given scenario:

what sets of SLAs are safe, satisfactory and monitorable?

To identify sets of SLAs possessing a specific set of the characteristics defined in the previous

section, one could in principle generate all combinations of SLAs, classify each, and then accept or

reject systems of SLAs according to their classification.

The maximum number of possible SLAs in a given scenario is |O| × |P | × (|P | − 1).

The number of combinations of SLAs is therefore 2|O|×|P |×(|P |−1). This is potentially a very

large number, suggesting that a more intelligent strategy for identifying useful combinations of SLAs is

needed.

Depth-first search is an appropriate technique for finding sets of SLAs. I propose the following

algorithm for generating and testing sets of SLAs, presented in pseudo-code:

procedure DEPTH_FIRST()
begin

return DEPTH_FIRST({}, {})
end

procedure DEPTH_FIRST(tentative, tried)
begin

result := {}
next := FILTER(tentative,

GENERATE(tentative, tried))

5.1. Monitorability 126

for each n in next
result := result union

DEPTH_FIRST({ n } union tentative, tried)
tried := tried union { n }

if ACCEPT(tentative) then
result := result union { tentative }

tried = tried minus next
return result

end

procedure GENERATE(tentative, tried)
begin

result := {}
for each c in P

for each p in P
for each o in O

if not c = p then
s := (c, (p, o))
if not s in tentative and

not s in tried then
result := result union { s }

end

procedure ACCEPT(tentative)
begin

return true
end

procedure FILTER(tentative, next)
begin

return next
end

The algorithm as presented will generate all possible combinations of SLAs. Potential efficiency

benefits of the approach rely on redefining the heuristic operation FILTER to focus the search of the

algorithm. ACCEPT may also be redefined to narrow the selection criteria for sets of SLAs, for example

to accept only sets of SLAs with a minimum level of monitorability.

Note that the algorithm maintains a tentative set of SLAs that may be added to the result if they pass

a test defined by ACCEPT. However, GENERATE first attempts to generate candidate SLAs to add to this

set, these are filtered by FILTER, and then DEPTH FIRST is recursively called to investigate each

resulting tentative set. A set of SLAs that have already been tried is also maintained to avoid repeatedly

trying to add the same SLAs in a different order.

A possible rewrite for FILTER uses the tentative set to identify requirements that are not yet sat-

isfied if the SLA is to be safe and satisfactory, and eliminates or defers the consideration of SLAs that

do not have the potential to contribute to the requirements. The dependency relationship can guide this.

FILTER may also remove all SLAs from the extension set if ACCEPT will reject the tentative set and

all supersets, as will be the case if ACCEPT rejects redundant or reciprocal sets.

Note that without any modification to FILTER the algorithm as presented is no more efficient than

any other method for generating and testing all possible combinations of SLAs. In the worst case for a

particular scenario and set of criteria, all systems of SLAs will meet the criteria. In general therefore no

algorithm for this purpose can have complexity less than O(2|O|×|P |
2
).

5.1. Monitorability 127

Sat Safe Non-red Non-rec Non-client Mon Arb Systems considered Solutions
– – – – – – – – ∼ 6.9× 1010

X – – – – – – – ∼ 6.6× 1010

– – – X – – – – ∼ 3.9× 108

– – – – X – – – ∼ 1.7× 107

X X X – – – – 16001 281
X X X X – – – 7696 122
X X X X – X – 7696 1
X X X X X – – 3571 34
X X X X X X – 3571 1
X X X X X X X 3571 0

Table 5.1: Results of a monitorability analysis for the ASP scenario, with performance of depth-first
search algorithm

5.1.3 SLAs for the ASP scenario

The example scenario includes three parties and six observations. 23×2×6 = 236 ∼ 6.9 × 1010 distinct

sets of SLAs are hence possible.

We are interested in the sets with the following properties: safety, satisfaction, non-redundancy,

non-reciprocity, sets in which the client issues no SLAs (non-client), monitorability and arbitratability.

We will also be interested in sets with combinations of these properties.

Some of these sets can be discovered with the depth-first search algorithm described in the previous

sections. Others do not permit sufficient narrowing of the search space to render this approach feasible,

but the number of these sets can be determined analytically.

I present here analytical solutions for the total number of satisfactory sets, the total number of

non-reciprocal sets, and the total number of non-client sets.

The number of satisfactory sets can be determined by considering the SLAs that must be offered

to the client to satisfy its requirement w − x. These must insure at minimum w − x or any dependency

set for w − x, which in this case may include any other observation. A total of 36 possible SLAs may

be offered in this scenario. However, we are only interested in those that offer guarantees to the client,

of which there are 12 (either I or S may offer an SLA for any observation to C). We can therefore

determine the total number of satisfactory sets of SLAs by determining how many combinations of these

12 SLAs result in the satisfaction of the client’s requirement, then multiplying this number by the number

of combinations of the SLAs with which we are not concerned.

There are 212 = 4096 combinations of SLAs that may be offered to the client. A truth-table

inspection of these combinations reveals 3927 to be satisfactory. The total number of satisfactory SLAs

is equal to 224 ∗ 3927 ≈ 6.6× 1010.

A Java implementation of the truth-table analysis for satisfaction is available online [114].

The number of non-reciprocal SLAs can be determined straightforwardly. Each possible SLA has

a reciprocal SLA with which it should not appear, making independent 18 pairs, any one of which

should not appear. For each pair, in any given system, neither SLAs may appear, either may, or both

may, making a total of four possibilities, one of which is unacceptable. The outcomes for each pair are

independent in a given system, hence there are 236 ∗ (3/4)18 = 318 ∼ 3.9 × 108 non-reciprocal sets of

5.1. Monitorability 128

SLAs.

One may wish to make the restriction that the client does not offer any SLA. This will reduce the

space of the search to 224 ∼ 1.7× 107

To obtain further results I employed a Java implementation of the depth first search algorithm to

discover non-redundant sets of SLAs, and those with minimal levels of monitorability. Note that non-

redundant sets of SLAs are by definition both safe and satisfactory.

The non-redundancy, non-reciprocity and non-client constraints all have the effect of considerably

limiting the size of the search space when employing depth first search. This is because a redundant or

reciprocal set, or a set containing a client SLA cannot be improved by the addition of SLAs.

A summary of the analytical results and the results of the search algorithm is shown in Table 5.1.3.

The Java implementation is available under an open-source licence for inspection and modification [114].

The most significant result of this analysis is that in exactly one of these arrangements can all sets

of SLAs be monitored by the parties to them. This is true whether or not we permit the client to offer

SLAs.

In this scenario, for a system of SLAs to be safe and satisfactory both S and I must issue SLAs

supported by guarantees contributing to C’s requirements. Hence all parties will be financially involved

in every contractual situation, and no party can be trusted to report any events that occur remote from

another party. Therefore monitoring is only possible directly, and hence only SLAs between adjacent

parties can be mutually monitored, namely, contracts between C and I , and I and S. Only one scenario

meets this requirement. It consists of the contracts (I, (C,w − x < t)) and (S, (I, z − y < t2)). The

ISP guarantees that the service will perform correctly across its interface with the client. It is capable of

guaranteeing that the request reaches the server in a timely fashion, and that any response makes it back

in time. To fully guarantee the round-trip time of the service the ISP must only obtain a guarantee from

the service provider that the service will complete in good time.

That no arrangement can be arbitrated is obvious without applying the search algorithm. Because

all parties in the scenario must be involved in contracts to satisfy C’s requirement, no financially inde-

pendent third party can be present to observe any interaction.

That the scenario is only monitorable in one system of SLAs is a highly significant result. This

system of contracts requires the ISP to offer guarantees on the received quality of an electronic service

at the interface to the client, effectively forcing the ISP to act as a re-seller of application services, a

business model not adhered to in practice today. Service constraints will be required at both the interface

to the client and the interface to the service. The guarantees required in both places will be of the same

form, although the constraints at the service interface will need to be tighter to accommodate any delay

in the network whilst guaranteeing requirements at the client interface. Therefore to achieve monitorable

end-to-end QoS guarantees for ASP, only one type of SLA language need be used. There is no need for

a separate language to describe network QoS, for example. However, ISPs will have to offer ASP SLAs.

The ‘systems considered’ column in Table 5.1.3 demonstrates of the efficiency of the depth-first

search algorithm configured with the indicated heuristics. Directing search towards safe, satisfactory

5.1. Monitorability 129

and non-redundant sets, and pruning sets that fail to meet these requirements reduces the search space

from ∼ 6.9 × 1010 combinations to 16001 combinations. Non-reciprocal and non-client constraints

further reduce the search space.

5.1.4 Multiple ISPs

C

I
S1

S

I2...InC

1

n 0

1

S
2

S
n

Figure 5.2: Monitorability is possible for ASP SLAs across chains of ISPs by regarding ISPs encap-
sulating the service as service providers, hence Ii = Si for i > 0. Clients may be embedded in any
network

The results of the previous section may be generalised to scenarios including multiple ISPs and

clients distributed in the network. Clearly a sequence of SLAs can be established between each client

and the service, such that each SLA is made between two adjacent parties, one serving as the client and

the other as the service provider. This situation is shown in Figure 5.2. In the figure the original service

S0 is embedded in a network I1. I1 can hence provide the service to C1. It can also exchange requests

and responses with the linked network I2. Multiple networks are linked to provide a path to client Cn.

Clearly a system of SLAs that is monitorable can be provided for C1, as this is the same situation as

analysed in the previous section. That a system can also be provided for clients embedded in any network

Ii, where i = 2 . . . n can be seen by considering the fact that in exchanging requests and responses with

I2, I1 is behaving exactly like a service embedded in network I2. This is indicated using the dashed box

which re-identifies I1 and S0 as S1. Therefore provided I1 and I2 make an SLA insuring the timeliness

of responses at their mutual interface, then it will also be possible for I2 to offer such an SLA to any client

embedded in their network. Clearly the SLA between I1 and I2 will be mutually monitorable, since it

need only concern events occurring at the parties’ mutual interface. This argument applies inductively

for any number of network links, so it will be possible to provide a chain of monitorable SLAs to insure

the timeliness requirements of client Cn. In general, clients may be embedded in any network provided

a path to the original service exists, and SLAs are can be made at each network boundary.

This analysis establishes that when multiple ISPs are involved in delivering the service, then systems

of SLAs exist that are at least mutually monitorable. What has not yet been established is whether in this

scenario arbitratability can be achieved for some or all parties.

This discussion also reveals that mutually-monitorable systems of SLAs for ASP may need to con-

sist of large numbers of individual SLAs, specific to a given client/server relationship, and that network-

service providers will need to be involved in the negotiation of all of these. Given that network-service

providers do not currently engage in this kind of business, this result surely has one of the following

implications: the need for monitorability of SLAs may (continue to) be ignored, which would be un-

fortunate given the importance of monitorability when producing protectable SLAs; ISPs may consider

5.2. Approximate monitorability 130

engaging in this kind of business in the future, implying the need for research into reducing the costs

implied by doing so; or a technological solutions may need to be sought to allow parties to obtain reli-

able measurements from locations in networks that they normally could not directly observe. This final

approach, which may be called the design of trusted-monitoring platforms, might permit the measure-

ment of end-to-end properties, allowing SLAs with network providers to be made at the network-level

of abstraction. However, whether such monitoring is possible in practice remains the subject of future

investigation.

5.2 Approximate monitorability
Fair administration of SLAs requires accurate data concerning the behaviour of services. In at least

one important case this data must be provided by a party that is not inherently trustworthy, but whose

reporting can be monitored. This has the potential to occur whenever an SLA is mutually-monitorable

but not arbitratable, in which case either the client or the provider of the service has the potential to

gather a log of service behaviour, but (by the assumption of my monitorability model) neither party can

be trusted by the other.

The calculation of violations of an SLA must always be made in relation to some account of service

behaviour. Depending on their agreement, the client or the provider in a mutually-monitorable relation-

ship may be satisfied with their peer calculating the penalties required based on their own records of

service behaviour, and paying or demanding payment of penalties as appropriate. However, even if a

party is prepared to allow their peer this responsibility under normal circumstances, they would be fool-

ish if they did not also monitor the service themselves to some degree, in order to check the honesty of

their peer. This raises the possibility that the peer may be found to be cheating, or calculating penalties

based on faulty monitoring data.

Under these circumstances, one of two things can happen. The injured party can either break-off

the agreement, or the parties can come together to agree a reconciled account of service behaviour from

which to calculate revised penalties.

If the injured party chooses to break off the agreement, they will need to have a basis for asserting

that the other party has violated the agreement, or risk being penalised themselves for breaking a contract

with value to their peer. They could simply claim that the other party had calculated penalties incorrectly,

either maliciously or due to incorrect monitoring. To do so, the SLA would need to include some

constraint that the penalties calculated should be somehow related to the true behaviour of the service.

However, the calculating party must always first measure the behaviour of the service, and measurements

of any physical quantity always contain a component of error. Therefore, if penalties were naı̈vely

defined in terms of the true behaviour of a service, this would potentially provide opportunities for a

party to spuriously contest penalties on the basis of small amounts of error in the measurements on

which it was calculated. This would reduce the usefulness of the SLA in mitigating risks for both

parties. Therefore, an SLA that is both fair and useful should include a constraint on the measurements

from which penalties are calculated which limits inaccuracies without excluding them altogether.

Similarly, an accuracy constraint is needed on the presented logs in the case where the client and

5.2. Approximate monitorability 131

provider of the service must agree a reconciled account of service performance. This is because the

parties have no third-party upon whom to rely, and neither party can fully establish the validity of their

own account of the service performance by technical means alone. In principle, the agreed account need

bear no resemblance to the real behaviour of the service, providing the parties agree. However, in the

event of a disagreement between the parties, honest parties who are concerned with the real behaviour

of the system will wish to be able to argue that their counterpart has neglected their responsibilities. It is

therefore necessary to include in such SLAs an obligation that parties report the behaviour of the service

accurately.

The inevitable presence of error in any measurement of a physical system raises two problems in

the face of these requirements for accuracy constraints. First, how can such an obligation be formulated

to permit a tolerable degree of error in reporting, at the same time penalising higher levels of error, whilst

respecting the right of the client to vary their utilisation of the service, and both parties to conceal details

of their monitoring solutions. Second, how can conformance to such a constraint be checked, given that

the true performance of the system cannot be determined with total certainty.

In the following sections I formulate such a constraint and explain how a statistical hypothesis test

can be used to tell with some degree of confidence whether the constraint has been violated. Since

complete confidence in this result is not possible, we introduce the term ‘approximately monitorable’ to

refer to this type of constraint.

While describing the constraint I also give advice as to how parameter values may be chosen so that

the parties may be confident that they can meet their obligations, assuming that they understand the error

characteristics of their monitoring process.

The constraint chosen requires the parties to provide minimal information concerning the error

characteristics, and by implication the implementation of their monitoring solutions. I also investigate the

degree of fraud that is possible assuming that a party has perfect knowledge of their error characteristics,

but need not reveal this information.

5.2.1 Accuracy constraint

The constraint that I have chosen is designed to detect when a set of reported measurements is statistically

unlikely to be an accurate account of true behaviour. Violation of the constraint would enable the injured

party to seek redress for misreporting of service behaviour by the other party.

A log consists of a sequence of measurements Xi of event values µi where i = 1, . . . , n. Our

constraint therefore requires of the log that:

pr(|Xi − µi| > e) ≤ 1− c (5.1)

Where e is the specified error margin, and c a specified confidence in the measurement. µi, the true

value of an event attribute, is always unknown.

Since a party is only required to comply with the accuracy constraint, I assume the probability p of

a measurement in a given log being accurate is:

5.2. Approximate monitorability 132

p = pr(|Xi − µi| > e) = 1− c (5.2)

A measurement is erroneous if it falls outside of the error interval centred on the true value. I wish

to limit the number of erroneous values in any given log. Although the true value µi of a measurement

can never be known, it can and must be referred to in our accuracy constraint as the basis for defining

accuracy.

Let d denote the number of erroneous measurements in a particular log. I wish to prohibit the

reporting of logs containing improbably large numbers of erroneous values.

Assuming that a party reports honestly, using a monitoring system with the above error character-

istics, the probability of a log of size n containing d erroneous measurements is given by the binomial

distribution:

pr(d) =
(
n

d

)
pd(1− p)n−d (5.3)

We wish to bound the likelihood that the log contains more than a certain proportion of erroneous

values. An additional parameter, α, is therefore specified in the SLA. For a particular size of log, n, and

choice of SLA parameters e and c, we can therefore determine an upper bound on d, d0, which is the

greatest integer such that:

n∑
d=d0+1

(
n

d

)
pd(1− p)n−d < α (5.4)

In other words, provided the measuring party is respecting the constraint, the likelihood that the log

contains more than d0 errors is less than α.

The formulation of the constraint is analogous to a statistical hypothesis test, in which d is the test

statistic, and the null hypothesis is that the log is honest. α is equivalent to the type I error rate for the

test – the probability that an honest log is rejected as dishonest by the constraint.

5.2.2 Approximate monitorability of the accuracy constraint

It is not possible to determine with certainty that a party has conformed to the constraint described in the

previous section, because determining the number of erroneous values d requires the true values of the

events µi to be known, and they cannot be known with certainty.

However, if a contract is monitorable then all parties to the contract will be able to obtain trusted

measurements of all events pertinent to the contract. Hence, for a party p, it will be possible to approx-

imately monitor the conformance of an untrusted party, q to the accuracy constraint by comparing the

untrusted log produced by q, measurements Xi, with a trusted log, measurements Yi, produced by p

(possibly with the help of third parties trusted by p). I assume that the logs are that same size and that

events in the two logs can be correlated. This assumption is likely to be valid in a mutually-monitorable

situation.

The approximate monitoring of the accuracy constraint is achieved via a statistical hypothesis test.

The null hypothesis is that the untrusted party has produced an honest log. The alternative hypothesis is

that untrusted party is cheating, or otherwise failed to conform to the accuracy constraint.

5.2. Approximate monitorability 133

H0: Contractor is honest

H1: Contractor is unable or unwilling to conform to the accuracy constraint.

We wish to detect erroneous values. It is not possible to compare Xi to µi, but we can compare it to

Yi. Yi is trusted, and we assume that some characteristics of its error distribution are well understood. For

now suppose that the trusted log is at least as accurate as required by the accuracy constraint. Therefore,

if the absolute difference between the two logs is greater than 2e then the probability that Xi lies further

than e from the true value µi is related to the confidence we have that Yi lies within the error interval

of the true value, which in the worst case will be given by c. Note that if Yi is within e of the true

value, and Xi is greater than 2e of Yi then Xi cannot also be within e of the true value. I shall therefore

provisionally adopt d′, the number of cases where |Xi − Yi| > 2e, as the test statistic for our hypothesis

test.

Large values of d′ will favour H1. Similar to the formulation of the constraint, it is therefore a

matter of comparing this statistic to a threshold value d′0 such that:

pr(d′ > d′0 | H0 true) = α (5.5)

In order to determine d′0 we need the sampling distribution for d′ when H0 is true. This is again

given by the binomial distribution:

Let:

p′ = pr(|Xi − Yi| > 2e | H0 true) (5.6)

The sampling distribution of d′ is hence:

pr(d′) =
(
n

d′

)
p′

d′

(1− p′)n−d′
(5.7)

The problem, therefore, is to find an expression for p′ in terms of e and c. This could be determined

exactly if the error distribution for each party were known, but in practice we can only assume (under

the null hypothesis) that the distributions of the parties conform to the parameters given in the accuracy

constraints. The best that is therefore possible is an upper bound for p′.

The Chebychev inequality [139] states that given any random variable X where E(X) = µ and

V ar(X) = σ2 then:

pr(|X − µ| > kσ) ≤ 1
k2

(5.8)

Therefore, under the null hypothesis:

pr(|Xi − µi| > kσ) ≤ 1
k2

(5.9)

The untrusted party has agreed that the error in their log will obey the rule

pr(|Xi − µi| > e) ≤ 1− c (5.10)

5.2. Approximate monitorability 134

Because we can assume under the null hypothesis that the untrusted party is honest, but no better,

to obtain our upper bound for p′, we must assume:

pr(|Xi − µi| > e) = 1− c (5.11)

Equating the parameters of the constraint with those of the Chebychev inequality, we obtain:

kσ = e (5.12)

And:

1− c =
1
k2

(5.13)

Resulting in the following worst-case relationship between the standard deviation of the error dis-

tributions and the parameters of the constraint:

σ = e
√

1− c (5.14)

Or:

e =
σ√

1− c
(5.15)

Now consider Xi − Yi. I make the following assumptions:

1. E(Xi − µi) = E(Yi − µi) = 0

2. The variance of the trusted log, σ2
Y is known.

The first assumption, that the measurements are unbiased, is reasonable, because any systematic

bias on the part of either party will easily be detected when the two logs are compared, and can either be

easily rectified or will swiftly result in a breakdown of relations between the two parties. Occasionally

both parties may suffer from similar biases, which may hence be overlooked. This will not be prob-

lematic from the point of view of obtaining an agreement between the parties, and may be rectified if

detected later.

The second assumption reflects the fact that the trusted log has been obtained via a measurement

process the error characteristics of which are known to some degree. I have already assumed that the

measurement process gives results conforming to the accuracy constraint on the untrusted log. Therefore

if nothing else is known I may assume σ2
Y = σ.

Since in the worst case according to the null hypothesis the variance of the untrusted log is σ then

the variance of Xi − Yi will be:

V ar(Xi − Yi) = σ2 + σ2
Y (5.16)

By introducing a constant r such that:

5.2. Approximate monitorability 135

σ2 + σ2
Y = rσ2 (5.17)

I state my assumptions in the form:

E(Xi − Yi) = 0, V ar(Xi − Yi) = rσ2 (5.18)

Therefore, by Chebychev again

pr(|Xi − Yi| > k
√
rσ) =

1
k2

(5.19)

The original relationship still holds:

p′ = pr(|Xi − Yi| > 2e) = pr

(
|Xi − Yi| > 2

(
σ√

1− c

))
(5.20)

Equating the parameters, and cancelling the σ terms:

k
√
r =

2√
1− c

(5.21)

k =
2

√
r
√

1− c
=

2√
r − rc

(5.22)

And:

p′ = pr(|Xi − Yi| > 2e) =
1
k2

=
1(
2√

r−rc

)2 =
r − rc

4
(5.23)

d′0 can hence be determined for given values of n and c by substituting p′ = r−rc
4 into the binomial

distribution.

This is adequate to demonstrate that the accuracy constraint as specified in Section 5.2.1 is approx-

imately monitorable. A further generalisation of the hypothesis test can be obtained by observing that

interval by which measurements in X and Y must differ to contribute a fault to d′ simply introduces an

arbitrary constant into the above expression for p′. I originally assumed the interval to be 2e. If I instead

assume it to be te where t is some constant, then the expression for p′ becomes:

p′ = pr(|Xi − Yi| > te) =
1
k2

=
1(
t√

r−rc

)2 =
r − rc
t2

(5.24)

Of course d′ must be recalculated based on the value of t chosen. If we choose a difference of 1,

and assume that the trusted log meets the accuracy constraint and no better, giving r = 1 then p′ is given

by:

p′ = 1− c (5.25)

Which is the same as the expression for p in the accuracy constraint. Therefore, comparing a

conforming log with an un-trusted log as if the conforming log represented the true behaviour of the

service produces false-positives at a rate acceptable to the constraint.

5.3. Related work 136

5.2.3 Choosing parameter values

Assuming that a party only knows the standard deviation of their error process, and wishes to guarantee

that they measure honestly, the agreed value of e will be related to the agreed value of c by:

e =
σ√

1− c
(5.26)

Hence if a confidence of c = 0.99 is required then a value for e of 10σ is required. This is highly

conservative.

If a party understands more details of their error distribution they may be able to accept a tighter

bound on e.

A party may negotiate values of e and c such that the true probability pT of an erroneous value is

less than the Chebychev bound. In this case the party will be able to insert purposeful erroneous values

in proportion p − pT to the total size of the log n. Note that the client, through its ability to issue or

withhold service requests controls the size of the log.

Given the choice of SLA parameters, this behaviour is impossible to prevent. However, negotiating

tighter bounds for e and cwill reduce the degree of cheating possible regardless of the true distribution of

error in the measurement process of either party. The accuracy of measurement guaranteed may therefore

be regarded as a discriminating point in a competitive market of services governed by SLAs.

For example, for a measurement confidence c = 0.95 and a type I error rate of α = 0.05, in a log

of size n = 1000 we would tolerate up to d′0 = 33 differences of greater than 2e between the party’s

log and another trusted log with unspecified distribution conforming to the accuracy constraint. If the

measurement regime of the untrusted party is in fact perfect with pr(|Xi − µi| > e) = 0, then the party

may be confident in introducing up to 33 purposeful errors into its log prior to reconciliation between

the parties.

5.3 Related work
As discussed in detail in Chapter 8 a number of current and prior efforts to design languages for ASP

SLAs or service offerings have been proposed, most notably WS-Agreement [100], WSLA [34] and

WSOL [132]. To the best of my knowledge, no previous language explicitly addresses the need for

monitorability, or provides any constraints on or discussion of measurement error either in the design

of the language or any of its related documentation. However, all of the languages cited here require or

permit extension to define metrics, so they have the potential to address these issues.

The management of error in performance measurement for analysis and benchmarking is an impor-

tant related topic which has been well covered by prior work [40].

Concepts related to monitorability have been touched upon by previous work in the area of policy

management. It is conventional in policy languages to define rights and obligations that may attach to

managers [122]. These rights and obligations are scoped according to management domains containing

policy objects, where a manager ‘sees’ one or more management domains. Assuming management

domains are correctly modelled, the monitorability of policy objects from the point of view of managers

who must execute policy may be ensured at parse time in languages such as Ponder [16].

5.4. Summary 137

The execution of an obligation policy is usually the responsibility of the manager to whom it applies.

It may be that the manager is not trusted so there is a requirement to check whether an obligation has

been fulfilled. [11] provides an algorithm for determining whether obligations conforming to a given

model have been fulfilled, but assumes that all relevant events are visible. [12] provides a logic whereby

accountable managers may prove that an obligation has been fulfilled with reference to a log of actions.

A notion of observability of actions is introduced to constrain the model. However, accountability relies

on a universally trusted logging system being available within the manager’s domain. It is not clear how

this could be implemented, or if it could be used to monitor negative obligations. To the best of our

knowledge, no work has yet been done on checking policies for monitorability under conservative trust

assumptions similar to those adopted in this paper.

A highly influential paper with apparent relation to our work on accuracy is Lamport’s clock syn-

chronisation paper [50]. The accuracy constraint discussed in the preceding sections does not require

parties to synchronise clocks in order to measure the timing of mutually observable events. Instead the

constraint requires a measurement to be accurate with respect to the true time, and the means by which

the parties should achieve this is not relevant.

Lamport described an algorithm with a bounded error for synchronising distributed clocks. This

may potentially be helpful in situations such as our example scenario where the parties to the SLA

are technically adjacent and so could share synchronisation information, and where the constraints are

primarily concerned with relative rather than absolute timings. Measuring the time of events with high

global accuracy is difficult, and may require specialist equipment, for example a GPS receiver, so a

synchronisation based approach may be preferable. However, it will be necessary to determine how

this interacts with trust assumptions I have made. For example, synchronisation protocols should not be

employed that allow one party to maliciously alter the clock of another with whom they have an SLA.

5.4 Summary
In this chapter I have presented three significant contributions to the theory underlying SLAs, originally

presented in [120]:

First, I presented and motivated a model and analysis technique for reasoning about the monitora-

bility of systems of SLAs.

Second, I instantiated that model to perform an analysis on the important example of client/server

computation taking place across a network owned by one or more third parties. In the case that the

network is owned by a single provider, and trusted monitoring is not provided using any technical so-

lution (such as tamper-proof monitors), I demonstrated for latency constraints that the highest level of

monitorability possible is for all SLAs to be mutually monitorable, and I have described the single con-

figuration in which this holds, namely that the ISP offers the client an SLA at the client’s interface to the

network, and the service provider offers an SLA to the ISP at the service provider’s interface to the net-

work. This is an extremely significant result as it implies that if the insurance of end-to-end QoS is to be

offered using legalistic SLAs in the Internet then a major change will be required to the business model

that ISPs currently operate. Alternatively, if this is not possible, it might suggest the criticality of future

5.4. Summary 138

research into embedding trusted monitoring solutions into network and service-provision infrastructure.

Finally, I considered support for SLAs that are mutually monitorable but no better. In this case,

parties must agree on the behaviour of a service prior to determining the penalties to be paid in relation

to a particular SLA. I observed that a naive constraint that the parties report service behaviour honestly

would be impractical due to the inevitable presence of error in any measurement, but that without such

a constraint an honest party would have no recourse should an agreement fail to be met. Allan Skene

and I therefore designed a reporting constraint that described a limit on the number of errors a log could

contain based on its size, the stated confidence the parties have in the measurements, and an agreed

type I error rate for the test. I showed that this constraint could be approximately monitored by using

a statistical hypothesis test to compare a log of measurements under test to a second log with known

error characteristics. Naturally, approximate monitorability fails to detect a degree of cheating, which I

quantified.

The material in this chapter provides a certain amount of theoretical machinery supporting the def-

inition of an abstract extensible DSL for ASP SLAs. I showed that in the common case that timeliness

constraints are desired by a client, and the scenario includes three parties, the client, the service provider,

and the network service provider, then mutual monitorability was the best that could be expected from

SLAs. However, this has the advantage that an SLA language need only describe the behaviour of elec-

tronic services and real-world behaviour, and not that of the network. Also, I presented an approximately

monitorable accuracy constraint appropriate to this situation. In the next chapter I describe the design of

a core SLA language capable of mitigating the risks in an ASP situation well. It achieves this by includ-

ing support for constraints that are mutually-monitorable, and by incorporating the accuracy constraint

described here in semantics for the calculation of violations and reconciliation procedures. Timeliness

constraints have been the focus for discussion in this chapter. In the next chapter I show how useful

throughput and reliability constraints can also be specified without compromising my key monitorability

result for ASP scenario, and discuss how monitorability should be considered when designing constraints

on real-world service behaviour.

139

Chapter 6

The SLAng language

In this chapter I describe the design of SLAng, an abstract, extensible domain-specific language for SLAs

for ASP. SLAng is defined using a language specification written in the EMOF/OCL input format of the

UCL MDA tools, consisting of a combination of EMOF structure, OCL constraints and natural language

commentary, following the method which I described in Chapters 3 and 4.

SLAng incorporates abstract syntactic structures and accompanying semantics supporting the defi-

nition of timeliness, reliability and throughput conditions related to the behaviour of electronic services.

Such conditions were identified in Chapter 2 as being required to allow the parties to mitigate fundamen-

tal risks inherent in the ASP provisioning scenario.

As described in Chapter 5, if we assume that the parties in a service-provisioning scenario will

prefer to enter into mutually-monitorable SLAs in a safe manner, it is sufficient to provide vocabulary

for these conditions as they apply at a single point in a network, rather than having to describe conditions

on end-to-end service behaviour. In the support it provides, SLAng adopts this assumption, although,

being an abstract language, does not preclude the addition of constraints of a different type in future

revisions or extensions.

Since SLAng provides support for conditions that are mutually-monitorable, it defines the calcula-

tion of violations of the conditions based on evidence that is gathered according to the approximately-

monitorable accuracy constraint described in Chapter 5, and also provides support for specifying when

these calculations should be made, and how reconciliation between the parties may be initiated if needed.

SLAng has been under development for several years. In this chapter I first provide a brief history

of the development of SLAng, in order to explain discrepancies between the description of SLAng given

here and descriptions of the language presented in previous work, and also to explain further the thought

process that led to the theoretical advances described in previous chapters.

Following that I describe the language in detail with reference to elements of the language speci-

fication. The language specification is written in a textual syntax, but in this section I use UML class

diagrams to describe the structure of the language, according to standard practice when presenting EMOF

models. An extended version of the language specification, supporting the definition of the SLAs elabo-

rated in the next chapter, constitutes Appendix E. This appendix was typeset automatically from the lan-

guage specification and extension elements using the LATEX version of the EMOFOCLDoc tool developed

as part of the UCL MDA tools. Example SLAs, presented in HUTN format, constitute Appendices C

6.1. The history of SLAng 140

and D.

6.1 The history of SLAng
SLAng was first described in [49], and was the product of research and development conducted primarily

by Domenico Davide Lamanna. The motivation behind this work came from the observation that no SLA

language has found broad adoption for use in the ASP domain, despite a variety of SLA languages having

been previously described, and despite the strong need to manage Quality-of-Service (QoS) requirements

in that domain.

The QoS delivered by an application service depends not only on its own implementation, but on

other application services to which it subcontracts part of its functionality, and upon the quality of infras-

tructure services such as Internet Service Provision (ISP) and component hosting. It was perceived that

although both general-purpose QoS description languages, and languages specific to relevant types of

services, such as web-services, had already been defined, no single language provided adequate support

for defining SLAs for the full range of services required to compose an application service. Also, that

more parties than merely the overall provider and ultimate client of an application-service were involved

in the ASP scenario. Infrastructure providing parties, such as ISPs and component hosting services may

also be involved, and existing languages seemed to have no mechanism to accommodate this.

The original scope of SLAng was hence based on a model of a traditional N -tiered application

service architecture, shown in Figure 6.1.

Comp.

WS

Appl.Application
tier

Middle
tier

ISP SSP

Cont.

Comp.

Infrastructure
tier

SSP ISP

Cont.

WS

Appl.

Figure 6.1: Service provision in three-tiered architectures

Architectural components are depicted as nodes in the model. These include client-facing applica-

tions, web-services, business logic components, containers providing runtime-support for these compo-

nents, underlying networks services, and back-end storage (usually in the form of databases).

Arcs represent service-provisioning, potentially governed by SLAs. SLAng originally provided

special syntax for each of the arcs in the model, defining QoS targets based on the type of service being

provided. In an attempt to discover commonality between these different types of SLAs, we informally

categorised them as horizontal, in which the client subcontracts part of its functionality to a service of

the same type, or vertical in which infrastructure is provided to a client, allowing them to deploy a higher

6.1. The history of SLAng 141

level service.

The horizontal SLAs are: Electronic-service – between web services, or component services (the

top two horizontal arcs in the figure), for the distribution of functionality; Container – between contain-

ers, for replication and load balancing; and Networking – between networks, for the sharing of network

traffic. The vertical SLAs are: Hosting – between components and containers; Persistence – between a

container and storage service provider; and Communication – between containers and Internet service

providers.

Note that this formulation contains some inconsistencies. Interaction between applications, which

are typically client programs, and the services underlying them is shown as a vertical, as the services

represent infrastructure upon which the application depend. However, the nature of these interactions is

identical to the horizontal electronic-service case. Also, in practice, application providers may need to

purchase network services, an interaction not shown in the diagram. Also, no consideration is given to

the real-world behaviour of application services.

The particular QoS targets (e.g. latency, reliability, throughput etc.) specified in each type of SLA

were chosen based on a review of SLAs used in industrial settings, and recommendations provided to us

by our industrial partner in the TAPAS project.

The first version of SLAng used an XML schema to define its syntax. Its semantics were described

using natural language in a specification document. Some syntax and definitions, such as the definition

of units, are reused in several SLA types.

The first version of the language was deemed unsatisfactory, and in retrospect this was because it

failed to meet several of the requirements set out in Section 2.8. The definition of the language was

highly imprecise and open to interpretation, which made it an unsound basis for specifying agreements.

Lamanna ceased development of the language following its first version, and I took over its development,

eventually leading to the development of the theoretical advances described in previous chapters of this

dissertation, and to the redevelopment of the SLAng language.

The first major change to the language was as a result of adopting the model-denotational approach

to its specification. The original ambition of the TAPAS project was that an SLA language be developed

with a semantics using a denotational mapping to a stochastic process algebra, such as PEPA [33] or

TIPP [32]. However, I objected to this, for the reasons discussed in Section 3.3.2. Consequently I

proposed and implemented a model-denotational semantic for the language as an alternative. This also

meant that the language was now defined using a meta-modelling formalism rather than an XML schema.

When specifying initial model-denotational semantics for the language, I confined my work to the

syntax provided for electronic services, as the constraints required were less complex and better under-

stood than those for hosting, network-service provision, or the other types of service that we anticipated

needing to support. This was the work presented in [119].

Subsequently I began to consider implementing support for services of different types. When con-

sidering constraints over network-service and hosting provisioning, I became concerned that however

precise an SLA was, it would be useless for a party if they could not tell if it were being respected. This

6.2. The SLAng language specification 142

is very much a risk for the client in hosting provision where the service provider controls most aspects

of the relationship, even to the extent of simulating the behaviour contributed by the client by executing

the hosted component. This concern eventually led to the monitorability analysis technique presented in

Chapter 5. I again applied this to the high-level example of electronic services first. In the absence of

trusted-monitoring solutions, and assuming that mutually-monitorable SLAs are desirable, the results of

my analysis indicate that there is no need to represent conditions relating to the behaviour of the network

alone, and trusted monitoring would also clearly be required to monitor hosting relationships. I therefore

focussed the design of SLAng on the specification of conditions related to electronic services.

The most recent modification to the approach taken with SLAng has been the decision to make the

language abstract and extensible. In my initial review of alternative languages for ASP SLAs, I observed

that many of the languages supported or required extension, often greatly at the expense of power and

adequacy. I initially believed this to be due to a failure of the authors to correctly understand the role

of SLAs in mitigating risks in the service-provisioning scenario, a judgement also supported by the

observation that few of the languages discuss penalties. I felt that this assumption, combined with the

assumption of a simple synchronous model of interactions between services, allowed the anticipation of

all of the types of constraints that would be needed for an electronic service SLA.

This turned out to be wrong. When I began to attempt to evaluate a version of my language specified

in this manner in real contexts, I repeatedly found situations in which my assumptions were violated. The

basic assumptions concerning risk were fine, and latency, reliability and throughput were the constraints

required for electronic services, but the services would be asynchronous, the parties would really care

most about the real-world behaviour of the service, a service-credit system would be desired instead of

escalating penalties, or the parameters of a latency constraint would need to vary depending on the state

of an external process. Constraints on asynchronous services could be dealt with by a one-time extension

of SLAng. However, extensions for other variations could not be said to capture anything particularly

profound about ASP SLAs in general, so only served to highlight the inadequacies of the core language.

Consequently, the problem was to find a way to balance the requirement for a powerful language with

the need to support general expressiveness, and the approach I chose is described in Chapter 3. I also

devised the metrics for power, adequacy and specificity described in Section 4.5 in order to assist in

assessing the degree to which this has been successfully achieved.

Defining the language as abstract and extensible also plausibly admits the possibility of defining

conditions related to real-world behaviour in SLAs (via extensions to the language specification). The

consequences of all of these developments are that SLAng is now an abstract, extensible language,

defined in EMOF, OCL, and English, with precise semantics, supporting the definition of mutually-

monitorable SLAs for ASP, in particular conditions related to electronic services. It also bears no signif-

icant resemblance to the initial version of the language published in [49].

6.2 The SLAng language specification
In this and subsequent sections I describe the most recent version of the SLAng language specification.

This specification is documented as part of the extended language specification in Appendix E. It is also

6.3. SLAs, parties and services 143

available under an open-source licence online [121].

Since SLAng follows a model-denotational approach the specification contains both syntactic ele-

ments and semantic elements. For ease of management, these are separated into parallel package hier-

archies called slang and services respectively. Within each hierarchy, elements that are generic,

and expected to be useful for defining any type of SLA are defined in the root. Elements specific to

a particular type of service are included in sub-packages. At present SLAng only provides support for

electronic-services, although this may change in the future. Figure 6.2 shows the package structure of

the specification. Packages are only used to manage the specification and improve its readability. They

have no effect on the meaning of the language.

package packagesData[]

services

es

slang

es

<<parent>> <<parent>>

Figure 6.2: The package structure of the SLAng language specification

In the following sections I present class diagrams illustrating the structure of the syntactic and

domain models making up the SLAng language specification. Both syntactic classes, which represent

parts of an SLA document, and semantic classes, which represent services, parties and events in the ASP

domain, may appear in these diagrams. I have adopted the convention of shading the syntactic classes

lightly, and the semantic classes more darkly.

6.3 SLAs, parties and services
Figure 6.3 shows part of the generic structure of a SLAng SLA (that is, independent of the type of the

service being constrained). SLAs define at least two parties, and some services. Service definitions are

abstract since a more concrete service type must be specified. However, all services identify unique client

and provider parties. Uniqueness is enforced using an invariant defined on ServiceDefinition.

The semantics of a party definition is also shown. Each PartyDefinition identifies a unique party

in the real world (uniqueness enforced by an invariant again). This is a straightforward denotational

relationship.

The SLA class is concrete in the current version of SLAng. However, it has components, similar

to ServiceDefinition, that are both mandatory, and abstract (indicated by an italic class-name, in

the diagrams), and, unlike ServiceDefinition, have no more-concrete types. Therefore a com-

plete SLA cannot be specified without extension to the language. Other properties of the SLA class are

described in subsequent sections.

The SLA class includes a uRI attribute, which is to allow the author to identify the location where

6.4. Failures and violations 144

package fig-01-slaData[]

ServiceDefinition

(slang)

Definition

(slang)

+identifier : String
+description : String

PartyDefinition

(slang)
SLA

(slang)

+uRI : String

Party

(services)

+services

1..*

+parties

2..*

+provider +client

Figure 6.3: Party and service definitions in SLAng

a resource representing the definitive statement of the SLA resides. This is important, because a single

SLAng SLA may have several concrete representations, for example both HUTN and an XMI repre-

sentations. There is also the potential to develop software to reformat SLAng SLAs into even more

human-friendly documents for the purpose of aiding comprehension of the SLAs. However, these types

of transformations of an SLA document have the potential to introduce errors which in the worst case

may modify the interpretation of the SLA. Identifying the definitive form of the agreement using a URI,

which must be unique, reduces this possibility. Any interpreter of a concrete representation of a SLAng

SLA should, according to my recommendations in Chapter 4, be able to follow unambiguous references

to access a definitive version of the SLAng language specification. It will therefore be clear that this

attribute should be present, and when interpreting an SLA this attribute can be checked to ensure that the

definitive version is being used.

Naturally, it does not always make sense to make SLAs publicly accessible. However, URIs can

also address secured resources.

6.4 Failures and violations
Two types of bad behaviour are possible in relation to an SLA, as discussed in Section 2.4. Some

behaviours will breach an SLA outright, indicating that one or more parties is no longer acting within

the terms of the agreement. Other undesirable behaviours will be tolerable provided they are associated

with some compensation. In the remainder of this chapter I refer to the former behaviours as breaches

of the agreement, whereas the latter are violations of some condition in the agreement. A condition

associates a behaviour of either the service or a party with a violation, which may be associated with

a penalty, or with a breach of the agreement, so conditions may be either violated or breached. The

agreement may be breached other than by a behaviour breaching a condition. Failure to conform to

some behaviour implied by the agreement and represented by the domain model will also represent a

breach of the agreement, for example an obligation to administer the SLA, as discussed below.

6.4. Failures and violations 145

Any definition of reliability in an ASP SLA will rely on the notion of service failure, and I estab-

lished in Chapter 2 the likely need for conditions relating to reliability. A well-established definition of

failure within the dependable-computing community is described in [148], which I rely upon here: ‘a

failure is an event that occurs when the delivered service deviates from the correct service’. According

to [148], a failure is due to an error, which is ‘that part of the system state that may cause a subsequent

failure: a failure occurs when an error reaches the service interface and alters the service’. Errors are

hence features of the internal operation of a service, and are only relevant to SLAs when they affect the

behaviour observable at a service interface. An error is presumed to occur due to a fault in a service,

which may be permanent or transient, and which is ‘the adjudged or hypothesised cause of an error’.

Faults may be physical or informational, and may be caused by natural events, human errors or delib-

erate malicious behaviour. The consideration of faults may be relevant to assessing the risks involved

in a particular service-provisioning scenario. However, failures, rather than faults, are relevant to the

description of an SLA.

The definition of failure given by [148] relies on a notion of ‘correct service’. The use of an SLA

provides the participants in a service-provisioning relationship with the opportunity to define precisely

what is meant by this: correct behaviour is any behaviour not identified as faulty in the SLA. However,

not all failures imply violations or breaches of an SLA. Occasional failures may be acceptable to the

client according to the conditions of the SLA.

In conclusion, failures, violations and breaches, are events that may be defined in relation to an

SLA. However, there is no direct equivalence between these three types of event. The definition of

failure used in this work is taken from authoritative prior work on dependable computing.

In any SLA, any violation or breach should eventually become apparent to some interested party.

It will be necessary for a party making an assessment of a violation or a breach to do so on the basis

of evidence that they have somehow obtained. In the case of a breach, it is not necessary for the SLA

itself to define how this should occur – if one party breaches an SLA then the agreement has been broken

overall, and the parties will be free to trade allegations on whatever basis they please. However, it is

important to understand how violations will be calculated, as these do not terminate the agreement. To

this end SLAng includes the syntactic and semantic elements shown in Figure 6.4.

An SLA contains a number of condition clauses. The class ConditionClause is ab-

stract because a number of different types of conditions will be needed. It also extends the class

AuxiliaryClause. Auxiliary clauses are statements in an SLA that may be optional and can be

referred to from several other clauses. They are therefore notionally contained by the top-level SLA

element, rather than a more specific type of clause.

The Violation class represents a record that a violation of a condition clause has occurred. It

is a domain element, since such records are defined in relation to, rather than as part of, some SLA.

However, a violation will refer to the clause in an SLA that has been violated, the identification of the

party responsible for the violation, and the definition of the penalty that should be applied. The violation

will be justified by a collection of evidence, which is the minimum such collection sufficient to establish

6.4. Failures and violations 146

fig-02-violationspackage Data[]

ConditionClause

(slang)

+priorClauses() : ConditionClause [*]
+sLAEvents() : Event [*]
+service() : ServiceDefinition
+evidenced(event : Event, administration : Administration) : Boolean
+violationsCalculated(administration : Administration) : Boolean

Violation

(services)

+eq(v : Violation) : Boolean
+correlated(other : Evidence [1..*]) : Boolean

Evidence

(services)

+correlated(other : Evidence) : Boolean

PenaltyDefinition

(slang)

AuxiliaryClause

(slang)

Compensation

(services)

PartyDefinition

(slang)

Event

(services)

+date : Date

SLA

(slang)

+uRI : String

Party

(services)

+events

*

+penalties

*

+parties

2..*

+compensated

+compensating

+evidence *

+events

*

+violator

+auxiliaryClauses

{ordered}

*

+violatedClause

+violation

+compensation

0..1
+penalty

0..1 +violations

*

*

+witnesses

*

+supporters 1..*

*

Figure 6.4: Condition definitions and the calculation of violations related to SLAng SLAs

that the violation has occurred. Evidence in turn is the record of some events. Events may be witnessed

be some parties. Parties, perhaps as a result, but not necessarily, will lend their support to evidence. The

evidence used to calculate violations of an SLA must have been gathered in relation to events that are

pertinent to the SLA. There is hence an association between an SLA and the events that are relevant to

it.

Evidence and Event are abstract classes in the model because the SLA will eventually have to

define more specific types of events that are relevant, and the types of evidence with respect to which vi-

olations should be calculated. This is also related to the definition of specific types of condition clauses,

since a particular type of condition clause will imply the relevance of certain behaviours to the SLA,

and hence the evidence required to calculate violations of the clause. This is captured in the model

by the inclusion of a number of abstract side-effect-free operations on the class ConditionClause:

slaEvents() calculates what events are relevant to the clause; services() what services are rel-

evant (useful for defining several obligations discussed below); evidenced() assesses whether ad-

equate evidence has been collected in relation to a relevant event to make an assessment with respect

to violations; and violationsCalculated() assesses, given a set of evidence and a collection of

violations, whether violations have been correctly calculated in relation to the condition clause.

These abstract operations are used in invariants in the language specification to express various

observations that should be true about all SLAs and condition clauses. These invariants provide an

important component of the semantic definition of the language, namely the association between SLAs

6.5. Administration 147

and domain elements. For example, the events associated with an SLA should include all of the events

relevant to the condition clauses that it contains. The formulation of this invariant is given in the next

section.

This pattern of expressing invariants over abstract side-effect-free operations is used repeatedly

in the SLAng language specification, and achieves two important things. First, it allows the language

to capture knowledge that is true of all SLAs without having to define syntax to support all SLAs.

Second, the abstract operations reveal explicitly what is known only in abstract to provide guidance for

the extension of the language.

Associated with a violation may be the obligation for the violating party to perform some kind

of compensating action, as represented by the abstract Compensation class. The specific details

of these obligations may be encoded in extensions to SLAng using invariants defined in subclasses of

PenaltyDefinition and Compensation. The Compensation class is also intended to support

the definition of payment schemes.

6.5 Administration
In the previous section I presented semantic elements describing how violations should be calculated

in relation to condition clauses. However, this is not sufficient to establish when the violations should

be calculated, or by whom, an activity that I refer to as administering the SLA. As discussed in Sec-

tion 2.5, it will frequently be necessary for an SLA to describe rules governing the administration of

the SLA. Figure 6.5 depicts the support that is provided by SLAng for this using the abstract class

AdministrationClause.

Administration clauses define rules for how the SLA should be administered. To establish how,

the Administration class represents administrations in the domain model for the language. Ac-

cording to the model, administrations are events. One or more parties participate in an administration.

Each party submits an account containing any evidence that they believe to be relevant to determining

violations of the service. Somehow, based on this evidence, an agreed account of the behaviour of the

service is produced, and on this basis violations are calculated. Each administration is associated with

an administration clause (in an SLA) which provides a mandate for the administration and constraints

over how it should be conducted.

Clearly there is great variety in when and how an SLA may be administered. Again, I capture

this using a combination of abstract side-effect-free operations and invariants. The principle obligation

expressed in the SLA class is that the parties must act in such a way as to ensure that all administra-

tion clauses included in the SLA are successfully administered. What this entails is delegated to the

AdministrationClause class using the administered() operation, which assesses whether

the collection of events associated with the SLA contains sufficient and correct administration events.

As discussed in Section 2.5, some SLAs may offer complete flexibility concerning administration,

provided compensation is delivered within some time limit of violations occurring. Nevertheless, I have

opted to make administration clauses a central element of SLAng SLAs in all cases. If flexibility is

possible, it will improve the understandability and analysability of an SLA to make this explicit by

6.5. Administration 148

fig-03-administrationpackage Data[]

AdministrationClause

(slang)

+administered() : Boolean
+eventRelevant(administration : Administration, event : Event) : Boolean
+services() : ServiceDefinition [*]
+sLAEvents() : Event [*]

ConditionClause

(slang)

+priorClauses() : ConditionClause [*]
+sLAEvents() : Event [*]
+service() : ServiceDefinition
+evidenced(event : Event, administration : Administration) : Boolean
+violationsCalculated(administration : Administration) : Boolean

Violation

(services)

+eq(v : Violation) : Boolean
+correlated(other : Evidence [1..*]) : Boolean

ReconciliationAdministrationClause

(slang)

Evidence

(services)

+correlated(other : Evidence) : Boolean

PenaltyDefinition

(slang)

AuxiliaryClause

(slang)

Administration

(services)

PartyDefinition

(slang)

Event

(services)

+date : Date

SLA

(slang)

+uRI : String

Account

(services)

Party

(services)

+events

*

+penalties

*

+violations *

+owner

+agreed
*

+administrations

*

+violatedClause

+conditions1..*

+administrationClauses 1..*

+parties

2..*

+auxiliaryClauses

{ordered}

*

*

+participants

1..*

+witnesses

*

+administrationClauses

1..*

+submittedEvidence 1..*

*

+penalty0..1

+violations*

Figure 6.5: The administration of SLAng SLAs

encoding this in subclass of AdministrationClause.

The (abstract) meaning of SLAng SLAs is captured to a large extent using a set of invariants and

side-effect-free operations defined over the SLA class and the AdministrationClause class, ac-

cording to the model-denotational approach. An SLA is associated with a set of pertinent domain events,

which are the events associated with administering the SLA. This is expressed using the following in-

variant over the SLA class:

events = administrationClauses.sLAEvents()->asSet()

The operation sLAEvents() on class AdministrationClause is defined as follows:

conditions.sLAEvents()->union(administrations)->asSet()

In other words, the relevant events are any events relevant to a condition being administered, plus

the events representing the administrations themselves. It is then necessary to state that this continuum

of events must conform to the intent of the SLA. This is stated by asserting that the SLA must be

6.5. Administration 149

administered according to the standards of the administration clauses that it includes (an invariant on

class SLA):

administrationClauses->forall(a : AdministrationClause |

a.administered()
)

The operation administered() on class AdministrationClause is abstract, because the

behaviour of parties in administering SLAs may be acceptable according to various standards. However,

given that this invariant must hold, the following invariant on AdministrationClause requires

that violations of the SLA be calculated according to the standards of the conditions associated with an

administration clause.

administrations->forall(a : ::services::Administration |

conditions->forall(violationsCalculated(a))
)

The meaning of specific types of conditions, for example reliability, throughput and timeliness, is

therefore largely established by overriding the violationsCalculated() operation in subclasses

of ConditionClause.

Finally, administration clauses define an important obligations for the participants in an SLA. The

monitoring obligation states that if an event is relevant to a condition clause being administered, then

sufficient evidence related to that event must be presented at the administration to determine viola-

tions of the relevant conditions (relying on the sLAEvents() and evidenced() operations on

ConditionClause):

let
events = sLA.events
in
administrations->forall(a : ::services::Administration |

events->forall(e : ::services::Event |

sLAEvents()->includes(e)
and
eventRelevant(a, e)
implies
conditions->forall(c : ConditionClause |

c.sLAEvents()->includes(e)
implies
c.evidenced(e, a)

)
)

)

Invariants in the domain model, and accuracy constraints (discussed below), require this evidence

to faithfully represent the events that are pertinent to the SLA.

6.6. Accuracy of evidence 150

A ReconciliationAdministrationClause is potentially useful in mutually-monitorable

SLAs. These clauses require administration in which both the client and provider of any services as-

sociated with condition clauses being administered participate and submit evidence. In Chapter 5 I

anticipated that such reconciliations may be needed in the event of a disagreement between the parties

as to the behaviour of the service.

6.6 Accuracy of evidence
As discussed in Section 5.2, in the case of mutually monitorable SLAs, it is desirable to establish rules

concerning the accuracy of the measurements forming the basis for the assessment of a violation. This

is also true of less monitorable types of SLAs, although it may not be possible to check whether any

accuracy constraint is being adhered to in that case. In Chapter 5 I describe an approximately monitorable

accuracy constraint appropriate to this purpose. Figure 6.6 depicts the inclusion of this constraint in the

SLAng language specification.

fig-04-accuracypackage Data[]

AdministrationClause

(slang)

+administered() : Boolean
+eventRelevant(administration : Administration, event : Event) : Boolean
+services() : ServiceDefinition [*]
+sLAEvents() : Event [*]

AccuracyClause

(slang)

+typeIErrorRate : Percentage
+confidence : Percentage

+getMeasurementCount(evidence : Evidence [*]) : Integer
+getAccurateMeasurementCount(evidence : Evidence [*]) : Integer
+fact(n : Integer) : Integer
+pick(n : Integer, r : Integer) : Integer
+choose(n : Integer, r : Integer) : Integer
+raise(value : Real, power : Integer) : Real
+errorCountProbability(n : Integer, r : Integer) : Real
+findD(sum : Real, n : Integer, d : Integer) : Integer
+getMaximumAcceptableErrors(measurementCount : Integer) : Integer
+evidenceIsAccurate(evidence : Evidence [*]) : Boolean

Evidence

(services)

+correlated(other : Evidence) : Boolean

AuxiliaryClause

(slang)

Administration

(services)

SLA

(slang)

+uRI : String

Account

(services)

+administrationClauses1..*

+accuracyClauses*

+administrationClauses

1..*

+auxiliaryClauses

{ordered}

*

+submittedEvidence1..*

*

+administrations

*

Figure 6.6: Accuracy constraints in the SLAng langauge

The constraint is represented by the abstract class AccuracyClause. All accuracy clauses ac-

cording to my design of the accuracy constraint specify a type I error rate for the constraint, which is

the proportion of times that a participant submitting an honest log will be accused of cheating, and a

confidence measure, which is the confidence stated by the participants that any given measurement sub-

mitted will meet the standard of accuracy to which it is held. Given these values, all that is needed to

assess whether the constraint has been met are values for n, the total number of measurements in the log

under consideration, and d, the total number of incorrect measurements. At this level of abstraction the

6.7. Termination of SLAs 151

language does not make any assumptions about the type of measurements being considered, or how their

accuracy may be assessed. The provision of values for n and d are therefore delegated to more specific

types of accuracy clause using the abstract operations getMeasurementCount() (returning n) and

getAccurateMeasurementCount() (which returns n− d).

Note that this constraint can never be evaluated with certainty, since the true value returned by

getAccurateMeasurementCount() cannot be known with certainty. However, since the domain

model contains classes for both evidence and events, and evidence is notionally associated with the events

that it documents, it is possible to precisely define, for a particular type of evidence, what is meant by an

accurate measurement. The operation evidenceIsAccurate() operation then represents the effect

of the constraint over an arbitrary log of evidence. Accuracy clauses are associated with administration

clauses and constrain the evidence presented in support of an administration to be accurate. This is

captured by an invariant on the class AdministrationClause. Given a trusted log of evidence

correlated to that submitted during administration, with known error characteristics, conformance to

the accuracy constraint can be approximately monitored using the statistical hypothesis described in

Section 5.2.2.

The use of a constraint on the accuracy of evidence used to assess violations conveniently avoids

the need to consider how the residual error in the measurements propagates through the calculation of

violations, the need for which is discussed in Section 2.7.4. Providing the evidence used is sufficiently

accurate, the parties agree to having the violations calculated according to the semantics of SLAng.

6.7 Termination of SLAs
Two fundamental requirements for systems of SLAs, listed in Section 2.7 indicate the need to include

conditions related to termination of the SLA. Requirement SLA 3 states that a party should become

entitled to receive compensation when an SLA is terminated by a peer. Requirement SLA 4 states that

a party should have the right to terminate an SLA without penalty if their peer’s behaviour becomes

unacceptable.

fig-05-2-termination-administrationpackage Data[]

AdministrationClause

(slang)

+administered() : Boolean
+eventRelevant(administration : Administration, event : Event) : Boolean
+services() : ServiceDefinition [*]
+sLAEvents() : Event [*]

TerminationByReportAdministrationClause

(slang)

+calculateAdministrationDeadline() : Real
+administered() : Boolean
+eventRelevant(administration : Administration, event : Event) : Boolean

Figure 6.7: Clauses governing the final administration of a terminated SLAng SLA

Figure 6.8 shows the support SLAng offers for describing the conditions under which an SLA

6.7. Termination of SLAs 152

terminates. Terminating condition clauses terminate the SLA if they are ever violated. This

must be respected when checking whether administration clauses have been administered, and sup-

port for determining whether a terminating condition has previously been violated is built into the

AdministrationClause class.

Parties should entering into an SLA should anticipate the possible need to terminate the SLA.

If they wish to limit the possible consequences of doing so, then an SLA should include prearranged

provisions relating to termination. I assume that if a party is going to unilaterally terminate an SLA in a

prearranged manner (rather than by merely commencing to ignore the provisions of the SLA) then they

will have to at least notify their peer. Termination under these circumstances is covered by instances

of the TerminationByReportConditionClause. Defining the semantics of statements of this

type relies on some extra exposition in the domain model. Reports are types of events that represent

communication between the parties. A termination report is a communication that indicates the intent

to terminate an SLA on the part of the dispatcher. A termination-by-report condition clause is violated

based on evidence of a termination report applying to the SLA in which the clause is written.

TerminationByReportConditionClause is an abstract class because it is necessary to

specify the scheme by which penalties should be calculated in these circumstances. However, it

makes concrete the operations sLAEvents() – termination reports referencing the SLA are relevant –

service() – no specific services are relevant – evidenced() – termination reports are evidenced

by having an associated report record – and violationsCalculated() – a violation should be

calculated citing the originator of the termination report as the violator, the report record as the evidence,

and the penalty calculated by calculatePenalty() as the penalty. This last rule is expressed using

the following OCL definition of violationsCalculated():

let
agreed = administration.agreed,
violations = administration.violations
in
agreed->select(

oclIsKindOf(::services::ReportRecord)
and
oclAsType(::services::ReportRecord).report.oclIsKindOf(
::services::TerminationReport)

)->forall(e : ::services::Evidence |

violations->exists(v : ::services::Violation |
v.violator =

sLA.parties->any(
party = oclAsType(::services::ReportRecord

).report.dispatcher)
and
v.violatedClause = self
and
v.evidence = Set(::services::Evidence) { e }
and
v.penalty = calculatePenalty(

e.oclAsType(::services::ReportRecord), agreed)
)

)

6.7. Termination of SLAs 153

This provides a succinct example as to how the effect of conditions can be expressed by extensions

to the ConditionClause class, and if necessary, extensions to the domain model.

fig-05-1-termination-conditionspackage Data[]

TerminationByReportConditionClause

(slang)

+sLAEvents() : Event [*]
+services() : ServiceDefinition [*]
+evidenced(event : Event) : Boolean
+violationsCalculated(agreed : Evidence [*], violations : Violation [*]) : Boolean
+calculatePenalty(terminationReportRecord : ReportRecord, agreed : Evidence [*]) : PenaltyDefinition

ConditionClause

(slang)

+priorClauses() : ConditionClause [*]
+sLAEvents() : Event [*]
+service() : ServiceDefinition
+evidenced(event : Event, administration : Administration) : Boolean
+violationsCalculated(administration : Administration) : Boolean

Evidence

(services)

+correlated(other : Evidence) : Boolean

TerminatingConditionClause

(slang)

TerminationReport

(services)

ReportRecord

(services)

+date : Date

SLA

(slang)

+uRI : String

Event

(services)

+date : Date

Party

(services)
Report

(services)

0..1

+recipient

+dispatcher

+evidence

*
+events

*

Figure 6.8: Conditions and semantics related to the termination of SLAng SLAs

If a party issues a termination report then they are unlikely to wish to wait for the next routine ad-

ministration for the SLA to occur. Assuming a termination report will not otherwise trigger an immediate

administration, the parties will probably wish to state that it does. Support for this is implemented by

the class TerminationByReportAdministrationClause which requires that a final adminis-

tration of the SLA takes place within some deadline of a termination report being exchanged. The class,

shown in Figure 6.7, is abstract, since the length of this deadline may need to be calculated based on

other factors pertaining to the SLA.

TerminationByReportConditionClause extends TerminatingConditionClause

to indicate that any violation of this clause signals the imminent end of the agreement. Ordinary admin-

istration clauses must not require administrations to occur after such a violation has been calculated.

The time at which a termination report is exchanged will be a matter of concern to the parties to the

SLA being terminated, as it will determine to what point they must adhere to the usual conditions of the

SLA. As usual, this will be captured by evidence, which may be somewhat inaccurate. The parties will

6.8. Electronic services 154

wish to constrain this accuracy, which may be achieved by a ReportRecordingAccuracyClause,

shown in Figure 6.9. Such a clause governs the accuracy of exchange of any type of report. This gen-

eralisation has been included because other types of condition may be related to an exchange of reports,

as described below in relation to availability conditions. This class is abstract, because the accuracy

required for a particular report may depend on factors that are hard to anticipate, such as the state of the

service. However, it is likely that a constant basic standard of accuracy will be desired, so I have also

included in the core language the class PermanentFixedReportRecordingAccuracyClause

that can be used to establish this.

fig-05-3-report-accuracypackage Data[]

ReportRecordingAccuracyClause

(slang)

+getMeasurementCount(evidence : Evidence [*]) : Integer
+getAccurateMeasurementCount(evidence : Evidence [*]) : Integer
+calculateErrorMargin(report : TerminationReport, evidence : Evidence) : Real

PermanentFixedReportRecordingAccuracyClause

(slang)

+errorMargin : Duration

+calculateErrorMargin(report : TerminationReport, evidence : Evidence) : Real

AccuracyClause

(slang)

+typeIErrorRate : Percentage
+confidence : Percentage

+getMeasurementCount(evidence : Evidence [*]) : Integer
+getAccurateMeasurementCount(evidence : Evidence [*]) : Integer
+fact(n : Integer) : Integer
+pick(n : Integer, r : Integer) : Integer
+choose(n : Integer, r : Integer) : Integer
+raise(value : Real, power : Integer) : Real
+errorCountProbability(n : Integer, r : Integer) : Real
+findD(sum : Real, n : Integer, d : Integer) : Integer
+getMaximumAcceptableErrors(measurementCount : Integer) : Integer
+evidenceIsAccurate(evidence : Evidence [*]) : Boolean

Figure 6.9: Accuracy clauses governing the recording of the exchange of reports related to SLAng SLAs

6.8 Electronic services
I now move to the description of syntactic and semantic provisions in the language that are related to

electronic services. In order to express conditions related to an electronic service in an SLA it will be first

necessary to describe it. This is achieved in SLAng using the ElectronicServiceDefinition

class, a concrete refinement of the more general ServiceDefinition class. The relevant classes are

shown in Figure 6.10.

An electronic service consists of the provision of access to one or more electronic-service interfaces

to one or more electronic-service clients, which are defined to be software capable of accessing the inter-

face. All of the interfaces must be owned by one party, the provider, and likewise all of the instances of

client software must be owned by another, the client. Electronic-service interfaces consist of operations

with known parameter types. Parameters may be associated with requests (IN parameters), responses

(OUT parameters) or both (IN OUT parameters).

6.8. Electronic services 155

fig-06-es-definitionspackage Data[]

ElectronicServiceInterfaceDefinition

(slang.es)

ElectronicServiceClientDefinition

(slang.es)

+parameterKind : ParameterKind

+isValid(value : String) : Boolean

ParameterDefinition

(slang.es)

ElectronicServiceDefinition

(slang.es)

ElectronicServiceInterface

(services.es)

ElectronicServiceClient

(services.es)

OperationDefinition

(slang.es)

<<enumeration>>

ParameterKind

(slang.es)

+IN : Integer = 1
+OUT : Integer = 2
+IN_OUT : Integer = 3

ServiceDefinition

(slang)

AuxiliaryClause

(slang)

PartyDefinition

(slang)

Operation

(services.es)

Parameter

(services.es)

SLA

(slang)

+uRI : String

Party

(services)

+definitions

*

+auxiliaryClauses

{ordered}

*

+services

1..*

+clients

1..*
+interfaces1..*

+owner

+definitions

*

+operations

*

+interface

+parameters

+owner

+definitions*

+owner

+parameters

*

+operation

+definitions

*

+owner

+operations 1..*

+interface

Figure 6.10: Definitions of electronic services in SLAng, and corresponding semantic elements

For an SLA to be valid, an electronic service conforming to the elements of the electronic-service

description must exist in the real world. This is represented by the domain elements corresponding to

the syntactic definition of the service.

Requirement SLA 1 includes the provision that a system of SLAs for ASP should be able express

conditions over the timeliness and reliability of an electronic service. To describe the semantics of such

conditions, it will be necessary to have a reference model of the behaviour of electronic services, and

the way that evidence pertaining to that behaviour should be collected. These elements are shown in

Figure 6.11. Electronic-service clients issue service requests to operations of an interface. These may

include a number of parameter values. Depending on the functioning of the service, and whether a fault

occurs, these may result in service responses, which may also carry parameter values. The monitoring

of such an episode is presumed to result in a service-usage record, which records the moment that the

request was issued, the interval between the request being issued and the response being fully received,

what operation was invoked by what client, and what parameter values were exchanged.

6.9. Reliability, timeliness and throughput conditions 156

fig-07-es-behaviourpackage Data[]

Evidence

(services)

+correlated(other : Evidence) : Boolean

ServiceUsageRecord

(services.es)

+date : Date
+duration : Duration

+correlated(other : Evidence) : Boolean

ElectronicServiceClientDefinition

(slang.es)

+parameterKind : ParameterKind

+isValid(value : String) : Boolean

ParameterDefinition

(slang.es)

ParameterRecord

(services.es)

+value : String

ElectronicServiceInterface

(services.es)

ElectronicServiceClient

(services.es)

OperationDefinition

(slang.es)

ServiceResponse

(services.es)

ParameterValue

(services.es)

+value : String

ServiceRequest

(services.es)

Parameter

(services.es)

Operation

(services.es)

+operation

+usageRecords

*

+client

+request

+type

+parameterRecords

*

+definitions

*

+serviceUsageAsOutput

0..1

+outputs

*

+requests

*

+response

0..1

+request

+definitions

*

+serviceUsageAsInput

0..1

+inputs

*

+request

0..1

+parameters *

+response

0..1

+results

*

+response

0..1

+parameters

*

+operation

+operations *

+interface

+parameters

+client

+definitions

*

Figure 6.11: The behaviour of electronic services, assumed by the SLAng semantics

6.9 Reliability, timeliness and throughput conditions
6.9.1 Service behaviour restrictions

In Chapter 2, three particular kinds of condition are identified as being necessary in ASP SLAs. These

are reliability, latency and throughput. SLAng provides support for all three kinds of condition through

the use of a single, more general type of condition, the service behaviour restriction.

Consider what is characteristic of a reliability condition over an electronic service: [148] defines

reliability as ‘continuity of correct service’. Adopting this definition requires a definition of correct

service, or equivalently, incorrect service, which as stated above may be established in an SLA. Correct

or incorrect service behaviour will have to be defined with reference to a functional definition of the

service. However, individual failures may not be problematic to the client, so this is not enough to

define reliability alone. Multiple failures might be problematic however, if they occur sufficiently closely

together to be disruptive to the client, so a reasonable approach to defining a reliability constraint is

to restrict the maximum number of failures that may be seen within a sliding window of time of a

specified length. Such a definition would also accommodate the case that no failures were tolerable, as

6.9. Reliability, timeliness and throughput conditions 157

the maximum number could be set to zero.

Now consider how a latency constraint may be defined: operations that take too long to complete

are bad, but how bad are they? If they take far too long, the client will have to assume that they will

never complete at all, and act accordingly, so this kind of latency violation will be equivalent to a failure.

Occasional slow operations may be tolerable, but persistent slowness will be problematic. This descrip-

tion of latency constraints is very like the description of reliability given above, so again, restricting the

number of slow operations in a sliding window seems appropriate.

Finally, consider throughput restrictions. Most middleware systems used to implement electronic

services accommodate a degree of concurrency in the submission of requests. This is particularly im-

portant when several distributed electronic service client programs will access the service concurrently,

as it is undesirable for the client party to have to guarantee that no two requests will arrive too close

together. Therefore some amount of high throughput is acceptable. Throughput becomes unacceptable

when a large number of requests arrive in a short interval, overloading input queues, or causing bottle-

necks at contended resources, thereby causing failures or resulting in high latency for service requests,

potentially making the service provider liable to pay penalties. Hence, once again, it is appropriate to

constrain throughput as a maximum number of requests that may be submitted in a specific interval.

Since all three cases are so similar, it is possible to generalise. Essentially failures, delays and

requests represent possible behaviours that may be manifest in the service and the behaviour of the

parties with respect to the service. These behaviours may be tolerable in moderation, but if too many

happen in too short a time, they become intolerable.

It is also possible to see the usefulness of constraints of this type when applied to service behaviours

not uniquely associated with electronic-service behaviours. A groceries-delivery service may occasion-

ally deliver vegetables that are not in prime condition. Their client, a restaurant, can cope with this by

varying their menu from time to time. However, if it occurs too frequently the reputation of the restaurant

for delivering fresh food may suffer, so the restaurant may wish to penalise this in an SLA.

Any kind of activity as part of a service may be assessed based on its measurable qualities, and

classified as either acceptable or undesirable. Being undesirable need not be intolerable however, so

a constraint may instead be needed that undesirable outcomes do not occur too frequently. Since this

pattern is so generally applicable, I have implemented support for conditions of this kind as part of the

generic syntax package of SLAng.

Figure 6.12 shows the classes ServiceBehaviourRestrictionConditionClause and

ServiceBehaviourDefinition supporting the specification of clauses of this kind. A service

behaviour definition will define a particular type of behaviour, and state what party is responsible for it

occurring. Given a collection of evidence, it will be capable of identifying instances of the behaviour

indicated by the evidence, and when these instances are deemed to have taken place. A service behaviour

restriction clause associates penalties with too many instances of the behaviour occurring in too short

a time period. ServiceBehaviourRestrictionConditionClause is abstract because it is

necessary to determine the desired width of time window at and number of occurrences of the behaviour

6.9. Reliability, timeliness and throughput conditions 158

acceptable at any given point in time.

fig-08-conditionspackage Data[]

ServiceBehaviourRestrictionConditionClause

(slang)

+calculateMaxOccurrences(date : Real, administration : Administration) : Integer
+calculateWindow(date : Real, administration : Administration) : Real
+sLAEvents() : Event [*]
+service() : ServiceDefinition
+evidenced(event : Event) : Boolean
+firstMinimalViolationIndexAfter(cutoff : Real, times : Real, administration : Administration) : Integer
+firstMinimalViolationAfter(cutoff : Real, administration : Administration) : Evidence [*]
+firstMinimalViolation(administration : Administration) : Evidence [*]
+nextMinimalViolation(prior : Evidence [*], administration : Administration) : Evidence [*]
+firstMaximalViolationAfter(cutoff : Real, administration : Administration) : Evidence [*]
+firstMaximalViolation(administration : Administration) : Evidence [*]
+nextMaximalViolation(prior : Evidence [*], administration : Administration) : Evidence [*]

...

ConditionClause

(slang)

+priorClauses() : ConditionClause [*]
+sLAEvents() : Event [*]
+service() : ServiceDefinition
+evidenced(event : Event, administration : Administration) : Boolean
+violationsCalculated(administration : Administration) : Boolean

ServiceBehaviourDefinition

(slang)

+calculateResponsibleParty() : PartyDefinition
+sLAEvents() : Event [*]
+evidenced(event : Event, evidence : Evidence [*]) : Boolean
+getFirstInstanceOf(agreed : Evidence [*]) : Evidence [*]
+getNextInstanceAfter(prior : Evidence [*], agreed : Evidence [*]) : Evidence [*]
+getBehaviourTime(behaviour : Evidence [*]) : Real

ServiceDefinition

(slang)

AuxiliaryClause

(slang)

+service

+behaviours

*

+behaviourRestrictions

1..*

+restrictedBehaviours

1..*

Figure 6.12: Clauses supporting conditions related to restrictions on service behaviours

Once these parameters have been determined, penalties can be calculated based on two types of

analysis of the evidence constituting a violation. A minimal violation is the least amount of evidence

required to establish that a service behaviour restriction has been violated, and given a set of evidence, the

ServiceBehaviourRestrictionConditionClause class provides operations to sequentially

examine each minimal violation. On the other hand, two or more minimal violations that occur so closely

together that any superimposition of the sliding window between the time of the first violation and that of

the last will contain a set of evidence representing a minimal violation may be regarded as one continuous

incident of violation of the clause. The ServiceBehaviourRestrictionConditionClause

therefore also provides operations capable of iterating over all of the maximal violations contained in

a set of evidence, where a maximal violation is any consecutive period where any superimposition of

the time window will contain a minimal violation, and no other period with the same properties both

overlaps and is longer.

Building on this foundation, more specific support for reliability, latency and throughput conditions

can be provided. This is discussed in the following section.

6.9. Reliability, timeliness and throughput conditions 159

6.9.2 Electronic-service usage behaviour definitions

Two requirements for SLAs are that they are precise in their meaning, and that they allow the client

to receive compensation in the event of the service proving unreliable. This implies that SLAs should

precisely define what is meant by reliability, and because the notion of reliability depends on the notion

of failure, what is meant by failure must also be precisely defined. This suggests that services in relation

to which precise SLAs are made will require formal definitions.

It is clear that extensions to the class ServiceBehaviourDefinition can be used to provide

a formal definition of the functional behaviour of a service, as well as properties related to the timing

of requests and responses. Service behaviour definitions may be related to the domain model of service

behaviour either directly or via a relationship with a service definition clause. Since the domain model

for electronic services captures details of service usages and their parameters, it is possible to encode

relationships between input and output parameters capturing the functional behaviour of the service

in side-effect-free operations specified on a subclass of ServiceBehaviourDefinition. The

extended clause is therefore able to identify instances in which this behaviour was violated.

Since reliability conditions will be commonly required, relying on this facility implies that exten-

sions to SLAng to formalise service behaviour will usually be required when writing an SLA for a new

type of service. This is perfectly consistent with the approach followed in the design of SLAng, which

aims to deliver an abstract, extensible language. However, there is a qualitative difference between the

extensions required by the language so far, and extensions required to define the functionality of the

service. This is that all extension points defined thus far, for example, to calculate penalties or or deter-

mine when an SLA should be administered, have the potential to be extended in a service-independent

manner.

Service-independent vocabulary clearly has a higher potential for reuse across SLAs than service-

dependent vocabulary. This suggests that over time, a richer vocabulary of concrete syntax elements

might be added to the core language in order to increase its expected adequacy. If any given extension

point in the language had the potential to be extended to provide concrete syntax in a service-independent

manner, it admits the possibility that a core language expanded with generic concrete syntax might be

completely adequate without further extension to some new SLA. If I follow the approach of insisting that

any reliability constraint requires extension to the language in a service-specific manner, this potential is

greatly reduced for ASP SLAs.

Another major problem with insisting that ASP services have a formal functional specification is

that in the domain of application services, few services are formally specified as a matter of course. An

absolute requirement for a formal specification of every service using an SLA may increase the expense

of entering into an SLA to the point that they are no longer an attractive method for balancing risk.

Finally, even if a formal specification of a service exists prior to the negotiation of an SLA, it

may not be encoded in OCL. Re-modelling the functional behaviour in a language extension may be an

unnecessary expense.

These considerations combine to suggest the need in some SLAs for a certain amount

6.9. Reliability, timeliness and throughput conditions 160

of informality in the definition of failures of a service. I provide several classes supporting

this. The first is ElectronicServiceUsageBehaviourDefinition which is a sub-

type of ServiceBehaviourDefinition. This class may be extended to provide vocabu-

lary to define behaviours observable in individual service usages. Crucially, the semantic element

ServiceUsageRecord is augmented with the property behaviours, implying that when report-

ing on service usages during administration, parties must explicitly identify, for each service usage, the

predefined service-usage behaviour definitions to which the service usage conforms. These classes are

shown in Figure 6.13.

fig-09-modespackage Data[]

ElectronicServiceUsageBehaviorDefinition

(slang.es)

+included(usage : ServiceUsageRecord, administration : Administration) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean
+sLAEvents() : Event [*]
+evidenced(event : Event, evidence : Evidence [*]) : Boolean
+serviceUsageRecords(agreed : Evidence [*]) : ServiceUsageRecord [*]
+getFirstInstanceOf(agreed : Evidence [*]) : Evidence [*]
+getNextInstanceAfter(prior : Evidence [*], agreed : Evidence [*]) : Evidence [*]
+getBehaviourTime(behaviour : Evidence [*]) : Real

LatencyFailureModeDefinition

(slang.es)

+calculateMaxDuration(usage : ServiceUsageRecord, agreed : Evidence [*]) : Real
+included(usage : ServiceUsageRecord, administration : Administration) : Boolean

InformalFailureModeDefinition

(slang.es)

+included(usage : ServiceUsageRecord, administration : Administration) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

InformalUsageModeDefinition

(slang.es)

+included(usage : ServiceUsageRecord, administration : Administration) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

ServiceBehaviourDefinition

(slang)

+calculateResponsibleParty() : PartyDefinition
+sLAEvents() : Event [*]
+evidenced(event : Event, evidence : Evidence [*]) : Boolean
+getFirstInstanceOf(agreed : Evidence [*]) : Evidence [*]
+getNextInstanceAfter(prior : Evidence [*], agreed : Evidence [*]) : Evidence [*]
+getBehaviourTime(behaviour : Evidence [*]) : Real

UsageModeDefinition

(slang.es)

+calculateResponsibleParty() : PartyDefinition

FailureModeDefinition

(slang.es)

+calculateResponsibleParty() : PartyDefinition

ServiceUsageRecord

(services.es)

+date : Date
+duration : Duration

+correlated(other : Evidence) : Boolean

OperationDefinition

(slang.es)

+usageModes

1..*

+failureModes

*

+behaviours

*

+operations

*

Figure 6.13: Service behaviours relevant to reliability, timeliness and availability conditions

In reliability conditions, the service behaviour being restricted is that which is exhibited by failures.

In latency conditions over synchronous operations these failures are characterised by a delay in the

production of the result of operation. In throughput conditions, client behaviour that includes a request

6.9. Reliability, timeliness and throughput conditions 161

to the service is being restricted. When specifying a throughput condition, it is necessary to consider

what usages will be relevant to the clause. Often this may be straightforwardly defined as any operation

invocation on some service interface. However, occasionally it may be more complicated. The resource

utilisation of an operation may be heavily dependent on the parameter values passed to it, so it may be

desirable to restrict usage of the service on this basis. Similarly to failures, there may be requirements to

specify types of usages both formally and informally depending on the circumstances.

These types of behaviour are all most commonly exhibited by individual service requests and

hence can be captured using extensions to ElectronicServiceUsageBehaviourDefinition

(if failures or patterns of usages emerging over multiple usages must be restricted then ServiceBe-

haviourDefinition can be extended instead). However, further generic refinements of this class

are possible to capture in common knowledge concerning these types of behaviour in the core definition

of SLAng.

As behaviours, the principal distinction between usages and failures, is that the party responsible

for causing them is the client (the party controlling the client software) in the case of the usages, and the

provider (the party providing the electronic service) in the case of failures. This distinction is captured

in the provision of two subclasses of ElectronicServiceUsageBehaviourDefinition,

UsageModeDefinition and FailureModeDefinition. Relationships between these modes

can also be described, to establish the possibility of failures in a particular failure-mode occurring as a

result of a request in a particular usage-mode. This is important in relation to availability conditions, as

described below.

Further to this, concrete extensions to ElectronicServiceUsageBehaviourDefinition

must override two side-effect-free operations, included() and excluded(). An invariant on

ElectronicServiceUsageBehaviourDefinition asserts that a definition of that type must

be referenced by a service usage if these operations deem that it should be included, and not excluded.

This allows the definition of an abstract latency failure-mode, which asserts that a service usage

should be reference definitions of that type whenever the usage takes longer than some duration (obtained

from an abstract side-effect-free operation). However, there may also be times when a usage should be

excluded despite this condition being met. This may be specified by inheriting the clause type and

overriding the excluded() operation.

As discussed above, the decision to consider a service-usage as being an example of a partic-

ular electronic-service behaviour may be subjective, or rely upon standards expressed externally to

the SLA. Therefore, I have included the syntactic types InformalUsageModeDefinition and

InformalFailureModeDefinition in the language. These classes define both included()

and excluded(). In both cases, a service-usage should reference an instance of a clause of either

type only if it does, and not otherwise. This circular definition leaves the referencing of these clauses to

the discretion of a party participating in an administration of the SLA. However, definitive natural lan-

guage descriptions associated with the definitions of these clause types oblige the parties to consider any

natural-language description of a behaviour included in the SLA when determining whether a service-

6.10. Availability conditions 162

usage conforms to such a behaviour definition. Such clauses should of course be used with care, as the

precision of the SLA will depend on the precision with which failures are described.

At this point it is appropriate to observe that all three types of conditions described here are mutually

monitorable, because assessing violations of these conditions only relies on evidence being gathered

relating to service requests and responses, both of which are events visible to both the client and the

provider of the service.

6.9.3 Service-usage record accuracy

When implemented using service-behaviour restrictions, each of the three required types of condition, re-

liability, timeliness and throughput, rely on determining whether service usages with particular character-

istics occur within a particular time window. Clearly this cannot be assessed with any kind of confidence

unless some standard for the accuracy of measuring the moment of occurrence of a usage is established in

the SLA. This is achieved by another type of accuracy clause, for service usage records, as shown in Fig-

ure 6.14. ServiceUsageRecordAccuracyClause supports the specification of error margins for

date and duration measurements. PermanentFixedServiceUsageRecordAccuracyClause

is provided to allow the specification of a permanent basic standard of accuracy for these measure-

ments. If an ElectronicServiceUsageBehaviourDefinition is associated with a ser-

vice behaviour restriction referred to by an administration clause, then an invariant ensures that a

PermanentFixedServiceUsageRecordAccuracyClause is also specified in order to ensure

that some basic standard of accuracy is agreed. This is necessary as service usage record accuracy

clauses for specialised purposes may not assess the accuracy of all service-usages. This is an example of

an invariant used entirely within the syntactic types, therefore providing restrictiveness in the language

to prevent the specification of bad SLAs.

Service-usage clauses are approximately mutually-monitorable.

6.10 Availability conditions
Availability of a service is defined in [148] as ‘readiness for correct service’. It is common for SLAs

to include constraints on availability, even though as I have observed, the availability of the service is

not a prime concern of the client’s (who should only care if the service is available when they try to use

it, hence resulting in a definition for reliability), neither is it monitorable by the client. Hence I have

avoided providing support in SLAng for conditions related to availability as it is conventionally defined.

Unfortunately, there are potential problems with relying on reliability conditions alone to mitigate

risks related to the functional quality of the service. These problems are related to the exploitability of

the SLA.

It is possible that over the course of several interactions with an electronic service, the client will

discover a combination of operation parameters that unless reparative action is taken by the service

provider will always cause the service to fail. This is undesirable from the provider’s point of view,

as the client (if they are not in a particular rush to process the particular parameters) may choose to

reinvoke the operation on any occasion that it has some free input throughput, thereby increasing their

likelihood of receiving compensation for unreliability from the service provider. However, if the client

6.10. Availability conditions 163

fig-10-usage-accuracypackage Data[]

ServiceUsageRecordAccuracyClause

(slang.es)

+calculateDateErrorMargin(serviceUsage : ServiceUsageRecord, evidence : Evidence [*]) : Real
+calculateDurationErrorMargin(serviceUsage : ServiceUsageRecord, evidence : Evidence [*]) : Real
+isDateAccurate(record : ServiceUsageRecord, agreed : Evidence [*]) : Boolean
+isDurationAccurate(record : ServiceUsageRecord, agreed : Evidence [*]) : Boolean
+getMeasurementCount(evidence : Evidence [*]) : Integer
+getAccurateMeasurementCount(evidence : Evidence [*]) : Integer

PermanentFixedServiceUsageRecordAccuracyClause

(slang.es)

+dateErrorMargin : Duration
+durationErrorMargin : Duration

+calculateDateErrorMargin(serviceUsage : ServiceUsageRecord, evidence : Evidence [*]) : Real
+calculateDurationErrorMargin(serviceUsage : ServiceUsageRecord, evidence : Evidence [*]) : Real

AccuracyClause

(slang)

+typeIErrorRate : Percentage
+confidence : Percentage

+getMeasurementCount(evidence : Evidence [*]) : Integer
+getAccurateMeasurementCount(evidence : Evidence [*]) : Integer
+fact(n : Integer) : Integer
+pick(n : Integer, r : Integer) : Integer
+choose(n : Integer, r : Integer) : Integer
+raise(value : Real, power : Integer) : Real
+errorCountProbability(n : Integer, r : Integer) : Real
+findD(sum : Real, n : Integer, d : Integer) : Integer
+getMaximumAcceptableErrors(measurementCount : Integer) : Integer
+evidenceIsAccurate(evidence : Evidence [*]) : Boolean

Figure 6.14: Clauses constraining the accuracy of reporting of service usages

needs to process the parameters urgently, then it is also undesirable from the client’s point of view. This

behaviour may become apparent to the service immediately, or it may not be noticed until reported at a

later administration of the SLA.

The solution implemented in SLAng is to assume that the service provider and the client (as iden-

tified by the SLA, rather than the original provider and ultimate client in the scenario) have at least one

channel of communication available between them besides the use of the service. I have already made

this assumption in the modelling of termination reports in Section 6.7. Over this channel the parties

can communicate bug reports and the service provider can issue bug fix reports. The period between a

bug report and a bug-fix report being submitted can be regarded as a a period during which the service

is unavailable in some category of usage in which the bug manifests itself. The relationship between

failure modes and the usage mode in which they are presumed to occur is established in the SLA (see

Figure 6.13).

Classes supporting the definition of availability conditions are shown in Figure 6.15.

Availability clauses in SLAng are a type of condition clause which are distinct from service be-

haviour restrictions. They are associated with a single usage-mode description, and a set of service-

behaviour restriction conditions, which must implement reliability conditions (i.e. be associated with

failure-mode definitions).

Either party may submit a bug report identifying a usage-mode associated with an availability condi-

tion clause. If the service provider submits the report then a period of unavailability begins automatically.

6.10. Availability conditions 164

fig-11-availabilitypackage Data[]

AvailabilityConditionClause

(slang.es)

+calculateReportingDeadline(violation : Violation) : Real
+considerLoneBugReports() : Boolean
+calculatePenaltyForBugReport(administration : Administration, bugReport : ReportRecord) : PenaltyDefinition
+calculatePenaltyForUnavailability(administration : Administration, bugReport : ReportRecord, bugFixReport : ReportRecord) : PenaltyDefinition
+sLAEvents() : Event [*]
+service() : ServiceDefinition
+evidenced(event : Event, administration : Administration) : Boolean
+bugReports(agreed : Evidence [*]) : ReportRecord [*]
+findRecordOfBugFix(evidence : Evidence [*], bugReport : BugReport) : ReportRecord
+violationsCalculated(agreed : Evidence [*], violations : Violation [*]) : Boolean

ServiceBehaviourRestrictionConditionClause

(slang)

+calculateMaxOccurrences(date : Real, administration : Administration) : Integer
+calculateWindow(date : Real, administration : Administration) : Real
+sLAEvents() : Event [*]
+service() : ServiceDefinition
+evidenced(event : Event) : Boolean
+firstMinimalViolationIndexAfter(cutoff : Real, times : Real, administration : Administration) : Integer
+firstMinimalViolationAfter(cutoff : Real, administration : Administration) : Evidence [*]
+firstMinimalViolation(administration : Administration) : Evidence [*]
+nextMinimalViolation(prior : Evidence [*], administration : Administration) : Evidence [*]
+firstMaximalViolationAfter(cutoff : Real, administration : Administration) : Evidence [*]
+firstMaximalViolation(administration : Administration) : Evidence [*]
+nextMaximalViolation(prior : Evidence [*], administration : Administration) : Evidence [*]

...

ConditionClause

(slang)

+priorClauses() : ConditionClause [*]
+sLAEvents() : Event [*]
+service() : ServiceDefinition
+evidenced(event : Event, administration : Administration) : Boolean
+violationsCalculated(administration : Administration) : Boolean

UsageModeDefinition

(slang.es)

+calculateResponsibleParty() : PartyDefinition

BugFixReport

(services.es)

BugReport

(services.es)

Event

(services)

+date : Date

Party

(services)

Report

(services)

+reliabilityClauses *

+usageMode

+bugReports

*
+usageMode

+usageMode
+bugFixReports

*

+dispatcher

+recipient

0..1

Figure 6.15: Availability clauses and supporting semantics

The client may submit the report within a time limit specified in the availability clause following a pe-

riod of unreliability, as defined by one of the reliability conditions associated with the availability clause.

Clearly, the reliability conditions must only be associated with failure-modes, the failures of which may

occur in the usage-mode associated with the availability clause, and this is enforced using an invariant

on the AvailabilityConditionClause class.

Availability conditions in a SLAng SLA can be used to protect the service provider from repeated

requests by the client. The service provider may issue a bug report at any time, preventing the client

from accumulating compensation related to unreliability, although at the cost of incurring a penalty

for unavailability. The client is also afforded a degree of protection over a service provider who does

6.10. Availability conditions 165

not mend their service when it malfunctions, since they have the opportunity to report problems and

receive compensation if they are not fixed in a timely manner, making them equivalent to time-to-repair

constraints in other languages.

The timing of exchanges of bug and bug-fix reports is relevant in determining penalties. There-

fore the accuracy of report records for this purpose must be constrained for any SLA administration

containing availability conditions, as described in Section 6.7.

The addition of the concepts of bug and bug-fix reports to SLAng is typical of the kind of flexibility

that is occasionally required in expressing SLAs, and supportive of the notion that a language for SLAs

must be highly expressive or extensible.

Since the client and the provider must exchange bug and big-fix reports to establish periods of

unavailability, availability constraints are mutually monitorable.

fig-12-availability-modepackage Data[]

ElectronicServiceUsageBehaviorDefinition

(slang.es)

+included(usage : ServiceUsageRecord, administration : Administration) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean
+sLAEvents() : Event [*]
+evidenced(event : Event, evidence : Evidence [*]) : Boolean
+serviceUsageRecords(agreed : Evidence [*]) : ServiceUsageRecord [*]
+getFirstInstanceOf(agreed : Evidence [*]) : Evidence [*]
+getNextInstanceAfter(prior : Evidence [*], agreed : Evidence [*]) : Evidence [*]
+getBehaviourTime(behaviour : Evidence [*]) : Real

AvailabilityDependentElectronicServiceUsageBehaviourDefinition

(slang.es)

+isUnavailable(usage : ServiceUsageRecord) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

AvailabilityConditionClause

(slang.es)

+availabilityClauses*

Figure 6.16: Electronic-service behaviours may be conditional on the state of availability of the service
in some usage mode

If the client and provider of an electronic-service have agreed, via an exchange of reports,

that the service is unavailable in some usage-mode, then it would be ludicrous for the client to

be able to continue claiming reliability penalties supported by evidence of usages occurring in

this mode. A straightforward way to encode this exception is to make the description of failure-

modes dependent on the concurrent availability of the service (according to some availability clause).

A class, AvailabilityDependentElectronicServiceUsageBehaviourDefinition,

supporting this kind of behaviour definition is included in the language, and shown in Figure 6.16.

It overrides the operation excluded() to state that a service-usage may not be regarded as part of

this mode if the associated availability clauses is being violated when it occurs. This abstract class may

be combined with FailureModeDefinition, for example, in an extension. An example of this is

6.11. The SLAng language specification 166

given in the next chapter.

6.11 The SLAng language specification
SLAng is defined in a collection of source files in the format accepted by the UCL MDA tools. These

sources may be compiled into a single XMI version 1.2 document. Ultimately, I would prefer this XMI

document to be regarded as the definitive statement of SLAng, because XMI is a standard concrete syntax

for EMOF and OCL, whereas the input format for the UCL MDA tools, despite its various advantages,

is not. Unfortunately, tool support for compiling a model incrementally from sources in a mixture of

formats does not currently exist.

Since SLAng is currently a fully abstract language, it will always need to be extended before it is

used. At present, by far the easiest way to achieve this is to use the UCL MDA tools to create the sources

for a new language. These new sources may use the import mechanisms that I have implemented in

the UCL MDA tools to incorporate the sources defining the core SLAng language. Once a concrete

language has been generated, it will be appropriate to compile it into an XMI file. As discussed in

Chapter 4, concrete SLAs should then reference this file as the definitive specification of the language in

which they are defined.

It is important for a potential user of SLAng to understand how the core language should be used,

including the above methodological advice concerning the production of extensions. By far the most

comprehensive discussion of issues surrounding the use of the language is this dissertation, which in

due course will be made publicly available. Therefore, the SLAng language specification includes as

informal advice associated with the SLA class, the recommendation that a user consult this document,

together with the caveat that this document should not be considered to be definitive of the language.

6.12 Additional considerations in ASP SLAs
6.12.1 Payments and penalties

A prime requirement for SLAs is that they allow the provider of a service to charge for the use of their

service. The only support that I have thus far provided for this is the Compensation class included in

the domain model. Clearly, much more sophisticated support could be required, but this will not always

be necessary. In the next chapter I provide an example of the use of throughput conditions to implement

per-use charging.

6.12.2 Multiple penalties, gradated penalties, and interactions between condi-
tions

Reliability clauses and failure-mode definitions in a SLAng SLA are associated in a many to many rela-

tionship. Several reliability clauses may apply concurrently, and violations and penalties are calculated

for each independently. Failures may belong to multiple failure modes, so there is the potential that a

single failure may result in the application of more than one penalty.

This may be what is desired in the agreement, and result in a gradated payment scheme where

the aggregate amount of penalties paid is related to the number of violations occurring concurrently.

However, it may be preferable to disregard penalties for more minor infractions when a more serious

infraction is occurring. Support for this may be implemented by considering what violations of other

6.13. Language specification overview 167

clauses have been calculated in the same or previous administrations for which violations of a particular

clause are being calculated. A sophisticated example of this is provided in the next chapter.

An alternative approach for implementing gradated penalties for violations of service-behaviour

restrictions is to relate the value of the penalty to the length of maximal violations observed.

6.12.3 Maintenance and scheduling

Maintenance of an electronic-service is not an event that can be observed by the client. An SLA defin-

ing conditions over an electronic service should therefore not offer guarantees on maintenance directly,

as such guarantees will not be monitorable by the client. Since maintenance periods imply that other

guarantees will not be met a better approach is to associate schedules with these other guarantees. This

can be achieved by filtering the events that are considered to be relevant to a condition by overriding the

sLAEvents() operation on the ConditionClause class. An example of this approach is provided

in the next chapter.

6.12.4 Real-world behaviour and mutual monitorability

The class MutuallyMonitorableSLA includes the constraint that evidence submitted during any

administration of the SLA must only depend on events that can be observed by both the client and

the provider of any service being administered. SLA authors defining extensions to SLAng to express

conditions over real-world events must respect this constraint. If they do not, but honestly model the

witnesses to the event types that they define, then a failure to specify monitorable conditions will be

revealed if the SLA is tested. This once again indicates the strength of the model denotational pattern in

supporting the definition of good SLAs.

6.13 Language specification overview
The following sections provide class diagrams summarising the classes and relationships in the current

version of the SLAng language. First the generic syntax and semantic classes are presented. These

classes are generic in the sense that they are independent of the particular type of any services being

constrained in an SLA.

Subsequently the syntactic and semantic types supporting the definition of conditions over elec-

tronic services are presented.

Finally I summarise the relationship between syntactic and semantic types. Directed relationships

from a syntactic type to a semantic type tends to represent a denotational relationship. A relationship

from a semantic type to a syntactic type represents a reference to some clause in a concrete SLA in some

piece of evidence related to the behaviour of a service.

1

6.13. Language specification overview 168

6.13.1 Generic syntax

fig-13-slangpackage Data[]

TerminationByReportAdministrationClause

(slang)

PermanentFixedReportRecordingAccuracyClause

(slang)

SLA

(slang)

ServiceBehaviourRestrictionConditionClause

(slang)

TerminationByReportConditionClause

(slang)

ReconciliationAdministrationClause

(slang)

ReportRecordingAccuracyClause

(slang)

TerminatingConditionClause

(slang)

ServiceBehaviourDefinition

(slang)

MutuallyMonitorableSLA

(slang)

AdministrationClause

(slang)

ServiceDefinition

(slang)

ConditionClause

(slang)

AccuracyClause

(slang)

PenaltyDefinition

(slang)

AuxiliaryClause

(slang)

PartyDefinition

(slang)

Definition

(slang)

+responsibleParty

+administrationClauses

1..*

+accuracyClauses

*

+conditions
1..*

+administrationClauses
1..*

+auxiliaryClauses

{ordered}

*

+parties

2..*

+penalties

*

+services

1..*

+administrationClauses

1..*

+behaviourRestrictions
1..*

+restrictedBehaviours

1..*

+client+provider

Figure 6.17: Syntactic elements supporting the specification of SLAs, but independent of service type,
in the SLAng language specification

1

6.13. Language specification overview 169

6.13.2 Generic semantics

fig-15-servicespackage Data[]

TerminationReport

(services)

Compensation

(services)

Administration

(services)

ReportRecord

(services)

Evidence

(services)

Event

(services)

Party

(services)

Report

(services)

Violation

(services)

Account

+witnesses

*+recipient+dispatcher

+supporters

1..*

* +compensated

+compensating

+evidence *

+events *

*

+participants

1..*

+violation

+compensation

0..1

*

+agreed
*

+owner

+violations*

+submittedEvidence1..*

Figure 6.18: Semantic elements descriptive of SLA relationships independent of the types of service of
which conditions are expressed, in the SLAng language specification

1

6.13. Language specification overview 170

6.13.3 Electronic-service syntax

fig-14-slang-espackage Data[]

AvailabilityDependentElectronicServiceUsageBehaviourDefinition

PermanentFixedServiceUsageRecordAccuracyClause

(slang.es)

ElectronicServiceUsageBehaviorDefinition

(slang.es)

ServiceUsageRecordAccuracyClause

(slang.es)

ElectronicServiceInterfaceDefinition

(slang.es)

ElectronicServiceClientDefinition

(slang.es)

LatencyFailureModeDefinition

(slang.es)

InformalFailureModeDefinition

(slang.es)

InformalUsageModeDefinition

(slang.es)

AvailabilityConditionClause

(slang.es)

ServiceBehaviourDefinition

(slang)

ElectronicServiceDefinition

(slang.es)

FailureModeDefinition

(slang.es)

UsageModeDefinition

(slang.es)

ParameterDefinition

(slang.es)

OperationDefinition

(slang.es)

ServiceDefinition

(slang)

ConditionClause

(slang)

AccuracyClause

(slang)

AuxiliaryClause

(slang)

<<enumeration>>

ParameterKind

(slang.es)

Definition

(slang)

+usageMode

+availabilityClauses

*

+clients

1..*

+interfaces

1..*

+parameters *

+operation

+operations 1..*

+interface

+usageModes1..*

+failureModes *

Figure 6.19: Syntactic elements supporting the specification of SLAs for electronic services, in the
SLAng language specification

1

6.13. Language specification overview 171

6.13.4 Electronic-service semantics

fig-16-services-espackage Data[]

ElectronicServiceInterface

(services.es)

ElectronicServiceClient

(services.es)

ServiceUsageRecord

(services.es)

ServiceResponse

(services.es)

ParameterRecord

(services.es)

ParameterValue

(services.es)
ServiceRequest

(services.es)

BugFixReport

(services.es)

Parameter

(services.es)

BugReport

(services.es)

Operation

(services.es)

Report

(services)

Event

(services)

+serviceUsageAsOutput

0..1

+outputs*

+serviceUsageAsInput

0..1

+inputs *
+request

+operations

*

+interface

+request

0..1
+parameters

*

+response

0..1

+results

*

+parameters

+client

0..1

+response

0..1 +request

+response

0..1

+requests

*

Figure 6.20: Semantic elements descriptive of electronic services in the SLAng language specification

1

6.14. Summary 172

6.13.5 Relationships between syntactic and semantic elements

fig-17-denotationpackage Data[]

ElectronicServiceUsageBehaviorDefinition

(slang.es)

ElectronicServiceInterfaceDefinition

(slang.es)

ElectronicServiceClientDefinition

(slang.es)

ElectronicServiceInterface

(services.es)

ElectronicServiceClient

(services.es)

AdministrationClause

(slang)

UsageModeDefinition

(slang.es)

ServiceUsageRecord

(services.es)

ParameterDefinition

(slang.es)

OperationDefinition

(slang.es)

TerminationReport

(services)

ParameterRecord

(services.es)

ConditionClause

(slang)

PenaltyDefinition

(slang)

Administration

(services)

PartyDefinition

(slang)

BugFixReport

(services.es)

Operation

(services.es)

BugReport

(services.es)

Parameter

(services.es)

Violation

(services)

Event

(services)

Party

(services)

SLA

(slang)

+operation

+usageRecords

*

+events

*

+penalty

0..1 +violations

*

+violatedClause

+definitions

*

+type +parameterRecords

*

+definitions

*

+usageMode

+bugReports
*

+usageMode

+bugFixReports

*

+administrations

*

+client

+definitions

*

+definitions

*

+behaviours

*

Figure 6.21: Relationships between syntactic and semantic elements in the SLAng language specification

6.14 Summary
In this chapter I have described the design of the SLAng language, which is an abstract, extensible

language for ASP SLAs. The full language specification is available online [121] and documented in

Appendix E, which also includes the definitions of extensions to the language described in the follow-

ing chapter. I presented a thorough description of the syntactic and domain models included in the

core language specification, and gave examples of OCL constraints relating elements in these models

to define the semantics of SLAng in according to the model-denotational approach. I described how

abstract classes and side-effect-free operations are used in the specification to assist users in defining the

extensions necessary to support the specification of a concrete SLA.

In the next chapter I describe a case-study in the use of the language, thereby providing examples

6.14. Summary 173

of both extensions to the language, and concrete SLA statements expressed using the language.

174

Chapter 7

Case-study: the eMaterials project

In the previous chapter I have described the design of an abstract, extensible, domain-specific language,

SLAng, providing support for the definition of mutually-monitorable SLAs with conditions defined in

relation to electronic services.

In this chapter I present a case-study involving the use of SLAng to define SLAs in a realistic

application-service scenario. This exercise provides the foundation for a validation of SLAng against its

requirements, a comparison of SLAng with alternative languages for ASP SLAs, and a discussion of the

evolution of the language, all of which are covered in Chapter 8.

This chapter also contributes an initial method for integrating SLAs into an existing service-

provision scenario, and a demonstration of that method applied to develop some SLAs.

The case-study scenario chosen is a service developed by the Computer Science department at Uni-

versity College London as part of a now completed research project, eMaterials. The service, which I

refer to in aggregate as the polymorph-search service, is provided to the Chemistry department to aid

the chemists in performing computational analysis of chemical structures. The service relies on infras-

tructure services provided by other parties, including network services and the provision of computing

nodes for a computational grid. It also involves the outsourcing of a graph-plotting service to Southamp-

ton University.

In the remainder of the chapter I first introduce the case-study method, then describe the case-study,

resulting in two complete SLA examples.

7.1 Case-study method
The case study presented here investigated the use of SLAng as the basis for the definition of a number

of SLAs. According to the terminology of [147], it was a single-case study, where the unit of analysis

was a single service-provision scenario. The principal research question being addressed was whether

the SLAng language can be used, with extensions, to define SLAs that would be satisfactory to the

various stakeholders in a realistic ASP scenario. The main conclusion of the case-study, was is positive

with respect to this question, and I generalise from this to suggest that SLAng would be appropriate

for SLAs for other ASP scenarios, based on the observation that the chosen scenario does not seem to

possess any special qualities, other than being of its nature an ASP scenario, that make it amenable to

the use of SLAng. Validation of this conclusion is provided by establishing that the SLAs produced were

indeed suitable to the scenario. This was achieved by evaluating the case-study SLAs according to the

7.1. Case-study method 175

requirements developed in Chapter 2. This evaluation is provided in Chapter 8.

The case-study was also intended to be descriptive, as the account of it given here illustrates the

steps necessary to produce extensions to the SLAng language to support the statement of concrete SLAs.

Furthermore, it had an exploratory component, in that it cast light on the following issues:

• the ease and expense necessary to use SLAng as a basis for defining SLAs;

• the analysis activities required to determine the appropriate design and parameters for the case-

study SLAs;

• non-fundamental expressivity requirements that could lead to useful extensions to SLAng to in-

crease its expected adequacy to future applications;

• stakeholder views on the need and uses of SLAs;

• process issues relating to the development of SLAs for a particular scenario.

I describe the case-study method chosen in detail in this section.

In choosing a scenario to study, I sought to match the following criteria, based on my assumptions

regarding the applications and benefits of SLAs, and the focus of this work on SLAs for application-

service provisioning:

• the scenario should be of practical or commercial interest to some parties other than myself;

• multiple financially independent parties should be involved;

• communication between the parties will be in part mediated by electronic services. Electronic

services may also implement some functionality in the scenario;

• plausible requirements that may be satisfied through the use of SLAs should exist.

Evaluating SLAng in the context of pre-existing service scenarios is analogous to introducing a

new technology to a software project late in the development process, or retrofitting a deployed system.

The new technology has the chance to meet existing requirements in the scenario, or improve the degree

to which existing requirements are met. However, the scenario has not been designed with the new

technology in mind. Introducing the new technology may result in derived requirements that are not

compatible with decisions that have already been made.

A practical approach to introducing a new technology into an existing development is as follows:

first, an understanding of the state of development of the scenarios must be obtained. This will include

an understanding of who the stakeholders in the scenario are, and what fundamental requirements the

service-provisioning scenario is intended to meet for them; second, on the basis of the understanding

of the requirements developed in the first step, requirements specifically relevant to the new technology

are considered; third, a plan for the introduction of the new technology should be made, aiming to

avoid modifying the existing scenario significantly, which would imply redevelopment costs; fourth, this

attempt is evaluated in terms of the additional advantages provided by the technology with respect to the

7.1. Case-study method 176

requirements that it is capable of satisfying, and any associated costs or disadvantages that introducing

the new technology might imply. In the fifth stage, recommendations may be made for redeveloping

the initial scenario to better accommodate the derived requirements that introducing the new technology

implies. If the third stage is highly successful, the fifth may not be required.

The case-study I present here followed this pattern. The steps taken, and the information elicited or

produced at each stage are shown in Figure 7.1. In the following subsections I describe the steps in more

detail, as they relate specifically to the introduction of SLAs into a scenario.

Stakeholders

Fundamental requirements

Decision to implement
services

Service requirements

Service architecture

Service-scenario risk-
mitigation requirements

Decision to offer
SLAs

SLAs

Derived SLA requirements

Revised service architecture

Revised risk requirements

Revised SLAs

Revised derived SLA requirements

1. Initial analysis

2. Risk analysis

3. SLA definition

4. Evaluation

Architecture evaluation

5. Redesign (optional)

Figure 7.1: Case study phases, and the information gathered in each. Arrows indicate derivation rela-
tionships between the information, with the target of an arrow derived in some part from the source.

7.1.1 Initial analysis

In the first stage of the case-study, a view of the existing scenario was developed. This includes a

requirements analysis and model of the existing service architecture.

7.1. Case-study method 177

An analysis of the fundamental requirements underlying the scenario is needed because risk-

mitigation requirements will depend on the objectives of the various parties engaging in the scenario.

It is the assumption of this work that SLAs serve the purpose of mitigating financial risk in a service-

provision scenario, so acquiring an understanding of these requirements was the principle focus of the

analysis part of the case-study.

Moreover, when considering a redesign of the scenario to render it more amenable to the use of

SLAs, choices can only be justified on the basis that they meet the fundamental requirements to a superior

degree than the original design.

The requirements analysis performed in the case-study consisted of a stakeholder analysis, followed

by the development of a summary of the requirements for the scenario from the perspective of each

stakeholder.

To accommodate the limited resources that case-study participants had to devote to the case study,

the model of the scenario and its requirements was be derived primarily from consultation with a Prin-

cipal Stakeholder (PS), in this case the computer-science researcher with responsibility for coordinating

the polymorph-search service. Requirements elicitation concentrated on high-level requirements, and

requirements were not investigated in much detail. To compensate for this lack of rigour, the principle

stakeholder was consulted throughout the case-study to ensure that important assumptions or require-

ments that may have initially been overlooked were discovered as the case-study developed.

The model of the scenario developed in this stage consists of:

• an overview description of the scenario;

• a UML deployment diagram depicting the service architecture;

• a list of stakeholders in the scenario and their fundamental requirements;

• use-case descriptions for services in the scenario.

7.1.2 Risk analysis

In the second stage of the case-study, the risks to the stakeholders of using the existing service architec-

ture were modelled. Risks imply a requirement to mitigate them, and my assumption is that SLAs are an

appropriate mechanism for mitigating some such risks. Therefore the purpose of the risk analysis was to

identify specific requirements that could be addressed using SLAs.

The risk analysis was guided by considering each step in the service-provision use-cases and how

undesirable outcomes of these steps could result in harm to the participants in the scenario.

Analysis concluded when an agreement with the PS with respect to the risk requirements was

reached.

7.1.3 SLA design and definition

Having identified the risks faced by the participants in the scenario, the next step in the case-study was

to attempt to produce SLAs to mitigate the risks, without recommending any change to the processes or

the deployment of services in the scenario. This effort naturally broke down into two steps, which I call

SLA design, and SLA definition.

7.1. Case-study method 178

In the SLA-design stage, a system of SLAs was first proposed, which I hoped would mitigate

to some extent all of the risks for which SLAs are an appropriate risk-mitigation mechanism in the

scenario. At this point the only details decided for each SLA were the origins of the events in the service

deployment in relation to which conditions of the SLAs would be specified. The choice of SLAs in

the system was not arbitrary, but was informed by the desire to provide a system of SLAs that was

as monitorable as possible. Anticipating the need for latency constraints in the SLAs, and identifying

service interactions similar to the three-party scenario considered in Chapter 5, it was possible to argue

for a particular system of SLAs as being optimal.

The next step in the SLA design was to decide how the individual SLAs would contribute to miti-

gating the risks of the scenario participants. This was achieved by considering, for each SLA, each risk

in the scenario, and whether the SLA could contribute to its mitigation. For a particular risk one or more

particular conditions for an SLA were proposed that would mitigate the risk. For example, the risk that

the simulation may not complete in a timely fashion led to the proposal of conditions for an SLA between

Chemistry and IS, resulting in penalties paid by IS to Chemistry in the event of slow or faulty simulation

completion. At this point the conditions were proposed in an abstract and informal manner, identifying

the intent of each SLA without specifying parameter values, or precise meanings for the conditions.

Entering into the proposed SLAs would be undesirable for the case-study participants if the SLAs

posed additional risks to the scenario participants that they did not also mitigate. Therefore, I extended

the risk analysis into the SLA design phase of the case-study. When designing the conditions for the

SLAs, I attempted to identify and then mitigate any new risks. This led to a somewhat iterative approach

to SLA design, where introducing a new condition in one SLA could imply the need for a complementary

condition in another. I maintained a list of all risks in the scenario separately from the risk-analysis and

design documentation, which now constitutes Appendix B.3. Each risk is cross-referenced both to the

point in the analysis or design documentation at which it is identified, and to the proposals for SLA

clauses to mitigate them, so it is clear what new risks are introduced and how they are dealt with. At this

point in the case-study, some risks were discounted as not being suitable for mitigation by SLAs, such

as security risks for which existing hardware and software risk-mitigation approaches exist.

The product of this phase in the case-study was a description of a system of SLAs, and for each

SLA in the system, a list of the clauses required in each SLA, specified informally, but related to the risks

they are intended to mitigate. The system required for the eMaterials scenario consisted of five SLAs.

At this point I also listed the details of the electronic-service interfaces in relation to which the SLAs

will need to be specified, to the extent that these details could practically be determined. At this point in

the case-study, progress was hindered by a lack of documentation for certain communications protocols

used by the electronic-services in the scenario. As I result, I elected to exclude one of the required SLAs

from further consideration.

In the SLA-definition stage I attempted to convert the informal, abstract descriptions of the condi-

tions for the remaining SLAs into fully-specified, formal conditions expressed using SLAng and exten-

sions to SLAng.

7.2. The eMaterials case-study 179

The creation of these SLAs, and the extensions on which they depend, required two further related

efforts, one of analysis, the other of design. The analysis effort was to determine parameter values for the

SLAs, for parameters for such clauses as latency and reliability conditions, and penalty definitions. The

design effort was to produce SLAng extensions, capturing the structure and the meaning of the required

clauses, and subsequently concrete SLA statements relying on these extensions to implement the SLAs.

These efforts were related because the structure of the extensions determines what parameters values are

required.

As discussed below, I discovered that the four remaining SLAs could be grouped into two pairs, with

the SLAs in each pair having identical structure. This result, combined with difficulties experienced in

obtaining meaningful parameter values for the SLAs led to a narrowing of the case-study focus to the

development of two fully-formalised SLAs.

For each condition of the two SLAs in question, I performed the following steps iteratively:

1. I considered how it could be implemented using SLAng, or extensions to SLAng;

2. I used the structure of SLAng and its putative extensions to guide the production of questions

for the PS designed to elicit parameter values for the conditions, or refinements of the proposed

extensions required to capture peculiarities of the required agreements;

3. I put the questions to the PS, and make decisions regarding the design of the SLA based on the

answers received.

7.1.4 Evaluation

Having completed and documented the initial SLAs, the results were submitted to the PS for comment.

The proposed SLAs were assessed according to the extent to which they mitigated the risks identified

in the scenario, and the practical implications of using the SLAs, in particular in terms of monitoring

responsibilities.

At this point, it was possible to address the principal research objective of the case-study, as a set

of SLAs had been proposed. I also critically reviewed the case-study process, in the hope of proposing

further improvements to this nascent method for SLA development.

7.1.5 Redesign

Certain problems encountered during the initial analysis, design and definition of a system of SLAs

for the eMaterials scenario could more profitably be addressed by modifying the scenario, rather than

deciding that the SLAs themselves are inadequate. In a short discussion of these problems, I consider

modifications to the scenario to better accommodate the use of SLA technology.

From the point of view of the principal research question in this case-study, this stage was unnec-

essary as it had already have been demonstrated that SLAng can be used to specify appropriate SLAs.

However, the stage was interesting from an exploratory perspective.

7.2 The eMaterials case-study
The eMaterials project, now complete, funded a collaboration between UCL grid-computing researchers

in the Department of Computer Science (CS) and the UCL Chemistry Department to investigate the

7.3. Service architecture 180

computational prediction of organic crystal structures from chemical diagrams.

The problem is relevant to the discovery of new drugs, but is computationally demanding in general.

A large number of molecular packings must be considered for each compound, the thermodynamic like-

lihood of each being indicated by a calculation of the lattice energy. Physical properties of likely crystals

must then be estimated. The problem amounts to search in a large space, coupled with sophisticated

analysis of the candidates.

Prior to the eMaterials project, the chemists would execute this search using two Fortran programs,

MOLPAK and DMAREL and a combination of manual and batch control, on a 4 CPU Silicon Graphics

server. A typical search would take between one and four months to complete [22].

Within UCL, the Information Services (IS) division is a support group that manages computational

and network resources for the administrative departments and the student population. It also administers

the inter-departmental network. Individual departments may also have independent groups fulfilling the

same role for the academic staff, and this is the case for the Chemistry and Computer Science depart-

ments.

The eMaterials project funded the creation and administration of a computational grid, controlled

by researchers in the UCL Computer Science (CS) department, but consisting of nodes maintained by

IS. The aim was to support the analysis activities of the chemists while providing the opportunity to

research grid engineering for computer-science.

7.2.1 SLAs in the eMaterials scenario

This scenario represents a potentially interesting use of SLAs. The eMaterials project is now complete,

and without a centralised source of funding the various participants in the simulation infrastructure must

consider how their costs are to be covered. In practice, this may be achieved either by acquiring addi-

tional research grants in return for the promise of future scientific and technical advances, or alternatively

the various departments and the university administration may consider the services involved valuable

enough to fund out of overhead costs. The possibility of commercialising the service has also been

suggested. If this were to occur, there would be a definite need to consider SLAs.

For the purpose of this case-study, I adopt the assumption that the parties remain financially inde-

pendent, and that the principle benefit of the infrastructure is to the chemists. They must therefore pay

for it from funding into minerals research. The various service providers must recuperate their costs

by charging for their services. In return, their clients may expect them to provide quality-of-service

guarantees.

7.3 Service architecture
The polymorph-search service architecture makes use of a number of technologies, which I now briefly

review:

7.3.1 MOLPAK and DMAREL

The jobs implementing the computational simulation performed by the polymorph-search service are

implemented by the Fortran application programs MOLPAK and DMAREL. MOLPAK currently supports

38 different packing types that can each generate up to 200 candidate packings. The physical properties

7.3. Service architecture 181

of these packings are then calculated by DMAREL.

Computationally these applications are independent of each other. Subject to resource availability,

the 38 packing types can also be evaluated in parallel. This enables the problem to be solved by nodes in

a computational grid without the use of shared memory, and with low bandwidth connections. The im-

plementation of the applications are also independent and conversion between input and output formats

is required. Individual jobs typically take between 5 minutes and an hour to complete.

A typical workflow for the application is shown in Figure 7.2.

Configure system

molpak

dmarel dmarel

Collate results Collate results

molpak

dmarel dmarel

Collate results Collate results

molpak

dmarel dmarel

Collate results Collate results

Figure 7.2: Workflow in the polymorph-search service

7.3.2 Condor and Polynet

The eMaterials project obtained cooperation from the overall UCL administration and in particular IS to

make use of surplus computational resources in the collegiate network of cluster rooms (rooms full of

standard PC equipment used by undergraduate students for coursework and general computing).

This resulted in the deployment of a grid cluster of consisting of around 1000 IS-managed ma-

chines. The cluster software and access to these resources is managed by CS research staff and all

management software is installed on CS-managed servers. Job submission naturally originates in the

Chemistry department.

Job scheduling within the cluster is managed by Condor, a grid middleware [14]. Condor man-

ages a set of computational resources according to some scheduling policy. It maintains one or more

job queues, to which serial or parallel job can be submitted. A Condor management node will then,

according to its policy, allocate computational resources to these jobs.

Initially, access to the UCL Condor-grid resources was provided using a thick-client called

Polynet, coded in Java, which integrated directly with Condor. The simulation workflow was es-

sentially fixed in the implementation of the client, although a degree of parameterisation was possible.

Overall simulations that previously took 1 to 4 months could now be completed in a matter of hours.

7.3.3 ActiveBPEL Workbench

The Condor/Polynet solution was criticised as limiting the control that the chemists have over their

own simulation procedures, which was not the case when the simulations were manually supervised.

In response, grid research in CS has focussed on providing a workflow editing and enactment envi-

ronment based on the language BPEL [102], and the open-source technologies Eclipse (a development

environment) [19] and ActiveBPEL (a workflow enactment engine) [1]. This environment is called

7.3. Service architecture 182

the ActiveBPEL Workbench [20].

In this environment, scientific workflows can be written in Java with the help of a graphical editor.

These may then be deployed into an ActiveBPEL container. ActiveBPEL exposes management

interfaces to deployed workflows as web-services and web-pages. Custom ports for these services may

also be specified, the invocation of which correspond to the initiation of new parallel activities within

the process, proceeding from ‘receive’ actions. Because web-service invocations can also be specified

within workflows, it is clear that these facilities allows the hierarchical composition of workflow-based

web-services, as well as the orchestration of traditional web-services. ActiveBPEL is deployed as a

Java servlet [127] in the Apache Tomcat application server [5], and relies on the Apache Axis

library for its implementation of web-services [7].

To enable the coordination of the UCL Grid it was necessary to integrate ActiveBPEL with

Condor. It was not deemed desirable to modify ActiveBPEL to this end, as one of the reasons

for selecting BPEL for orchestration was that industry would tend to produce better workflow enact-

ment engines than the research community. Clearly requiring custom extensions to the workflow engine

mitigates against this.

At the time of implementation of the polymorph-search service, Condor did not implement web-

services directly, although this functionality has subsequently been contributed to the Condor project

by researchers in the UCL CS department. Therefore, the decision was made to wrap Condor in an

interface defined by GridSAM, an open-source project with the goal of providing standard interfaces for

distributed resource managers, discussed in more detail below.

Combined with GridSAM, these technologies enable the scripting of simulations for execution on

grids. UCL call these simulation orchestrators ‘meta-schedulers’.

It is not yet clear the extent to which this effort has been successful because of the unwillingness of

chemists to obtain the skills required to script BPEL workflows. In an effort to demonstrate the efficacy of

the approach, CS has implemented a meta-scheduler for the eMaterials workflow, which was previously

coordinated by the Polynet client. The preferred method for chemists to conduct simulations is now

via a website interface to this meta-scheduler. This webpage, implemented using a combination of static

pages and Java servlets hosted in Tomcat, is called the Polymorph Search Webclient.

7.3.4 GridSAM and JSDL

GridSAM is an open-source job submission and monitoring program [30]. It’s main control interface

is implemented as a web-service. The project is funded by the UK Open Middleware Infrastructure

Institute (OMII) managed programme [98].

The aim of GridSAM is to provide a standard interface for the submission and monitoring of sci-

entific processing jobs. The GridSAM implementation also provides a degree of support for executing

these jobs, and common deployment tasks associated with them, in particular the gathering (or ‘stag-

ing’) of related data resources. Much of this functionality is implemented by grid middleware such as

Condor.

A job specification is expressed using the Job-Submission Description Language (JSDL) [99], an

7.3. Service architecture 183

XML dialect and standard of the Open Grid Forum (OGF). The job specification includes details of

the procedure to execute the job (typically by executing a program within an operating system environ-

ment), the run-time resources required, and the locations of any pertinent data (which may include the

executable artifacts for the job).

The job specification does not include any scheduling information for the job. Having received a

job specification, the GridSAM service coordinates with a Computational Resource Management Sys-

tem (CRMS), typically grid middleware such as Condor. GridSAM, via CRMS-specific extensions,

essentially translates any information included in the JSDL specifications it receives into configuration

files and actions appropriate to the underlying CRMS.

JSDL has some of the characteristics of an SLA language, in that it describes resource requirements

which are expected to impact on the quality-of-service delivered by the grid. A comparison of the

expressive capabilities of JSDL to SLAng is provided in the next chapter.

7.3.5 The plotws service

The collation of simulation results by the polymorph-search service involves the production of a

summary graph as a bitmapped image that can then be retrieved from the Polymorph Search

Webclient. The production of this image is achieved using the plotws service, a stateless web-

service hosted by Southampton University.

Collation of results occurs after the completion of each DMAREL job, so that the progress of a

simulation can be viewed incrementally.

7.3.6 Service deployment

I now describe the deployment of the polymorph-search service, depicted in Figure 7.3.

The Polymorph Search Webclient provides a web-service interface that may be used by

the chemists to initiate a simulation. This is achieved in two steps: first, large parameter data is provided

by HTTP upload. Second, a simulation is initiated by an HTTP request containing some additional small

parameters. The node hosting the webclient is called trout1. This node also contains a Condor

submit queue.

When a simulation is started, the webclient interfaces with a meta-scheduler on a second node,

trout5. This node then orchestrates the processing of MOLPAK and DMAREL jobs by submit-

ting JSDL specifications to a GridSAM instance on the same node as the Polymorph Search

Webclient, trout1. This GridSAM instance converts these specifications into Condor submis-

sions and submits them via commands issued to the Condor submit daemon which maintains a

queue of submissions.

Periodically, a Condor controller process, running on a third node managed by CS, polls the submit

queue resident on trout1. This controller also maintains information about free resources in the cluster,

provided by periodic status updates delivered by the Condor processes running on the cluster nodes.

If suitable resources are available, the controller notifies the cluster node and the queue, effectively

assigning the node to the queue. The queue process then manages the staging of any configuration or

data files to the cluster node. Note that because the queue process is on the same node as the Polymorph

7.3. Service architecture 184

Condor controller

CS node

...

...

IS cluster node

Condor

trout5

Chemistry node

Tomcat
Axis

BPEL engine

Process manager

eMaterials workflow

. ..

Tomcat
Axis

trout1

GridSAM

Polymorph search webclient

File upload page

Parameters page

Trigger page

Summary page

Condor submit daemon

Web-browser

Southampton Node

Plot service

GridSAM

molpakdmarelPartnerService
α

polyutilsPartner
polyutilsPartner

α

Figure 7.3: Service infrastructure in the e-Materials case-study

Search Webclient (trout1), any files uploaded by the chemist when configuring the simulation

will be available for staging.

MOLPAK and DMAREL are both serial jobs so do not benefit from any concurrency within the grid.

The logic of concurrent execution is entirely captured by the workflow depicted in Figure 7.2. Both tasks

are computationally demanding so are run exclusively, one node per job. The vast majority of nodes in

the cluster have only a single CPU.

The cluster nodes process jobs that have been assigned to them. When complete, they notify the

queue that assigned the job, and stage any results files back to the node on which the queue is deployed.

They also notify the Condor controller that they have become available.

Periodically the meta-scheduler executing on trout5 will poll the GridSAM service to deter-

mine the status of some job. GridSAM in turn acquires this information from the Condor submit

daemon. Once a job is found to have completed, the meta-scheduler may submit further jobs. Following

MOLPAK jobs, DMAREL jobs are scheduled.

When a DMAREL job completes, the meta-scheduler coordinates the production of a results sum-

mary webpage. This is effected by invoking the polyutilsPartner web-service deployed on

trout1. In the course of its operation the polyutilsPartner service invokes the plotws web-

service hosted by Southampton university. This produces an image containing a graph on which is

plotted a set of data points, each generated by a completed DMAREL job. The simulation is complete

when all DMAREL jobs have completed and the final summary generated.

7.4. Stakeholders and fundamental requirements 185

The various processes and nodes mentioned above are located in networks, and communicate via

networks controlled by the different parties in the scenario. Figure 7.4 depicts the locations of the nodes

in networks and the communication pathways used between the nodes.

Chemistry
node

Condor
cluster ...

...

CS
servers

Chemistry network
IS network CS network

JANET

Southampton network

Southampton
node

Figure 7.4: The location of nodes within networks in the eMaterials scenario

7.4 Stakeholders and fundamental requirements
The stakeholders in this scenario are the following, listed along with their fundamental requirements for

the scenario:

Chemist: wishes to obtain the results of a specific simulation in a timely and correct manner. I assume

that the Chemistry Department takes responsibility for the behaviour of chemists in this scenario,

and will enter into SLAs on their behalf.

Computer scientist: wishes to enable the execution of the simulation, while covering the costs of con-

tributing network and processing resources to the simulation. Computer scientists wish to be

involved with the undertaking of simulations by scientists from other disciplines in order to for-

mulate theories and provide solutions to better enable this activity in the future. I assume the

Computer Science Department takes responsibility for the behaviour of computer scientists in this

scenario, and will enter into SLAs on their behalf.

Information Services division: wishes to recuperate costs from services provided to academic depart-

ments within UCL. These services include making surplus computational resources available and

providing network services connecting departments within UCL.

7.5. Use-case and risk analysis 186

ISP: any internet service providers connecting UCL and Southampton wish to generate revenue by

providing network connectivity. In fact, in this scenario there is a single ISP, JANET [41].

Southampton University: wishes to generate revenue by charging for the use of a graph-plotting ser-

vice.

7.5 Use-case and risk analysis
7.5.1 Use-cases in the scenario

The scenario consists of three main use-cases. These are:

1. Conducting a simulation – in which a chemist triggers a simulation to be executed on the grid;

2. Administering grid nodes – in which a computer scientists accesses and configures individual grid

nodes provided by IS;

3. Receiving grid status notifications – in which grid nodes provided by IS periodically and au-

tonomously report their status to the Condor Manager residing on a node controlled by CS.

Each of these use-cases involves interaction between at least two of the scenario participants, who

I am assuming are financially independent. Therefore, there is a risk that a fault will occur which is

the responsibility of one party, but which harms a second party. It is the objective of this case-study to

produce SLAs to mitigate these kinds of risks.

Interdependencies exists between the use-cases. If a computer scientist is unable to configure cluster

nodes, or if those nodes fail to report their availability for processing in a timely or accurate fashion, it

is unlikely that the computer scientist would be able to provide any guarantees concerning a simulation

that they coordinate.

Despite the importance of all three use-cases, in this case study I have opted to consider only the

first use-case, that of conducting a simulation. The reason for this is that to write SLAs, or to include

SLA terms related to the second and third use-cases would require an understanding of the detailed

communication protocols that Condor uses for administration and status reporting. Unfortunately this

is impractical, because these protocols are not documented, and the effort required to reverse-engineer

Condor places such an exercise outside the scope of this work. This issue is discussed further in the

case-study conclusions.

7.5.2 Use-case 1: conduct a simulation

Appendix B.1 contains a thorough risk-analysis of the primary use-case for the eMaterials scenario,

namely conducting a simulation, which I summarise here.

This use-case involves all of the scenario participants. To successfully complete a simulation the

following steps must complete correctly and in a timely manner:

1. A chemist collects the parameters, and input and output files for the simulation.

2. The chemist uploads parameters and input files using the Polymorph Search Webclient.

7.5. Use-case and risk analysis 187

3. The chemist triggers the computation and the webclient acknowledges the start of the computation

by displaying an initial status.

4. The webclient triggers the eMaterials workflow installed in the BPEL engine on the work-

flow node.

5. The eMaterials workflow triggers the individual jobs by passing JSDL specifications to a

GridSAM service instance installed on the submission node.

6. The GridSAM service translates the JSDL to a Condor submission file and places it in the

Condor submit queue by signalling the Condor submit daemon.

7. The Condor controller node polls the Condor submit daemon on the submit node

occasionally for information about the queue. When it discovers new submissions, it applies

its grid scheduling policy to allocate grid nodes to processing these submissions, informing the

submit daemon of the location of the allocated nodes, and each grid node of their allocation to the

submission (effectively granting access control of the nodes to the daemon).

8. The Condor submit daemon contacts the allocated grid nodes for a submission, stages the

parameters and input files to them and instructs them to begin processing.

9. The grid nodes process their individual jobs.

10. The grid nodes notify the submission node when they have completed their jobs. They then stage

the results files back to the submission node.

11. The BPEL engine polls the GridSAM service for the status of jobs on the queue. The completion

of a job may trigger the scheduling of additional jobs. Following MOLPAK jobs, DMAREL jobs are

scheduled. This step includes the repetition of steps 5 – 10.

12. Each time a DMAREL job completes the workflow engine coordinates the production or update of

the results website by invoking the polyutilsPartner web-service on the submission node.

13. As part of its operation the polyutilsPartner web-service invokes the plotws web-service

in Southampton to prepare a scatter graph of the results.

14. The Chemist occasionally checks the results website. When the results are ready, the chemist may

view the plot of the results and download result-data files.

In Appendix B.1 I use the use-case as a framework for itemising the risks to which the parties in the

scenario are exposed. For each step, I attempt to consider, for each involved party, what could possibly

go wrong and how that party will suffer. The risks that the parties suffer due to participation in the

scenario may be summarised as follows:

The Chemistry department is the principal recipient of benefit in the scenario. The risks to chemists

stem from the possibility that the simulation might not complete, might deliver incorrect results, or

7.6. SLA design and risk analysis 188

that conducting a simulation will be hindered by usability issues affecting the Polymorph Search

Webclient, which presents its functionality as a website. The Chemistry department also assumes

some additional risks as a result of the need to interact with other parties. These include security risks,

due to the need to accept into their own network traffic appearing to originate from within the CS net-

work. Also, if Chemistry regards the results of its simulations to have any proprietary value, then they

assume a risk related to the possibility that experimental data will be stolen when transmitted across

networks, in particular the Internet. Finally, Chemistry, by depending on a service provided by one or

more second parties, assumes a termination risk, based on the possibility that those parties may choose to

render the service permanently unavailable at some point, resulting in reintegration costs for Chemistry.

The Information Services division of UCL initially assumes risks based on its interaction with other

parties. These include the security risks of interacting with Chemistry and CS. IS also suffers a risk

associated with allowing CS to install and execute software on their computational nodes. IS provides

both network and cluster-node services, so assumes two risks due to the potential volume of legitimate

service requests. IS is also exposed to the risk, when providing these services, that they will not be

reimbursed for the costs involved. Since IS does not depend on the service being delivered, and the

initial risk analysis does not assume the use of SLAs, IS at this stage could mitigate the latter risk by not

providing the service. However, IS has a fundamental requirement to charge for provided services, so I

assume that this is not an option.

The computer-science department similarly assumes security risks, risks related to resource exhaus-

tion by legitimate service requests, and the risk that they will not be compensated for the resources they

contribute to the performance of the simulation.

The ISP assumes security risks and resource exhaustion risks implicit in permitting interactions

between CS and Southampton. The ISP must also find a way to charge for the use of their resources.

Southampton also assumes security and resource exhaustion risks providing the plotws service.

Southampton also wishes to (at least) recuperate its costs from providing the service, so runs the risk that

it will provide the service but then be unable to do so.

7.6 SLA design and risk analysis
7.6.1 A system of SLAs for the scenario

I now consider what SLAs are appropriate for mitigating the risks identified in the previous section. In

principle, several different systems of SLAs might be satisfactory to the participants. However, I have

elected to attempt to design a system offering the highest possible level of monitorability for the SLAs

that it contains.

According to the results of the monitorability analysis described in Section 5.1.3, mutually-

monitorable SLAs in a three-party service provision scenario, with a client, provider and network-service

provider are the most monitorable SLAs achievable if latency conditions are required. Moreover, only

a single configuration of such SLAs is safe, and that is where two SLAs are used, each between two

parties that share a direct interface between their infrastructures.

The case-study scenario includes two similar sub-scenarios: the provision of the Polymorph

7.6. SLA design and risk analysis 189

Search Webclient by CS to Chemistry across the IS network, and the provision of the plotws

web-service by Southampton to CS across the Internet. In both cases latency conditions will be required

in order to mitigate the enumerated risk Chemistry-6, identified in Appendix B.1, pg. 268, that the

production of results will be delayed (see Appendix B.3).

These sub-scenarios differ from that considered in my original analysis in two respects: first, the

eMaterials scenario contains five parties, rather than three, and the possible influence on monitorability

of the two extra parties should not be neglected; and second, my original analysis assumed that the client

and the provider of the service were nodes embedded in the network of the network-service provider. In

the eMaterials scenario in contrast, all computational nodes are embedded within networks controlled by

the same organisations that control the nodes.

I now argue that these differences make only a small practical difference to the monitorability result,

allowing the reuse of this result to inform the choice of SLAs in the scenario.

Consider the interaction between Chemistry and CS across the network provided by IS: the two

extra parties in the scenario are the ISP and Southampton. Clearly they are not respondents to (i.e.

cannot observe) any of the events in the interaction directly, because they do not have a trusted platform

within the Chemistry, CS, or IS network from which to gather data. Neither can they monitor the events

indirectly by having them reported to them, since only Chemistry, CS and IS could do such reporting,

and they are barred from doing so because they will necessarily have to enter SLAs concerning these

events, and therefore have an interest, and therefore cannot report. An analogous argument holds for the

interaction between CS and Southampton across the internet.

Concerning the differences in network configuration: service usages in both sub-scenarios still

have end-to-end QoS requirements, such as latency requirements. However, requests and responses pass

over two extra network segments, owned by the client and the service provider respectively, in addition

to the segment owned by the network provider. Faults causing delays can occur at any point in the

infrastructure, including in the client or service-provider’s network. Clearly, it would not be safe for the

network provider to insure correct behaviour in these sections (without reciprocal guarantees from the

other parties, which would be pointless).

However, the interfaces to these peripheral network sections may be regarded as being similar to

nodes embedded in the central network. The provider of the electronic service in each case can guarantee

the performance of their own network segment, and hence provide good service to the network provider

at their mutual interface. The network provider can therefore guarantee good service at the interface

to the client network, but not beyond. QoS guarantees can only be provided for the client as far as the

boundary to the client’s network. However, if the client manages their network correctly, this will allow

them to guarantee the end-to-end QoS of the service, so this is adequate.

Consequently I decided that an appropriate system of SLAs for the scenario must include SLAs

to govern service provision at the interfaces between the Chemistry, IS, and CS networks, the Internet

and Southampton’s network for the two interactions already discussed. These SLAs will be mutually

monitorable, which will be the best degree of monitorability obtainable for these sub-scenarios, without

7.6. SLA design and risk analysis 190

the introduction into the scenario of additional parties, or trusted monitoring solutions (the theory of

which is not well understood, at the time of writing).

The remaining interaction in the scenario is direct interaction between CS and IS to pass information

and commands to and from cluster nodes. In this case a single mutually monitorable SLA at the network

boundary between CS and IS suffices, since there is no intervening network operated by a third party.

Note that a more monitorable SLA is not possible because no other party can monitor these events, and

no other location for delivering guarantees would be appropriate since the parties can neither monitor,

nor guarantee the behaviour of the service within their peers’ networks.

Figure 7.5 shows the set of SLAs chosen for the scenario located at the network boundaries at which

events pertinent to their conditions occur.

These recommendations result in two SLAs involving both IS and CS. Clearly these SLAs could

potentially be combined into a single SLA, although I have not at this stage chosen to do so. I discuss

the consequences of this in the case-study conclusions.

Chemistry
node

Condor
cluster ...

...

CS
servers

Chemistry network
IS network CS network

JANET

Southampton network

Southampton
node

1 2

3

4

5

SLA

Figure 7.5: SLAs for the eMaterials scenario, located at network boundaries where events occur, to
which they are pertinent

7.6.2 Individual SLA design

In Appendix B.2 I describe in an informal and abstract manner the design of each SLA proposed in the

case-study. This is achieved by considering, for each SLA, each risk in the scenario, and whether the

SLA can contribute to its mitigation. The appendix also list the details of the electronic-service interfaces

in relation to which the SLAs will need to be specified.

Entering into these SLAs poses additional risks to the participants in the SLAs, such as the risk

7.7. SLA definition 191

that IS will need to pay a penalty due to faulty service behaviour caused by CS (a ‘safety’ risk, in the

terminology of Chapter 5). Therefore, I extend the risk analysis into this phase of the case-study. All new

risks are included in Appendix B.3, and cross referenced to the proposals for SLA clauses to mitigate

them, or the decision to omit them as requirements for the system of SLAs.

I defer summary of designs of the individual SLAs to the next section, where they can be presented

together with the description of the SLA definitions.

At this point in the development of the case-study, three issues affecting the continued progress of

the case-study became clear.

The first was that it was appropriate to rule out a number of risks identified in the scenario as being

inappropriate for mitigation by SLA. These include security risks of any kind. Some security risks are

more appropriate for mitigation by implementation mechanisms in the service itself. Others, such as the

identified need to keep simulation data confidential, an SLA could help to mitigate. However, this is a

wide field of investigation that I have already ruled outside the scope of this work, and discuss further in

the final chapter.

Having ruled out these risks, it was possible to design conditions in the system of SLAs that miti-

gated all remaining risks and all risks assumed by the parties as a consequence of the use of SLAs in the

scenario.

Second, the design process revealed that the clauses required by SLA 2 are identical in kind to

those required by SLA 1, and this is also the case for SLAs 4 and 5. In retrospect, this was predictable

based on the fact that these pairs of SLAs each represent the provision of the same service across two

network boundaries. It is therefore to be expected that (in the absence of other considerations for the

parties, such as bulk service provisioning) the SLAs involving the final consumer will only differ from

those involving the original service provider by accommodating slightly longer delays and more failures,

thereby accommodating the behaviour of the network.

The third important issue that became apparent at this stage was that although it was possible to

understand in abstract how SLA 3 should mitigate the risks to CS of nodes operated by IS performing

inadequately (in aggregate), it was not going to be practical to fully specify this SLA, since to do so

would require the reverse-engineering of the protocols by which the Condor queue and Condor

manager communicate with nodes in the grid, an effort beyond the scope of this work. This was the

same problem that led me to avoid considering the second and third use-cases in the scenario, which deal

with this type of communication exclusively.

In the next section I therefore consider how the abstract set of clauses required for each SLA, apart

from SLA 3, may be implemented using extensions to SLAng.

7.7 SLA definition
To this point in the case-study I have detailed (in Appendix B.2) the conditions required for each SLA

in the scenario for the system to be effective overall in mitigating the risks to the participating party.

I have also identified the details of the service interfaces. This is sufficient information to commence

development of SLAs formalised using SLAng, and extensions to SLAng.

7.7. SLA definition 192

At this point in the case-study, a problem with the methodology became apparent. Although the ap-

proach of proposing conditions based on the requirement to mitigate the scenario risks appeared to have

correctly identified the types of conditions required, both I and the PS struggled to make the conditions

fully concrete. This was due to a lack of complete knowledge concerning at least the following aspects

of the scenario:

• the costs involved in providing the service;

• the magnitude of the financial harm borne by the parties as a result of a violation of one of the

SLA conditions;

• what degree of degradation of the service is genuinely problematic to the chemists using the ser-

vice;

• what the usual load and capacity of the plotws service is.

Uncertainty on issues of this nature is understandable since the scenario thus far has not been oper-

ating on a genuinely commercial basis, so no serious effort has been made to investigate these issues.

Unfortunately, the effort required to investigate and draw meaningful conclusions in relation to

these issues places them outside the scope of this work. As I discuss in the concluding chapter of

this dissertation, these issues are not entirely unrelated to the provision of language support for SLAs,

since understanding the economic effect of an SLA requires an understanding of its precise meaning,

as determined by the language in which it is specified. However, the issues also touch on broader

research topics such as capacity planning and the financial management of services which require greater

consideration than can be afforded here.

Fortunately, however, it is still possible to demonstrate the use of SLAng to produce realistic SLAs.

A reasonable approach to designing language extensions is to anticipate their possible reuse in some

future SLAs, and therefore implement them in a parameterisable way. Because the syntactic structure and

meaning of the conditions required for the SLAs should be largely independent of particular parameter

values it is possible to argue that demonstrating that some SLA using these conditions can be written

implies the possibility of expressing an appropriate, or even ideal, SLA using the conditions, assuming

the conditions themselves are appropriate and appropriate parameter values can be specified. In this

section I describe the definition of two such example SLAs, and support the relevant assumptions by

arguing that the conditions implemented are appropriate based on the scenario requirements, and by

attempting to choose plausible parameter values, even if optimal values cannot be determined.

In the previous section I ruled out the production of SLA 3 on the basis of a lack of knowledge

concerning the protocols implemented by Condor. I also observed that SLAs 1 and 2, and 4 and 5 are

identical in the conditions that they require, at least at an abstract level. I now rule out the production

of SLAs 2 and 5, on the basis that they will be structurally identical to SLAs 1 and 4, or close enough

that elaborating the differences would not demonstrate anything useful about the expressive power of

SLAng. Therefore, the only differences these SLAs will have with SLAs 1 and 4 are parameter values,

7.7. SLA definition 193

and since these values involve a large component of guesswork, it will not be meaningful to elaborate

these SLAs.

Therefore, in the following sections I describe concrete SLA definitions for SLAs 1 and 4, each

consisting of a set of language extensions plus a concrete SLA document.

7.7.1 SLA 1: Provision of the Polymorph Search Webclient by IS to
Chemistry

In this section I describe the language extensions supporting, and the concrete statement implementing,

SLA 1. All language-extension types described in this chapter have equivalents in Appendix E, which

is an automatically-documented language specification containing the complete SLAng language, plus

a combination of the types required to express SLAs 1 and 4. SLA 1, expressed in HUTN syntax,

constitutes Appendix C.

The clauses required in SLA 1 are as follows:

1. latency conditions on the setup operations of the webclient;

2. an availability condition relating to the service;

3. reliability conditions on the setup operation of the webclient;

4. latency condition on the simulation-invocation operation of the webclient;

5. reliability condition on the simulation-invocation operation of the webclient;

6. latency condition on the amount of time taken for simulation results to become available;

7. reliability condition on results retrieval operations;

8. throughput conditions on all operations;

9. a payment scheme, charging Chemistry for use of the service;

10. a termination penalty for IS terminating the service;

11. a limit on the rate at which simulations can be started;

12. a guarantee concerning the performance of MOLPAK and DMAREL from Chemistry;

13. a termination penalty for Chemistry terminating the agreement.

In addition, the SLA must describe:

• how the SLA will be administered;

• what standards of accuracy the parties must adhere to when gathering evidence for the calculation

of violations.

7.7. SLA definition 194

The various clauses implementing these conditions have a certain amount of interdependence. I

now describe the overall structure of SLA 1, followed by the definition of these conditions. I discuss

conditions with fewer dependencies first, in an attempt at clarity. In the discussion below I have not

provided a highly-detailed description of how the extensions override abstract classes or operations of

the SLAng language core. However, I have included base-classes from SLAng in the illustrative class-

diagrams where appropriate, and it is notable that the overwhelming majority of the syntactic extension

types benefit from support from base-classes defined in SLAng. This is also apparent from inspection of

the extensions in Appendix E.

Structure of SLA 1
SLA 1 gets its overall structure from the definition of the SLA type in SLAng, without the need for any

extensions to this type. Throughout the following discussion of the SLA, I cross-reference my discussion

of the SLA clauses to the listing of the SLA in Appendix C. In the following subsection, I excerpt from

the SLA to show how the general throughput constraint for SLA 1 is specified. However, in subsequent

sections I do not reproduce parts of the SLA in the main body of the text. The overall structure of SLA 1

is given below.1

• A list of parties involved in the SLA. SLA 1 identifies Chemistry and IS, beginning at line 24,

pg. 292.

• A list of services over which the SLA places conditions. Naturally, SLA 1 only describes the

Polymorph Search Webclient, beginning at line 35, pg. 292. An electronic-service de-

scription includes the following:

– the identification of the provider and client parties (by reference to parties previously defined

in the SLA);

– a list of electronic-service interfaces constituting the service. In this case, the website inter-

face to the Polymorph Search Webclient is described starting at line 45, pg. 293.

An interface definition describes all operations of the interface, and all parameters for those

operations;

– a list of deployed client software, permitted to access the service, line 254, pg. 297;

– a list of behaviours for the service, starting at line 263, pg. 297. These are any behaviours that

may be relevant to the definition of condition clauses later in the SLA. SLA 1 defines numer-

ous behaviours of the webclient, many of which are also dependent on whether violations of

certain conditions are discovered when the SLA is administered.

• A list of penalty definitions, that may be referred to when defining the penalties for violating

conditions defined later in the SLA, starting line 838, pg. 309.

• A list of administration clauses. Each administration clause defined rules for when and how vio-

lations of the SLA are to be calculated. An administration clause defines at least the following:
1Readers may find it helpful to read the following sections using a PDF viewer, as these cross-references are implemented as

hyperlinks for convenient browsing

7.7. SLA definition 195

– a list of conditions that should be checked against the submitted evidence to calculate viola-

tions. For example, those specified starting at line 974, pg. 312;

– a set of accuracy clauses, governing the standards by which various types of evidence should

be collected for the purposes of administration (see line 951, pg. 311, for example).

SLA 1 defines two administration clauses, both pertaining to the same set of conditions, as dis-

cussed further below;

• A list of auxiliary clauses. Auxiliary clauses are of a diverse set of types, but share the common

characteristic that they may be reused in multiple settings in the SLA, and so are notionally sub-

components of the top-level SLA element, rather than any other clause. Condition clauses are all

examples of auxiliary clauses as they may be reused in multiple administrative clauses. Auxiliary

clauses are listed starting at line 1176, pg. 316.

General throughput condition

This condition-definition implements condition 8, listed on pg. 193.

The condition that is least dependent on any other is an input-throughput condition obliging the

client to limit their attempts to use the service, whether successful or not.

This is implemented using a service-behaviour restriction associated with an informal usage-mode

description, which is in turn associated with all of the operations of the service. SLAng requires no

extension to describe the usage mode. The service interface, including all operations, is defined in SLA 1

as part of the definition of the overall polymorph search service, which in fact only consists of access

to this single interface. Definition of the service begins on line 35, pg. 292. The interface is defined

between line 45, pg. 293 and line 251, pg. 297. Here I reproduce the first several lines of the service

definition, showing the references made to the definitions of the client and provider parties, and the start

of the service-interface definition, including the definition of an operation returning a static webpage:

31 es::ElectronicServiceDefinition[polymorph](
32 ”The provision of the Polymorph Search Webclient by IS to Chemistry”
33) {

35 provider = PartyDefinition[uclis]

37 client = PartyDefinition[chemistry]

39 interfaces = {

41 es::ElectronicServiceInterfaceDefinition[polymorph](
42 ”HTTP interface to the Polymorph Search Webclient”) {

44 owner = PartyDefinition[uclis]

46 operations = {

48 es::OperationDefinition[static1](
49 ”http://sse.cs.ucl.ac.uk/omii−bpel/polymorph/index.htm”) {

51 parameters = {

7.7. SLA definition 196

53 es::ParameterDefinition(
54 ”HTTP response status code”, OUT),
55 es::ParameterDefinition(
56 ”HTTP response message body”, OUT)
57 }
58 },

Note that a full definition of the structure of the service-interface is required in the SLA, as details

of operation parameters, for example, imply monitoring obligations for the SLA participants. The usage

mode is specified informally at line 265, pg. 297. I also repeat it here:

263 es::InformalUsageModeDefinition[anyUsage](
264 ”Request of any page”) {

266 operations = {

268 es::OperationDefinition[static1],
269 es::OperationDefinition[static2],
270 es::OperationDefinition[static3],
271 es::OperationDefinition[submit],
272 ::sla1::slang::es::DelegatedExecutionOperationDefinition[invoke],
273 es::OperationDefinition[results],
274 es::OperationDefinition[results1],
275 es::OperationDefinition[results2],
276 es::OperationDefinition[results3],
277 es::OperationDefinition[results4],
278 es::OperationDefinition[results5],
279 es::OperationDefinition[results6],
280 es::OperationDefinition[results7],
281 es::OperationDefinition[results8]
282 }
283 }

Although informal, it can be seen that the usage-mode is explicitly associated with the definitions

of each of the operations in the interface, including the first static page, as listed above.

I have frequently opted to use informal behaviour descriptions for behaviours described in SLA 1

and SLA 4. A service-usage record submitted as evidence in and administration of one of these SLAs

should indicate membership of any of these behaviours if the usage conforms to the natural-language

description of the behaviour specified in the SLA.

The alternative to this approach would be to formalise each behaviour using extensions to the SLA,

such that the semantics of the agreement obliged the parties to label usage records with behaviours

whenever the usage could be shown to have some formally specified characteristics. At least for those

behaviours related to the functional reliability of the service, by which I mean the relationship between

input and output parameter values, this would mean the production of a complete formal description of

the service, an impractical effort. In the case of these SLAs, it is also probably an unnecessary one: the

required functional behaviour of the service is tolerably well understood by the SLA participants (Chem-

istry may seek compensation from IS for failures that IS does not understand well; however, IS will then

seek to obtain compensation from CS under the terms of SLA 2, and so can rely on CS’s expertise

concerning failures when negotiating with Chemistry, to some extent); also, the SLAs are mutually-

7.7. SLA definition 197

monitorable, so a degree of reconciliation between the parties regarding the perceived behaviour of the

service can be expected to occur when the SLAs are administered.

Decisions need to be made concerning the applicability of the service behaviour condition clause,

with respect to when it applies, what the width of its sliding time window should be, how much con-

currency of behaviours (in this case service requests) should be allowed, and what penalties should be

associated with the condition.

In consultation with the PS it was decided that: (i) the throughput clause should apply continuously

throughout the duration of the agreement; (ii) the window size and concurrency would be fixed and

no penalty would be levied against Chemistry for a violation; and (iii) IS would not be liable to pay

penalties for failures or delays while Chemistry was simultaneously violating the throughput constraint.

The third provision was encoded into the SLA by introducing the new concept of a violation-dependent

electronic-service behaviour mode, discussed further below.

Figure 7.6 shows the set of behaviour-restriction condition clauses derived from Service-

BehaviourRestrictionConditionClause in support of SLA 1. The three concrete types of

clause are all permanent, with a fixed window and fixed maximum number of occurrences permitted,

and associate penalties with maximal violations, meaning that any interval in which any overlapping

window represents a violation is treated as a single violation. The clauses differ in the penalties they

apply – either no penalty, a fixed penalty, or a stepped penalty dependent on the duration of the maximal

violation. The clause applying no penalty is used to implement the general throughput condition. SLA 1

specifies that Chemistry may not make service requests (to the operations jointly or severally) at a rate

of more than 20 per 10 second period, at line 1030, pg. 313. The listing of this condition is as follows:

1028 ::combined::slang::—
PermanentFixedWindowFixedOccurrencesNoPenaltyMaximalServiceBehaviourRestriction —
ConditionClause[throughput]() {

1030 restrictedBehaviours = {

1032 es::InformalUsageModeDefinition[anyUsage]
1033 }

1035 maxOccurrences = 20;

1037 window = ::types::Duration(10, S)
1038 },

Simulation throughput and per-use charging

These condition-definitions implement conditions 9 and 11 listed on pg. 193.

The PS suggested that a latency guarantee, described below, could be met with good reliability,

provided the chemist undertook to submit no more than a single simulation per day.

The submission of a simulation is indicated by a successful request to the simulation-invocation

operation of the service. This behaviour therefore needs restricting in a service-behaviour restriction

clause.

In Section 6.9.2 I described capabilities in SLAng for describing usage and failure modes of elec-

7.7. SLA definition 198

sla1-slang-conditionspackage slang[]

PermanentFixedWindowFixedOccurrencesSlidingPenaltyMaximalServiceBehaviourRestrictionConditionClause

(sla1.slang)

+violationsCalculated(agreed : Evidence [*], violations : Violation [*]) : Boolean
+allLaterViolationsCalculated(prior : Evidence [*], administration : Administration) : Boolean

PermanentFixedWindowFixedOccurrencesFixedPenaltyMaximalServiceBehaviourRestrictionConditionClause

(sla1.slang)

+violationsCalculated(agreed : Evidence [*], violations : Violation [*]) : Boolean
+allLaterViolationsCalculated(prior : Evidence [*], administration : Administration) : Boolean

+calculateMaxOccurrences(date : Real, administration : Administration) : Integer
+calculateWindow(date : Real, administration : Administration) : Real
+violationExistsFor(minimal : Evidence [*], administration : Administration) : Boolean
+allLaterViolationCalculated(prior : Evidence [*], administration : Administration) : Boolean
+violationsCalculated(administration : Administration) : Boolean

PermanentFixedWindowFixedOccurrencesFixedPenaltyMinimalServiceBehaviourRestrictionConditionClause

+maxOccurrences : Integer
+window : Duration

PermanentFixedWindowFixedOccurrencesNoPenaltyMaximalServiceBehaviourRestrictionConditionClause

(sla1.slang)

+calculatePenaltyForMaximalViolation(maximal : Evidence [*], administration : Administration) : PenaltyDefinition
+violationsCalculated(administration : Administration) : Boolean
+allLaterViolationsCalculated(prior : Evidence [*], administration : Administration) : Boolean

PermanentFixedWindowFixedOccurrencesMaximalServiceBehaviourRestrictionConditionClause

(sla1.slang)

+maxOccurrences : Integer
+window : Duration

+calculatePenaltyForMaximalViolation(maximal : Evidence [*], administration : Administration) : PenaltyDefinition
+calculateMaxOccurrences(date : Real, evidence : Evidence [*]) : Integer
+calculateWindow(date : Real, evidence : Evidence [*]) : Real
+violationExistsFor(maximal : Evidence [*], administration : Administration) : Boolean

ServiceBehaviourRestrictionConditionClause

(slang)

+calculateMaxOccurrences(date : Real, administration : Administration) : Integer
+calculateWindow(date : Real, administration : Administration) : Real
+sLAEvents() : Event [*]
+service() : ServiceDefinition
+evidenced(event : Event) : Boolean
+lastBehaviourTime(evidence : Evidence [*]) : Real
+firstBehaviourTime(evidence : Evidence [*]) : Real
+behaviourInterval(evidence : Evidence [*]) : Real
+firstMinimalViolationIndexAfter(cutoff : Real, times : Real, administration : Administration) : Integer
+firstMinimalViolationAfter(cutoff : Real, administration : Administration) : Evidence [*]
+firstMinimalViolation(administration : Administration) : Evidence [*]
+nextMinimalViolation(prior : Evidence [*], administration : Administration) : Evidence [*]
+firstMaximalViolationAfter(cutoff : Real, administration : Administration) : Evidence [*]
+firstMaximalViolation(administration : Administration) : Evidence [*]
+nextMaximalViolation(prior : Evidence [*], administration : Administration) : Evidence [*]

...

SteppedPenaltyClause

(sla1.slang)

+getSteppedPenalty(violationDuration : Real) : PenaltyDefinition

PenaltyDefinition

(slang)

SteppedPenalty

(sla1.slang)

+threshold

+penalty

+penalties

{ordered}

1..*
+penalty

+penalty

Figure 7.6: Service-behaviour-restriction conditions extended for SLA 1

tronic services. Neither of these concepts capture the notion of a successful request. Therefore, in an

extension to the language it is necessary to add syntax for describing a type of behaviour that only

successful service-usages can exhibit, a success mode. Support for this is shown in Figure 7.7.

The simulation-throughput condition is implemented by restricting a behaviour described by an

informal success-mode definition (line 670, pg. 306) associated with the invocation operation (line 99,

pg.294), to a single occurrence in a 24 hour window. Again, no penalty is levied for a violation, but the

chemists cannot receive penalties for slow simulation execution if they violate this clause. The condition

is included at line 1117, pg. 315.

The use of throughput conditions on successful operation also suggests a scheme by which charging

can be implemented. A minimal behaviour-restriction condition clause associates a violation with the

smallest set of behaviour exceeding its occurrences limit. Such a clause with an occurrences limit of 0

7.7. SLA definition 199

sla1-slang-es-success-modespackage es[]

ElectronicServiceUsageBehaviorDefinition
(slang.es)

+included(usage : ServiceUsageRecord, administration : Administration) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean
+sLAEvents() : Event [*]
+evidenced(event : Event, evidence : Evidence [*]) : Boolean
+serviceUsageRecords(agreed : Evidence [*]) : ServiceUsageRecord [*]
+getFirstInstanceOf(agreed : Evidence [*]) : Evidence [*]
+getNextInstanceAfter(prior : Evidence [*], agreed : Evidence [*]) : Evidence [*]
+getBehaviourTime(behaviour : Evidence [*]) : Real

InformalSuccessModeDefinition
(sla1.slang.es)

+included(usage : ServiceUsageRecord, administration : Administration) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

FailureModeDefinition
(slang.es)

+calculateResponsibleParty() : PartyDefinition

SuccessModeDefinition
(sla1.slang.es)

+calculateResponsibleParty() : PartyDefinition

UsageModeDefinition
(slang.es)

+calculateResponsibleParty() : PartyDefinition

+usageModes

1..*
+incompatibleFailureModes

*+usageModes

1..* +failureModes

*

Figure 7.7: Success-mode types for SLA 1, enabling the definition of positive outcomes, supporting the
definition of the simulation-throughput condition

can be used to associate a violation with each instance of a behaviour. Associated with a success mode,

this may be used to implement per-usage charging. The condition clause is shown in Figure 7.6. The

condition implementing charging is defined in SLA 1 at line 1130, pg. 315

Since the service in question is being provided in Great Britain in 2007, penalties associated with

violations will be paid in Pounds Sterling. Figure 7.8 shows extensions to both the syntactic and domain

models to describe such penalties. A Pounds-Sterling payment penalty definition requires the payment

of some amount of money within some deadline of the associated violation having been calculated. In

SLA 1 the amounts and deadlines are all fixed. All penalties are defined starting at line 838, pg. 309.

The specified magnitudes of the penalties are fictitious.

General latency and reliability conditions

These condition-definitions implement all conditions related to latency and reliability of groups of oper-

ations in SLA 1, with the exception of those relating to the latency and reliability of the production of

simulation results. I have elected to apply the same conditions for all operation groups, so the conditions

implemented are 1, 3, 4, 5, 7 and 8, listed on pg. 193.

The Chemist requires penalties to be associated with delays and failures of the Polymorph

Search Webclient because such events impact their ability to schedule simulations and retrieve

their results.

Three types of failure mode are relevant. First, the service may be slow to a degree that it poses a

nuisance but is still usable. Second, the service may exhibit delays that are so long that a chemist should

not reasonably wait for the operations to complete, so should regard them as failures. Third, the service

may produce faulty results.

In Section 6.9.2 I described an abstract type for latency failure-modes. To support a condition

7.7. SLA definition 200

sla1-services-penaltiespackage services []

FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition
(sla1.slang)

+deadline : Duration
+payment : Real

+calculatePoundsSterlingPayment(violation : Violation) : Real
+calculatePaymentDeadline(violation : Violation) : Real

PoundsSterlingPaymentPenaltyDefinition
(sla1.slang)

+calculatePoundsSterlingPayment(violation : Violation) : Real
+calculatePaymentDeadline(violation : Violation) : Real

PoundsSterlingPenaltyPayment
(sla1.services)

+amount : Real

PenaltyDefinition
(slang)

Compensation
(services)

Figure 7.8: Syntactic and semantic elements supporting the definition of penalties requiring the payment
of a sum of money in Pounds Sterling

restricting nuisance delays this must be extended to specify the maximum tolerable latency, and any

circumstances under which usages taking longer than this threshold should not be considered an instance

of the failure mode.

One such type of exception has already been described. If a usage simultaneously contributes to a

violation of the chemist’s input-throughput condition, then it should not be regarded as a latency failure,

even if it takes too long. Generalising from this, I have provided a language extension introducing the

notion of a violation-dependent electronic-service-usage failure mode.

The other exception that must be admitted depends on a condition related to availability of the

service discussed below. If the chemist and IS have agreed that the service is unavailable by an exchange

of bug reports, and the problem has not yet been fixed (indicated by an exchange of bug-fix reports), then

the chemist cannot expect to receive compensation for failures. Consequently a notion of availability-

dependent failure modes is also required.

Following the advice of Nielsen on web-usability [75], it was decided that delays over 10 seconds

should be regarded as inconvenient. Delays of over 30 seconds should be regarded as intolerable. It was

decided there was no reason for this threshold to vary. Therefore a fixed-latency, availability-dependent,

violation-dependent, failure-mode definition, combined with a permanent service-behaviour restriction

is adequate to penalise nuisance delays. This is defined in SLA 1 starting at line 319, pg. 298.

Irritating behaviour is tolerable in small amounts. Therefore I decided that penalties for irritating

slowness should be levied if more than two requests within a minute take more than 10 seconds. Penalties

for such an event should be very small, but increase somewhat if the same behaviour is observed for

more than ten minutes. To capture this increasing penalty, I implemented the notion of a stepped-penalty

condition-clause, whereby the applicable penalty varied as the duration of the violation exceeded certain

thresholds. This clause is shown in Figure 7.6. This condition is defined at line 1073, pg. 314.

A stronger penalty should be applied if the majority of service requests take more than 30 seconds

to complete. This would be the case if 10 delays of at least this duration were observed within an interval

7.7. SLA definition 201

sla1-slang-es-failure-modespackage es[]

FixedLatencyAvailabilityDependentViolationDependentFailureModeDefinition
(sla1.slang.es)

+maxDuration : Duration

+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean
+calculateMaxDuration(usage : ServiceUsageRecord, agreed : Evidence [*]) : Real

LatencyFailureModeDefinition
(slang.es)

+calculateMaxDuration(usage : ServiceUsageRecord, agreed : Evidence [*]) : Real
+included(usage : ServiceUsageRecord, administration : Administration) : Boolean

InformalAvailabilityDependentViolationDependentFailureModeDefinition
(sla1.slang.es)

+included(usage : ServiceUsageRecord, administration : Administration) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

ViolationDependentElectronicServiceUsageBehaviourDefinition
(sla1.slang.es)

+violating(usage : ServiceUsageRecord, administration : Administration) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

AvailabilityDependentElectronicServiceUsageBehaviourDefinition
(slang.es)

+isUnavailable(usage : ServiceUsageRecord) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

Figure 7.9: Latency, and informal, functional, failure-mode types for SLA 1

of 10 minutes.

Clearly after experiencing 10 delays of 30 seconds each within a 10 minute period, 5 minutes of

the Chemist’s time will have been wasted, they can conclude that the service is delaying the setup and

execution of simulations unreasonably, and should be entitled to receive compensation.

Requests that complete successfully in under 30 seconds should be regarded as being successful.

However, if the threshold for an intolerable delay is set at 30 seconds, then this is the longest that the

client can be expected to wait before deciding that the request has failed and should be reattempted.

Therefore, requests taking longer than 30 seconds to complete should always be regarded as failures.

The failure mode is defined at line 354, pg. 299.

In order to configure and execute a simulation, a chemist will normally have to interact with the

service around five times. With only five requests to make, and assuming some degree of forward

planning on the part of the chemist as to the simulation they wish to execute, this whole process should

not take more than a couple of minutes, assuming the correct operation of the service.

A failure may take up to 30 seconds to become evident, before it is treated as an overdue request, or

it may become evident very rapidly. In the latter case, failures have the potential to waste almost as much

time as overdue requests, hence a similar constraint of a maximum of 10 failures permitted within 10

minutes would be appropriate. In the former case, failures will occur more rapidly, so the chemist may

be expected to persist to some degree in their attempts to access the service. However, again, a cap of 10

failures will tend to indicate a problem with the service. Therefore, I have concluded that the tolerance

of failures should in this case be the same as the tolerance for seriously overdue requests (which must

also be regarded to be failures), a maximum of 10 within a 10 minute window. Again, observing such a

7.7. SLA definition 202

pattern of failures should entitle the chemist to submit a bug report, therefore entitling them to receive

penalties related to unavailability.

Since no formal definition of the behaviour of Polymorph Search Webclient is available,

I rely on informal failure mode definitions to describe failure behaviour of the service. Since the service

produces webpages, failure behaviour will be of two kinds: a failure to return an HTTP response code of

200, indicating success, and a failure to return a message body with the expected contents. The former

can be described in a single failure-mode definition (line 287, pg. 297), the latter requires a failure-

mode definition per operation, starting at line 389, pg. 299. Again the failure modes are violation and

availability dependent to capture interactions with the throughput and availability conditions.

Conditions on failure behaviour and serious delays are therefore implemented using a permanent,

fixed-window, fixed-occurrences, service-behaviour condition clause associated with failure mode de-

scriptions for bad HTTP responses, operation-specific functional failures, and serious latency failures.

A fixed penalty is levied, because the chemist should be expected to responsibly submit bug-reports in

response to such behaviours, and therefore benefit from penalties associated with unavailability instead

of unreliability. This condition is specified starting at line 1043, pg. 313.

Two separate conditions are needed to cover nuisance delays and serious delays. If the client re-

ceives penalty payments relating to serious delays then they may also have violated the terms of the

condition related to nuisance delays resulting in the need to pay multiple penalties. This may be re-

garded as problematic. One possibility would be to define a relationship between the two latency failure

modes, such that if a request were a member of the more serious mode it could not also be considered

a member of the less serious mode. I have not implemented this solution; instead I observe that the

penalty for serious delays could be slightly reduced to cover the possibility that nuisance delay may also

be deemed to be occurring.

Availability condition

This condition-definition implements condition 2 from the list on pg. 193.

A delay of only ten minutes in starting a simulation expected to last 24 hours does not seem overly

problematic. Therefore the penalty associated with such a delay should be quite light. If the service

continues to be intolerably slow for a longer period, the inconvenience to the chemist will increase.

However, the Chemist will not wish to have to continually submit requests over this period to establish

that the service is slow. Neither will IS or CS wish to become liable for penalties related to faults that

could have been rectified if they had been notified of them.

Instead, it is desirable that the chemist should complain to IS of serious problems, and receive

compensation for the amount of time taken to fix the problem. Therefore it was decided that SLA 1

should include an availability clause providing the client with the justification to issue a bug report

related to the use of the setup pages if persistent serious slowness or faultiness is experienced. Such bug-

reports may eventually be matched by bug-fix reports issued by IS within the lifetime of the agreement,

and the client can receive compensation based on the duration of unavailability so defined.

The availability clause will be associated with the service-behaviour restrictions covering intoler-

7.7. SLA definition 203

sla1-slang-es-availabilitypackage es[]

AvailabilityConditionClause
(slang.es)

+calculateReportingDeadline(violation : Violation) : Real
+considerLoneBugReports() : Boolean
+calculatePenaltyForBugReport(administration : Administration, bugReport : ReportRecord) : PenaltyDefinition
+calculatePenaltyForUnavailability(administration : Administration, bugReport : ReportRecord, bugFixReport : ReportRecord) : PenaltyDefinition
+sLAEvents() : Event [*]
+service() : ServiceDefinition
+evidenced(event : Event, administration : Administration) : Boolean
+bugReports(agreed : Evidence [*]) : ReportRecord [*]
+findRecordOfBugFix(evidence : Evidence [*], bugReport : BugReport) : ReportRecord
+violationsCalculated(agreed : Evidence [*], violations : Violation [*]) : Boolean

PermanentSteppedPenaltyFixedDeadlineAvailabilityConditionClause

+deadline : Duration

+calculateReportingDeadline(violation : Violation) : Real
+considerLoneBugReports() : Boolean
+calculatePenaltyForBugReport(administration : Administration, bugReport : ReportRecord) : PenaltyDefinition
+calculatePenaltyForUnavailability(administration : Administration, bugReport : ReportRecord, bugFixReport : ReportRecord) : PenaltyDefinition

SteppedPenaltyClause
(sla1.slang)

+getSteppedPenalty(violationDuration : Real) : PenaltyDefinition

Figure 7.10: An availability clause type appropriate to SLA 1

able delays, and the production of erroneous results. The usage mode referenced by the clause will be

the use of any operation. Since any operation may be critical to the configuration and execution of the

simulation, if any operation is manifesting a persistent bug then the overall service should be considered

to be unavailable.

An extension to AvailabilityConditionClause must be defined to determine the scheme

by which penalties will be applied. The penalty for a period of unavailability should be related to its

duration. I have therefore implemented a stepped-penalty availability clause.

I have decided that the client, Chemistry, will not wish to wait until a period of unavailability

has come to an end before receiving compensation for it, so unterminated periods of unavailability are

considered by the availability clause. The penalty for these periods should be related to the amount of

time between the earliest of the start of the period of unavailability and the period of administration, and

the end of the period of administration. The concept of an administrative period is not fundamental to

administration-clauses. Therefore, I have introduced the concept of a consecutive administration clause,

described below, that may be implemented by administration clauses which cover a set period of time.

I have specified a constant reporting deadline of 30 minutes for the availability clause, meaning that

the client can legitimately report a bug relating to poor service, if they have noticed that the service has

violated a reliability constraint within the last half-hour. The availability condition is defined starting at

line 977, pg. 312.

Latency condition on completed simulations

This condition-definition discusses condition 6 from the list on pg. 193, and requires the definition of

some sophisticated extensions to SLAng. I also consider the provision of guarantees concerning MOLPAK

and DMAREL (condition 12).

The PS states that provided the chemist does not initiate more than a single simulation per day,

then it should always be possible to complete the processing of a simulation within 24 hours. The

7.7. SLA definition 204

Polymorph Search Webclient does not notify the client when a simulation completes. Neither

is the simulation-invocation operation a synchronous operation that takes 24 hours to return the result.

However, since SLA 1 is intended to monitorable, the client will want to be able to: (i) gather some

evidence to the effect that the results have not been prepared despite 24 hours having elapsed since the

simulation started; and (ii) be able use this evidence to claim a penalty against the service provider.

The evidence potentially available to support the assertion that the results have not been produced

are failures to execute the results retrieval operations successfully. The client must successfully access

all eight distinct results pages for the results to be completely retrieved. Partial availability of the results

is not adequate to establish that the simulation has been successfully completed. If, 24 hours having

elapsed since a simulation was successfully started, the webclient experiences a period of unreliability,

consisting only of requests for results that had not previously been retrieved, then these results may be

considered unavailable and hence a penalty awarded.

In short, the webclient is implementing an asynchronous operation protocol. A latency failure

occurs when the results are not available after the maximum permitted period for their production. The

extensions I have defined in support of this are shown in Figure 7.11. An asynchronous failure-mode

definition identifies a request operation, with a distinguished parameter identifying the batch of results

to be produced. It also identifies a set of results operations, and their corresponding id parameters.

For each operation, it identifies an associated success mode. Usages of the request operation in this

mode trigger the production of results by the service. Usages of the results retrieval operations in their

success modes indicate successful retrieval of results. The failure mode also identifies any number

of reliability (behaviour-restriction) and availability conditions. Finally, the failure mode specifies a

maximum permitted time in which results must be produced, and a deadline for their retrieval. The

asynchronous latency failure mode then functions as follows: a usage of the request operation is in the

failure mode if and only if it is a successful request for results to be produced, and a violation of any

of the associated reliability or availability conditions occurs after the maximum time allowed for the

production of results, but before the results have been successfully retrieved, and before the deadline for

results retrieval has elapsed.

Clearly, what is required to guarantee the time taken to execute the simulation is a service-behaviour

restriction condition related to an asynchronous failure-mode of this kind. However, there is another sub-

tlety associated with this condition, which is that the Chemists themselves provide the programs MOLPAK

and DMAREL. Since the overall time taken to complete the simulation is related to the performance of

these programs, it is only safe for IS to insure such a latency if the Chemists make some reciprocal

guarantee concerning the performance of MOLPAK and DMAREL.

Since this kind of scenario is likely to be fairly commonplace in grid-services, I have generalised

the condition somewhat to consider failure-modes for delegated-execution services, in which the latency

of the service depends on one or more executables provided by the client. Describing such failure-modes

formally requires some extensions to the SLAng domain model, introducing the notions of executions,

executables, processing nodes and slow-execution reports (a complaint made by the service provider to

7.7. SLA definition 205

sla1-slang-es-asynchronouspackage es[]

AsynchronousLatencyFailureModeDefinition
(sla1.slang.es)

+calculateLatency(request : ServiceUsageRecord, administration : Administration) : Real
+calculateRetrievalDeadline(request : ServiceUsageRecord, administration : Administration) : Real
+resultsId(usage : ServiceUsageRecord) : ParameterRecord
+requestId(usage : ServiceUsageRecord) : ParameterRecord
+earliestUniqueRetrievals(request : ServiceUsageRecord, administration : Administration) : ServiceUsageRecord [*]
+latestEvidenceTime(evidence : Evidence [*]) : Real
+included(usage : ServiceUsageRecord, administration : Administration) : Boolean

DeferredSynchronousRequestOperationDefinition
(sla1.slang.es)

ServiceBehaviourRestrictionConditionClause
(slang)

FailureModeDefinition
(slang.es)

+calculateResponsibleParty() : PartyDefinition

AvailabilityConditionClause
(slang.es)

ParameterDefinition
(slang.es)

OperationDefinition
(slang.es)

Definition
(slang)

+requestOperation +resultsOperations
1..*

+asynchronousAvailabilityClauses

*

+requestId

+operation

+asynchronousReliabilityClauses
*

+parameters *
+operation

Figure 7.11: Clause-types for defining asynchronous electronic-service failure modes

the client that an execution took too long). These are shown in Figure 7.12.

sla1-services-es-delegatedpackage es[]

ExecutableDefinition
(sla1.slang.es)

+referenceNodeSpeed : Real

+calculateMaxDuration(inputs : String [*]) : Real

ServiceUsageRecord
(services.es)

+date : Date
+duration : Duration

+correlated(other : Evidence) : Boolean

ExecutionParameterRecord
(sla1.services.es)

+value : String

SlowExecutionReport
(sla1.services.es)

+normalisedDuration : Duration

ExecutionParameterValue
(sla1.services.es)

+value : String

DelegatedExecution
(sla1.services.es)

+duration : Duration

Node
(sla1.services.es)

+speed : Real

Executable
(sla1.services.es)

ServiceRequest
(services.es)

Event
(services)

+date : Date

Report
(services)

+inputs
*

+outputs
*

+requestRecord

+inputs

*

+request

+slowExecutionReports*

Figure 7.12: Domain-model extension describing the behaviour of delegated execution services

With reference to these semantic elements it is possible to formally define the meaning of the

syntactic extensions shown in Figure 7.13.

An executable definition identifies an executable and provides a relationship between its inputs

and the maximum time it will take to execute on a node with a particular reference speed (I have not

7.7. SLA definition 206

sla1-slang-es-delegatedpackage es[]

ExecutableDefinition
(sla1.slang.es)

+referenceNodeSpeed : Real

+calculateMaxDuration(inputs : String [*]) : Real

DelegatedExecutionDependentFailureMode
(sla1.slang.es)

+slowExecution(serviceUsage : ServiceUsageRecord, administration : Administration) : Boolean
+sLAEvents() : Event [*]
+evidenced(event : Event, evidence : Evidence [*]) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

DelegatedExecutionOperationDefinition
(sla1.slang.es)

+isValidSlowExecutionReport(reportRecord : ReportRecord, agreed : Evidence [*]) : Boolean

FixedDurationExecutableDefinition
(sla1.slang.es)

+maxDuration : Duration

+calculateMaxDuration(inputs : String [*]) : Real

FailureModeDefinition
(slang.es)

+calculateResponsibleParty() : PartyDefinition

SlowExecutionReport
(sla1.services.es)

+normalisedDuration : Duration

OperationDefinition
(slang.es)

Definition
(slang)

+identifier : String
+description : String

AuxiliaryClause
(slang)

Executable
(sla1.services.es)

PartyDefinition
(slang)

+executables1..*

+slowExecutionReports

*

+maintainer

Figure 7.13: Clause-types for describing a delegated-execution electronic service

formalised the notion of speed other than as a simple scalar – more sophisticated extensions would need

to consider different processing node architecture types, possibly including multi-processor architectures

– this is not required in this case studies as the grid nodes are homogenously single-processor with

uniform speed). The PS states that MOLPAK and DMAREL have fairly constant performance so I have

provided a concrete extension of this clause type that allows the specification of a constant maximum

time, independent of inputs.

Executables having been defined, a specialised operation-definition clause can identify executables

as potentially being executed in the course of processing occurring as a result of a usage of the operation.

Finally, a delegated-execution-dependent failure mode may be related to such operations. This abstract

type of failure-mode does not indicate what outcomes should be regarded as failures, but does state that

usages should not be regarded as failures in any more specialised mode if a slow-execution report has

been submitted to the client in respect of the usage. Constraints associated with the delegated-execution

operation definitions oblige the provider to only issue such reports when an execution caused by a usage

has legitimately exceeded the defined maximum duration.

Having provided extensions for describing failures related to asynchronous operations and

delegated-executions, it is finally necessary to combine these modes to create a latency failure-mode for

7.7. SLA definition 207

simulation execution. Note that simulation invocations shouldn’t be regarded as being in this mode if the

client has started too many simulations in a 24 hour period, or if the service is known to be unavailable,

hence the failure mode will also be availability and violation dependent. The combination of failure-

mode types ultimately required is shown in Figure 7.14. The simulation-failure mode is a fixed-latency

(24 hours), fixed-deadline (one week to retrieve experiment results), delegated-execution (dependent on

MOLPAK and DMAREL guarantees), availability-dependent (doesn’t apply if the service is unavailable),

violation-dependent (doesn’t apply if the client has started too many experiments), asynchronous failure

mode. This failure mode is defined starting at line 1102, pg. 315.

Failures of this type should never occur without implying a penalty for IS, so the mode is associated

with a prohibited service-behaviour condition clauses, with a fixed penalty, at line 1102, pg. 315

sla1-slang-es-experiment-failure-modepackage es[]

FixedLatencyFixedDeadlineDelegatedExecutionDependentAvailabilityDependentViolationDependentAsynchronousFailureMode
(sla1.slang.es)

+latency : Duration
+deadline : Duration

+calculateLatency(request : ServiceUsageRecord, administration : Administration) : Real
+calculateRetrievalDeadline(request : ServiceUsageRecord, administration : Administration) : Real
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

AsynchronousLatencyFailureModeDefinition
(sla1.slang.es)

+calculateLatency(request : ServiceUsageRecord, administration : Administration) : Real
+calculateRetrievalDeadline(request : ServiceUsageRecord, administration : Administration) : Real
+resultsId(usage : ServiceUsageRecord) : ParameterRecord
+requestId(usage : ServiceUsageRecord) : ParameterRecord
+earliestUniqueRetrievals(request : ServiceUsageRecord, administration : Administration) : ServiceUsageRecord [*]
+latestEvidenceTime(evidence : Evidence [*]) : Real
+included(usage : ServiceUsageRecord, administration : Administration) : Boolean

DelegatedExecutionDependentFailureMode
(sla1.slang.es)

+slowExecution(serviceUsage : ServiceUsageRecord, administration : Administration) : Boolean
+sLAEvents() : Event [*]
+evidenced(event : Event, evidence : Evidence [*]) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

ElectronicServiceUsageBehaviorDefinition
(slang.es)

+included(usage : ServiceUsageRecord, administration : Administration) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean
+sLAEvents() : Event [*]
+evidenced(event : Event, evidence : Evidence [*]) : Boolean
+serviceUsageRecords(agreed : Evidence [*]) : ServiceUsageRecord [*]
+getFirstInstanceOf(agreed : Evidence [*]) : Evidence [*]
+getNextInstanceAfter(prior : Evidence [*], agreed : Evidence [*]) : Evidence [*]
+getBehaviourTime(behaviour : Evidence [*]) : Real

AvailabilityDependentElectronicServiceUsageBehaviourDefinition
(slang.es)

+isUnavailable(usage : ServiceUsageRecord) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

ViolationDependentElectronicServiceUsageBehaviourDefinition
(sla1.slang.es)

+violating(usage : ServiceUsageRecord, administration : Administration) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

ConditionClause
(slang)

+satisfyingConditions
*

Figure 7.14: The ‘simulation’ failure mode, combining a number of more abstract failure-mode types

Administration and accuracy clauses

I have arbitrarily decided that the SLA should be administered once a week, on a Friday. I have imple-

mented a lifetime for the agreement of one year. Since SLA 1 is mutually monitorable, reconciliation

administrations, where the parties liaise to agree an account of service behaviour, are possible. Because

7.7. SLA definition 208

sla1-slang-es-administrationpackage es[]

AdministrationClause
(slang)

+administered() : Boolean
+eventRelevant(administration : Administration, event : Event) : Boolean
+services() : ServiceDefinition [*]
+sLAEvents() : Event [*]

ScheduledConsecutiveAvailabilityAwareReconciliationAdministrationClause
(sla1.slang.es)

ConsecutiveAdministrationClause
(sla1.slang)

+administrationStart : Date

+administrationsBetween(startDate : Real, endDate : Real) : Administration [*]
+priorAdministration(date : Real) : Administration
+intervalStartDate(administration : Administration) : Real
+intervalEndDate(administration : Administration) : Real
+eventRelevant(administration : Administration, event : Event) : Boolean

ConsecutiveAvailabilityAwareAdministrationClause
(sla1.slang.es)

+eventRelevant(administration : Administration, event : Event) : Boolean

ScheduledAdministrationClause
(sla1.slang)

+priorAdministrations(date : Real) : Administration [*]
+administered() : Boolean

ReconciliationAdministrationClause
(slang)

PeriodicInterval
(sla1.slang)

+duration : Duration

+eq(s : PeriodicInterval) : Boolean
+applies(t : Real) : Boolean
+nextDurationEndDate(t : Real) : Real
+nextEndDate(t : Real) : Real
+nextStartDate(t : Real) : Real

PeriodicProcess
(sla1.slang)

+name : String
+startDate : Date
+period : Duration
+endDate : Date

+eq(s : PeriodicProcess) : Boolean
+cycleNumber(t : Real) : Integer
+validateDate(t : Real) : Real
+nextCycleStartDate(t : Real) : Real

ScheduledClause
(sla1.slang)

+applies(t : Real) : Boolean
+nextStartDate(t : Real) : Boolean
+endDate(t : Real) : Boolean
+startDatesAfter(t : Real) : Real [*]
+startDates() : Real [*] +schedule

1..*

Figure 7.15: Abstract and concrete administration clause types for SLA 1

of the way that the availability condition calculates penalties, it is necessary that the administration be

consecutive, in that it defines a sequence of consecutive administrative periods, the durations of which

may be used in the calculation of penalties. In addition, the administration must be availability-aware, in

that it should include evidence related to the exchange of any outstanding bug-reports (at the start of the

administrative period).

Figure 7.15 shows the types used to extend SLAng’s primitive notion of an administration clause to

this effect. The routine administration clause is defined starting at line 929

Each administration covers all SLA conditions and must include evidence pertaining to all events

relevant to the conditions occurring during the last administrative period, or since a specified start date

for the agreement if there is no prior administration.

The inclusion of latency conditions in SLA 1 implies that the timing and duration of

service-usages becomes a matter of concern. The SLA will therefore need to include a

ServiceUsageRecordAccuracyClause to govern the measurement of this clause. Since the

parameters of the latency conditions do not vary, the accuracy with which measurements are required

will also not vary, and a PermanentFixedServiceUsageRecordAccuracyClause will be

adequate. I have chosen a margin of error of 1 second, tolerably small in comparison the specified win-

dow of 1 minute for nuisance delays, and yet large enough to accommodate some clock-synchronisation

7.7. SLA definition 209

error. I have chosen 50ms as a suitable margin of error for the measurement of durations, as this is an

order of magnitude greater than the resolution of most computer clocks (which should also experience

negligible drift over the likely period of a service usage). I have stated that parties measuring these

quantities should be 99% confident in their measurements, and the probability of a good log resembling

a bad one should be 0.001%. In a log of 1000 measurements this permits only 9 errors, in comparison

with a trusted log meeting the accuracy constraint, where an error is a difference greater than twice the

error margin.

The timing of the exchange of various types of reports is also of relevance to the SLA, namely bug-

reports, bug-fix reports, slow-execution reports, and as discussed below, termination reports. Therefore

a permanent, fixed report-recording accuracy clause is also associated with the routine administrative

clause.

Termination of SLA 1
Remaining to be considered of the conditions included in the list on pg. 193 are the termination condi-

tions, 10 and 13.

It is possible that at some point during the one-year default term specified for SLA 1 that either

Chemistry or IS will wish to withdraw from the agreement, signalled by the exchange of a termination

report (a notion representing some kind of communication between the parties to this effect). As identi-

fied in the risk analysis for the SLA, the parties may wish to penalise this. Therefore I have implemented

a fixed-penalty termination-by-report condition using the extensions shown in Figure 7.16.

The extensions include both a terminating condition, and a termination triggered reconciliation-

adminstration clause, which must occur within a fixed deadline of the termination report being ex-

changed. The terminating condition, defined starting at line 1168, pg. 316, applies an equal penalty

to whichever party chooses to pull out of the agreement early. The termination-triggered administration

clause administers this condition, plus all of the conditions administered by the routine administration,

for the period ending with the terminating administration. It is specified starting at line 1146, pg. 315.

The routine administration clause described above is sensitive to violations of terminating condi-

tions, and administrations are not required by that clause after such a violation has been agreed in an

administration.

7.7.2 SLA 4: Provision of the plotws web-service by the ISP to CS

The SLA clauses required in SLA 4 are:

1. a latency condition on plot operations;

2. a reliability condition on plot operations;

3. an availability condition on plot operations;

4. a payment scheme;

5. a termination penalty for the ISP cancelling the SLA;

6. an input-throughput constraint on operations;

7.7. SLA definition 210

sla1-slang-es-terminationpackage es[]

FixedDeadlineTerminationByReportConsecutiveAvailabilityAwareReconciliationAdministrationClause
(sla1.slang.es)

+deadline : Duration

+calculateAdministrationDeadline() : Real

TerminationByReportConditionClause
(slang)

+sLAEvents() : Event [*]
+services() : ServiceDefinition [*]
+evidenced(event : Event) : Boolean
+violationsCalculated(agreed : Evidence [*], violations : Violation [*]) : Boolean
+calculatePenalty(terminationReportRecord : ReportRecord, agreed : Evidence [*]) : PenaltyDefinition

TerminationByReportConditionClause
(slang)

+sLAEvents() : Event [*]
+services() : ServiceDefinition [*]
+evidenced(event : Event) : Boolean
+violationsCalculated(agreed : Evidence [*], violations : Violation [*]) : Boolean
+calculatePenalty(terminationReportRecord : ReportRecord, agreed : Evidence [*]) : PenaltyDefinition

+fixedPenalty : PenaltyDefinition

+calculatePenalty(terminationReportRecord : ReportRecord, agreed : Evidence [*]) : PenaltyDefinition

FixedPenaltyTerminationByReportConditionClause
(sla1.slang)

ConsecutiveAvailabilityAwareAdministrationClause
(sla1.slang.es)

+eventRelevant(administration : Administration, event : Event) : Boolean

ReconciliationAdministrationClause
(slang)

Figure 7.16: Administration and condition clause types related to the termination of an SLA, appropriate
to SLA 1

7. a termination penalty for CS cancelling the SLA.

In addition it will be necessary for the parties to:

• agree a schedule of administrations;

• agree on standards of accuracy for gathering evidence related to service usages.

SLA 4 is considerably simpler than SLA 1, and I omit a detailed description of its definition

here. The various plot operations for the service all function similarly to any of the operations of the

Polymorph Search Webclient. Implemented in SOAP using an HTTP transport they can be

described in a manner similar to a webpage request. Again I have relied on informal failure-mode

descriptions. This is not problematic as the service should plot graphs according to well-understood

representational principles which, it can be assumed, all parties are capable of understanding. Also, be-

ing mutually-monitorable, the parties will have a chance to negotiate what constitutes a violation during

reconciliation.

Similar to SLA 1, SLA 4 contains a triumvirate of reliability (incorporating latency), throughput

and availability clauses. The availability clause depends on the reliability clause to allow the client to

issue bug reports. The reliability clause refers to failure modes that are dependent on the prevailing

availability conditions and any violations of the throughput condition.

7.7. SLA definition 211

In the definition of extensions supporting SLA 4 I have duplicated several extension classes used

in SLA 1. However, I have also taken the opportunity to demonstrate some variations. For the sake of

the example, I have supposed that Southampton, and by implication also the ISP, would prefer an hour

of maintenance time between midnight and 1 AM each morning, during which time they are not subject

to either reliability or availability conditions. This I have implemented by associating schedules with

failure modes, allowing failures to be excluded if the associate schedule does not apply. I have also

implemented a scheduled availability clause, where time between bugs and bug-fixes only contributes to

the calculation of the penalty if the schedule associated with the availability clause also applies (although

bugs can still be reported at any time). These extensions are shown in Figures 7.17 and 7.18.

sla4-slang-es-scheduled-availabilitypackage es[]

AvailabilityConditionClause
(slang.es)

+calculateReportingDeadline(violation : Violation) : Real
+considerLoneBugReports() : Boolean
+calculatePenaltyForBugReport(administration : Administration, bugReport : ReportRecord) : PenaltyDefinition
+calculatePenaltyForUnavailability(administration : Administration, bugReport : ReportRecord, bugFixReport : ReportRecord) : PenaltyDefinition
+sLAEvents() : Event [*]
+service() : ServiceDefinition
+evidenced(event : Event, administration : Administration) : Boolean
+bugReports(agreed : Evidence [*]) : ReportRecord [*]
+findRecordOfBugFix(evidence : Evidence [*], bugReport : BugReport) : ReportRecord
+violationsCalculated(agreed : Evidence [*], violations : Violation [*]) : Boolean

ScheduledScalingPenaltyFixedDeadlineAvailabilityConditionClause
(sla4.slang.es)

+deadline : Duration

+calculateReportingDeadline(violation : Violation) : Real
+considerLoneBugReports() : Boolean
+calculatePenaltyForBugReport(administration : Administration, bugReport : ReportRecord) : PenaltyDefinition
+calculatePenaltyForUnavailability(administration : Administration, bugReport : ReportRecord, bugFixReport : ReportRecord) : PenaltyDefinition
+calculateViolationDuration(violation : Violation) : Real

ScalingPenaltyConditionClause
(sla4.slang)

+calculateViolationDuration(violation : Violation) : Real

ScheduledClause
(sla4)

+applies(t : Real) : Boolean
+nextStartDate(t : Real) : Boolean
+endDate(t : Real) : Boolean
+startDatesAfter(t : Real) : Real [*]
+startDates() : Real [*]

+schedule : PeriodicInterval [1..*]

PenaltyDefinition
(slang)

+penalty

Figure 7.17: A scheduled availability type, guaranteeing availability only according to a specified sched-
ule, in support of SLA 4

Finally, in contrast to SLA 1, I have assumed that Southampton prefers to calculate penalty pay-

ments related to violations occurring over an interval in a precise rather than stepped manner. Therefore,

instead of using stepped condition-clauses as in SLA 1, I have introduced the notion of a scaling penalty

definition. I have combined this with the notion of a penalty paid in Pounds Sterling.

Scaling penalties rely on the notion of a violation having a duration, which is not an essential feature

of violations. Therefore to support the calculation of violation durations, it was also necessary to describe

a category of condition clauses that define an notion of duration for their violations. A permanent, fixed-

window, fixed occurrences, scaling-penalty, maximal service-behaviour restriction condition clause can

then be used to define reliability conditions in the SLA. Extensions related to scaling penalties are shown

7.8. Case-study conclusions 212

sla4-slang-es-scheduled-modespackage es[]

ScheduledFixedLatencyAvailabilityDependentViolationDependentFailureModeDefinition
(sla4.slang.es)

+calculateMaxDuration(usage : ServiceUsageRecord, agreed : Evidence [*]) : Real
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

+maxDuration : Duration

ScheduledInformalAvailabilityDependentViolationDependentFailureModeDefinition
(sla4.slang.es)

+included(usage : ServiceUsageRecord, administration : Administration) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

LatencyFailureModeDefinition
(slang.es)

+calculateMaxDuration(usage : ServiceUsageRecord, agreed : Evidence [*]) : Real
+included(usage : ServiceUsageRecord, administration : Administration) : Boolean

ViolationDependentElectronicServiceUsageBehaviourDefinition
(sla4.slang.es)

+satisfyingConditions : ConditionClause [*]

+violating(usage : ServiceUsageRecord, administration : Administration) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

AvailabilityDependentElectronicServiceUsageBehaviourDefinition
(slang.es)

+isUnavailable(usage : ServiceUsageRecord) : Boolean
+excluded(usage : ServiceUsageRecord, administration : Administration) : Boolean

ScheduledClause
(sla4)

+applies(t : Real) : Boolean
+nextStartDate(t : Real) : Boolean
+endDate(t : Real) : Boolean
+startDatesAfter(t : Real) : Real [*]
+startDates() : Real [*]

+schedule : PeriodicInterval [1..*]

Figure 7.18: Scheduled latency and informal functional failure mode types in support of SLA 4

in Figure 7.19.

7.8 Case-study conclusions
The principle objective of this case-study was to demonstrate that SLAs appropriate to a realistic service-

provisioning scenario could be defined using SLAng. In this respect, the case-study was successful. Two

SLAs were specified using SLAng. In the next chapter, I argue that these SLAs are appropriate to the

scenario as part of a broader evaluation of SLAng against the requirements that I established in Chapter 2.

Two notable observations arise from the case-study directly. First, that the base language provided

good support for the definition of extensions (as will be described formally in the next chapter through

an evaluation of the power, adequacy and specificity of SLAng) suggesting that the design of the core-

language is based on valid assumptions and is of reasonable quality. Second, that although the case-

study was not successful in producing a full set of prototype SLAs for the scenario, this was not due

to deficiencies in the support developed for authoring SLAs, but limitations in the analysis and design

of the SLAs. In fact, SLA 1 required very complicated extensions to SLAng, to support asynchronous

operations, and conditions related to delegated execution. The capacity of the SLAng language core to

be extended to express this SLA suggests both that the design of the language is appropriate, and that the

approach of providing an abstract, extensible language for this semantic domain is a practical one, and

is robust in the face of unanticipated requirements.

The need to define sophisticated language extensions for SLAng in the case-study suggests that a

7.8. Case-study conclusions 213

sla4-slang-penaltiespackage slang[]

PermanentFixedWindowFixedOccurrencesScalingPenaltyMaximalServiceBehaviourRestrictionConditionClause

(sla4.slang)

+calculatePenaltyForMaximalViolation(maximal : Evidence [*], administration : Administration) : PenaltyDefinition
+calculateViolationDuration(violation : Violation) : Real
+violationsCalculated(administration : Administration) : Boolean
+allLaterViolationsCalculated(prior : Evidence [*], administration : Administration) : Boolean

PermanentFixedWindowFixedOccurrencesMaximalServiceBehaviourRestrictionConditionClause

(sla4.slang)

+maxOccurrences : Integer
+window : Duration

+calculatePenaltyForMaximalViolation(maximal : Evidence [*], administration : Administration) : PenaltyDefinition
+calculateMaxOccurrences(date : Real, evidence : Evidence [*]) : Integer
+calculateWindow(date : Real, evidence : Evidence [*]) : Real
+violationExistsFor(maximal : Evidence [*], administration : Administration) : Boolean

ConditionClause

(slang)

+priorClauses() : ConditionClause [*]
+sLAEvents() : Event [*]
+service() : ServiceDefinition
+evidenced(event : Event, administration : Administration) : Boolean
+violationsCalculated(administration : Administration) : Boolean

PoundsSterlingPaymentPenaltyDefinition

(sla4.slang)

+calculatePoundsSterlingPayment(violation : Violation) : Real
+calculatePaymentDeadline(violation : Violation) : Real

FixedDeadlineScalingPoundsSterlingPenaltyDefinition

(sla4.slang)

+calculatePoundsSterlingPayment(violation : Violation) : Real
+calculatePaymentDeadline(violation : Violation) : Real

+amountPerHour : Real

ScalingPenaltyConditionClause

(sla4.slang)

+calculateViolationDuration(violation : Violation) : Real

PenaltyDefinition

(slang)

Figure 7.19: Condition clause and penalty definition types implementing scaling penalties for SLA 4

tentative generalisation can be made from the single ASP scenario examined: that SLAng should be ap-

propriate for defining SLAs in different scenarios, provided that they are also ASP scenarios satisfying

the criteria used to select the case scenario considered. Note that if SLAng were overly specialised to

the case considered, then it would be reasonable to expect that extensions to the language would not be

required. Therefore, the need for extensions suggests that SLAng is not specific to the scenario. Given

this, the observation that SLAng was flexible enough to accommodate expressiveness requirements spe-

cific to the scenario, but not predefined, suggests that it will also be expressive enough to accommodate

expressiveness requirements specific to other scenarios.

In order to generate additional insights from the case-study, it is also helpful to evaluate it as an effort

to introduce new technology into the scenario. I consider two criteria: first, how useful the produced

SLAs are to the scenario; second, how successful was the attempt to develop SLAs for the scenario

using SLAng.

The result of the design stage of the case-study was a proposal for a system of SLAs containing 5

SLAs. As an approach to mitigating risks in the scenario, this system has both advantages and disadvan-

tages.

7.8. Case-study conclusions 214

The greatest practical disadvantage posed is the obligation imposed on the parties to monitor the

SLAs at network boundaries. This poses the greatest challenge for the network service providers, IS, and

the ISP, as they would have to implement new monitoring solutions at the edges of their networks (either

by intercepting service requests or responses or providing proxy services). This monitoring requirement

represents a hurdle to the adoption of this system of SLAs. However, as I demonstrated in Chapter 5, if

highly monitorable SLAs are desired, and technology for trusted monitoring is not available, then there

is no alternative.

Another minor problem with the system of SLAs proposed is that CS and IS enter into two SLAs

(SLA 2 and SLA 3) where one SLA might be preferable. This may result in reciprocal payments resulting

from the same violation, where a single SLA could have instead identified a violation without penalty.

Similarly, it results in reciprocal guarantees being issued with respect to the behaviour of the executables

MOLPAK and DMAREL. However, as discussed in Appendix B.2, some security guarantee would be

required in any case by IS when allowing CS to specify executables to be run on cluster nodes during

configuration.

In favour of the SLAs proposed is that having ruled out the use of SLAs to mitigate security risks, it

was possible to propose SLA conditions for each of the SLAs such that all risks intrinisic to the scenario

(not caused by the use of SLAs), were mitigated, and all derived risks (caused by the use of SLAs), were

also mitigated. It was possible to do this without proposing changes to the scenario. This suggests that

providing the parties were prepared to accept the monitoring and administration costs of using mutually-

monitorable SLAs, then SLAs would be a practical risk-mitigation solution for this scenario.

The set of SLAs implemented suffers from several deficiencies related to a lack of knowledge of

the case-study scenario. SLA 3 is not specified, because of the difficulty of determining the protocols by

which the various Condor processes communicate. For the same reason, use-cases 2 and 3 were not

elaborated, as they deal exclusively with this type of communication. Therefore, the SLAs proposed may

not address risks related to the activities performed in these use-cases. Finally, the parameterisation of

the concrete SLAs is suspect, because the true performance characteristics of the service are not known,

and also economic significance of the service in terms of its operating costs and the magnitude of the

financial risks implied by poor performance or termination of SLAs. Since SLAs 2 and 5 were shown to

differ from SLA 1 and SLA 4 only in their participants and parameter values, I elected to produce only

concrete examples of SLAs 1 and 4.

These deficiencies are all caused by limitations in the amount of effort that could be allocated to

this case-study. It remains unknown whether, given more effort, these deficiencies could be rectified to

produce a set of SLAs appropriate to the scenario, but it seems to me likely that they could. Certain

aspects simply require more effort, such as the reverse-engineering of the Condor protocols (although

it may be that if a strong desire to use SLAs in the scenario arose that it would be more convenient

to restructure the service to avoid the need to do this, as discussed below). Other aspects may require

the development of new theory. For example, a method to determine parameter values for SLAs must

consider what performance analysis of a system is required, what financial analysis, how the results of

7.9. Redesigning the service 215

these analyses could inform the selection of parameter values, and how confidence in the properties of

the resulting SLAs could be developed. These questions represent a challenge for future research efforts,

but I think it would be unduly pessimistic to believe that progress on these questions could not be made.

It is the lack of methodological prescriptions for these aspects of the preparation of SLAs that

is also the strongest criticism of the method that I followed to conduct the case-study. By regarding

SLAs as a new technology being introduced to meet existing requirements, it was possible to develop

a case-study method by analogy to software development, consisting of requirements-analysis, design

and definition stages. The original assumption of this work, that SLAs are a mechanism for mitigating

financial risks, suggested that requirements-analysis should focus on risk-analysis. Using use-cases to

direct the risk-analysis, and subsequently designing conditions in relation to risks has apparently enabled

a thorough approach to be taken, with the benefit of traceability, resulting in plausible SLAs which at

least have the potential to mitigate those risks that have been successfully elicited. Assuming reasonable

parameters could be determined for the conditions, further work would be required to test the SLAs

in an operational context to determine whether they actually mitigated the true risks to the participants

inherent in the scenario, or whether unexpected outcomes rendered the SLAs irrelevant.

7.9 Redesigning the service
Having proposed an initial set of SLAs for the eMaterials scenario, the final stage in the proposed case-

study method is to consider what modifications could be made to the existing infrastructure to better

accommodate the use of SLAs.

Clearly, a major hinderance to the production of a complete set of SLAs for the case-study has been

the obscurity of the protocols by which Condor processes communicate. A Condor grid in aggregate

potentially has at least two well-defined web-services interfaces, via which interaction is possible, one

defined by GridSAM, and the other application-specific. However, in this case-study, the Condor im-

plementation itself spanned an administrative boundary, with the Condor controller and Condor

submit daemon controlled by CS, and the Condor nodes controlled by IS. Two solutions suggest

themselves: either IS or some other support-function within the university should operate the grid com-

pletely themselves; or it will be necessary to clarify the means by which the various Condor process

communicate, perhaps by re-implementing these communications using web-services. In the long-run,

the former seems the more viable solution to me: high-performance computing is likely to become a

commodity within a university that multiple academic departments will wish to use. Therefore it seems

sensible to bring it under centralised administrative control.

This would drastically simplify the specification of SLA 3 in the scenario, which would similar to

SLAs 1 and 2. CS would be reselling a grid-service to Chemistry, via IS, wrapped in the Polymorph

Search Webclient, with the minor additional functionality of collating and summarising the re-

sults.

216

Chapter 8

Evaluation

This dissertation supports the following thesis: it is possible to provide practical language support for

Service-Level Agreements (SLAs) for Application-Service Provision (ASP) that is better than that pro-

vided by previously proposed languages constructed for this purpose in the following respects: it pro-

vides greater assistance in expressing conditions that mitigate the risks inherent in ASP; and disputes

related to agreements expressed in this manner may be more easily resolved in such a way as to respect

the original intent of the parties.

In Chapter 2, I have first described the risks to which the parties in a typical ASP scenario are

exposed, and hence requirements for systems of SLAs capable of mitigating those risks. I have then

enumerated requirements for SLA languages and the specifications of such languages, which, if met,

would result in a practical language, capable of expressing systems of SLAs containing conditions that

would act in combination to mitigate these risks. Such a language would also permit the expression of

SLAs that were both highly precise and monitorable, qualities that I have identified as contributing to

the ease with which disputes could be resolved by observing that in order to resolve a dispute the intent

of the original agreement must be retrieved from an SLA, and then used to pass judgement in relation to

a set of evidence that has been obtained in a trustworthy manner.

In subsequent chapters I have introduced theoretical innovations in the design and specification of

SLAs languages which made meeting these requirements possible. I then incorporated these innovations

into the design of an abstract, extensible, domain-specific language for ASP SLAs, SLAng.

In the previous chapter, I have demonstrated that it was practical to use SLAng to specify SLAs in

a realistic ASP scenario, using a case-study. In this chapter I conclude the demonstration of my thesis

by arguing that the support provided by SLAng in specifying these SLAs, and by implication SLAs

that might be specified in similar scenarios, is superior to that which would be provided by previously

proposed languages designed for the same or similar purposes. I achieve this by first evaluating SLAng

according to my requirements. I then survey alternative languages and argue that they do not meet my

requirements to the same extent as SLAng does. Deficiencies identified in the languages commonly

include a lack of support for expressing conditions, such as latency, reliability and throughput, that are

clearly essential to mitigating the risks inherent in the ASP scenario, a lack of precision in the definition

of their semantics, compounded by the lack of a clear definitive specification, and a disregard for con-

siderations of monitorability, either in relation to the gathering of reliable evidence or the treatment of

8.1. Evaluation of SLAng versus requirements 217

measurement error when determining violations.

In addition, I further investigate the power, specificity and adequacy of SLAng, by evaluating the

metrics defined in Section 4.5 in the context of the SLAs and language extensions developed during

the case-study. This serves to demonstrate that SLAng is a highly powerful language and also extremely

specific to its domain. However, its adequacy can be improved by the incorporation of extension elements

found to be useful in common practice. I demonstrate that, by incorporating common elements from

the SLAs developed in the case-study, SLAng’s adequacy can be improved without compromising its

specificity to a large extent, and use this result as a basis for a discussion of the future evolution of the

language.

8.1 Evaluation of SLAng versus requirements
In this section I evaluate SLAng against the requirements stated in Section 2.8. I also evaluate language

specifications, derived by extending SLAng, against the requirements for such specifications stated in

Section 2.9.

8.1.1 Expressiveness requirements

I first consider SLAng’s expressiveness requirement, stated as follows:

Language 1, pg. 44 – Expressiveness

The language must be capable of expressing all SLAs in a system of SLAs meeting the requirements

specified in Section 2.7.

A full evaluation of SLAng with respect to this requirement involves considering the extent to which

it is possible to express SLAs meeting the SLA requirements stated in Section 2.7. This I now do, with

reference to the SLAs created as part of the case-study.

SLA 1, pg. 40 – Service conditions

The system of SLAs should entitle the client to either receive compensation, vary some SLA or

SLAs in an agreed manner, or provide them with the opportunity to quit the system of SLAs without

penalty, when the behaviour of the service, in so far as this effects the client, violates some anticipated

requirement of the client, potentially including timeliness and reliability requirements.

The capability of SLAng to express systems of SLAs meeting this criteria was partially demon-

strated in the case-study. SLA 1 was the only SLA in the system which addressed the client’s need for

compensation, and this SLA was specified in its entirety. The SLA includes timeliness and reliability

conditions, and also an availability condition related to these conditions which serves to improve the

practicality of the SLA and reduce its exploitability. These conditions are related to the definition of

financial penalties that are applied to the parties in the event of condition violation. Conditions relating

the exchange of a termination report to the termination of the agreements are included in both of the

example SLAs.

SLAng required extensions to deliver this capability. However, the extensions required to express

these conditions benefitted substantially from the contributions of the base-classes that they extended. In

Section 8.1.3 I measure how adequate SLAng was to the case-study SLAs.

The expression of constraints relating to real-world behaviours was not demonstrated in the case-

8.1. Evaluation of SLAng versus requirements 218

study, because the case-study service exhibits no behaviour unrelated to its electronic services. However,

the SLAng language core is designed to support the specification of such conditions. Base classes such as

ServiceBehaviour and ServiceBehaviourRestriction are independent of any semantic

elements relating specifically to electronic-services. Moreover, the case-study demonstrated the addition

of new concepts to the domain model, such as Executable, that are not uniquely associated with

electronic services. The combination of these two facilities in the language suggests the possibility to

model real-world behaviour and specify conditions in relation to it.

SLA 2, pg. 40 – Client conditions

The system of SLAs should entitle any service providers involved to either receive compensation,

vary some SLA or SLAs in an agreed manner, or provide them with the opportunity to quit the system of

SLAs without penalty, when the behaviour of the client, in so far as it effects the service, violates some

anticipated requirement of the provider, potentially including request-throughput limitations.

SLAs produced in the case-study demonstrated the capability of the language to express the re-

quirements of service-providers, in addition to those of clients. In particular, throughput conditions were

implemented, including an unusual condition in SLA 1 relating only to the throughput of successful

requests. Although the specification of a complete set of SLAs for the case-study was prohibited by

the difficulty of reverse-engineering the Condor communication protocols, the potential of SLAng to

specify such a system is clear.

SLA 3, pg. 40 – Charging

The system of SLAs should make the service provider and network-service provider liable to re-

ceive compensation, in return for their contributions to providing the service to the client at the client’s

preferred point of service delivery, if the providers require compensation.

The potential of SLAng to implement charging schemes was demonstrated in the SLAs produced

by the case-study, in which throughput constraints were used to associate financial penalties with service

requests to implement per-use charging schemes. Clearly more complicated charging schemes would

not necessarily be able to rely on this use of existing facilities in the language for specifying conditions.

However, it would be straightforward to implement other schemes in language extensions, and the se-

mantic definitions of these extensions could reuse existing concepts in the domain model, such as timed

events, violations and compensation.

SLA 4, pg. 40 – Termination

The system of SLAs should make any party liable to receive compensation when one or more SLAs

in which they participate are terminated prematurely by another party.

Both SLAs developed for the case-study included precisely defined termination conditions, and

administration clauses that precisely define the obligations for the parties in determining final penalties

in the event of early termination.

SLA 5, pg. 41 – Protectability

All SLAs in a system of SLAs must be protectable.

Protectability is difficult to assess in the abstract. Hopefully it will be possible to monitor the

8.1. Evaluation of SLAng versus requirements 219

use of SLAng in a real service-provision scenario in the future. Disagreements over SLAs occurring

during such a study would provide the opportunity to assess the extent to which SLAng contributed to

protecting the initial intent of the parties. However, I argue that because SLAng satisfies the precision

and monitorability requirements, discussed below, to a high degree, then the SLAs expressed in SLAng

will tend to be highly protectable.

SLA 6, pg. 41 – Understandability

SLAs must be understandable, so that all parties can verify that an SLA correctly captures their

intent with respect to the agreement, and so the intended effect of the agreement can be easily retrieved

in the event of a disagreement related to the award of penalties.

I discuss the intrinsic understandability of the SLAng language below. However, according to my

recommendations in Chapter 4 for concrete statements expressed using a domain-specific language, indi-

vidual SLAs expressed using XMI or HUTN should be understandable because they include a comment

in natural language referencing the concrete-syntax standard in which they are written, as described in

Section 3.2.3. It is therefore possible for a user to examine that standard, and subsequently interpret the

SLA. This activity will involve retrieving and interpreting the language specification defining the ab-

stract syntax and semantics of the language. This specification will be interpretable in a similar manner

in relation to the meta-language specification in which it is defined, in the case of SLAng, a combination

of EMOF, OCL and natural language.

These features of SLAng SLAs combine to eliminate any practical barrier to obtaining an interpre-

tation of a SLAng SLA according to the SLAng language specification. SLAng SLAs are nevertheless

technical artifacts that may require some expertise to interpret. SLAng is a powerful language, so a

thorough understanding of a SLAng SLA will require more effort devoted to interpreting the SLAng

language specification than the SLA document itself, which is principally a repository for parameter

values. Some of these parameter values may be reasonably easy to interpret informally, such as the

maximum latency value in a latency failure-mode description, or the window size and maximum occur-

rences in a behaviour-restriction condition clause. Such informal interpretation of an SLA is aided by

the possibility of representing a SLAng SLA using the Human-Usable Textual Notation (HUTN).

SLA 7, pg. 41 – Precision

SLAs must be precise, so that their intended effect is unambiguous in the case of any disagreement

related to the award of penalties.

The precision of SLAng SLAs depends on the precision of the SLAng language, discussed below,

and on the precision of the concrete-syntax syntax used to encode the SLA. A SLAng SLA is expressed

according to some concrete-syntax standard that permits the interpretation of the SLA document as a

collection of objects conforming to the types in the SLAng abstract syntax. Existing concrete-syntax

standards for this purpose, such as XMI and HUTN, are highly unambiguous, in the sense that a single

document can only be reasonably interpreted as a single system of objects. The explicit referencing of

both the concrete-syntax standard in which an SLA is written and the language specification to which it

conforms, recommended in Section 3.2.3, not only provides a route to understanding an SLA, but also

8.1. Evaluation of SLAng versus requirements 220

eliminates any ambiguity that may be introduced due to the possibility of selecting an incorrect authority

by which to interpret the document. Precision is also aided by the inclusion of a URI attribute in the SLA

class, which allows the definitive form of an agreement to be unambiguously referenced.

SLA 8, pg. 41 – Monitorability

The system of SLAs should be as monitorable as possible.

SLAng SLAs may be mutually-monitorable, as in the case-study. Extensions to the core language

may be defined to implement more monitorable SLAs (for example, arbitratable SLAs), and these ex-

tensions would benefit from the reuse of existing concepts in the SLAng domain model, such as timed

events, evidence and administrations. It has yet to be shown that the monitoring requirements implied

by SLAs that are more than mutually monitorable can be safely met in the ASP scenario. SLAng SLAs

therefore represent the current state-of-the-art in monitorability.

SLA 9, pg. 42 – Error

SLAs should accommodate measurement error and uncertainty, either by only setting conditions on

measured or agreed quantities, with a description being given of how the measurements are to be taken

or the agreement reached, or by specifying acceptable degrees of confidence and margins for error on

constraints over actual physical quantities.

The requirements for the calculation of violations related to conditions included in SLAng SLAs are

defined in terms of evidence used by the parties during administrations of an SLA. Conditions are defined

such that the association of a condition requiring a particular type of evidence with an administration

clause implies that an accuracy clause pertaining to that type of evidence must also be associated with

the administration clause. Accuracy clauses require that all evidence used during administration meets

a specified standard of accuracy, according to the accuracy constraint developed in Section 5.2.1. This

constraint is approximately monitorable by both parties to a mutually-monitorable SLA.

SLA 10, pg. 42 – Feasibility

SLAs should only include conditions for which violations can feasibly be calculated, given all per-

tinent evidence.

Because SLAng currently relies on extensions to express most SLAs, it is not possible to guarantee

that this requirement is always met. However, work discussed in Section 4.4.3 includes two successful

efforts to generate violation-calculating monitoring systems based on fixed sets of SLAng conditions,

including a method based on timed-automata that can calculate violations of reliability and throughput

conditions in linear time. As discussed in Section 4.4.2 it would be desirable to use the SLAng language

specification directly as part of a system to calculate violations based on evidence of service behaviour.

Early efforts to achieve this have not been successful as the semantics of SLAng is currently formalised

in a manner that is not amenable to efficient interpretation over data-sets of a realistic size. However,

since there is clearly no theoretical impediment to the efficient monitoring of common conditions such as

reliability or throughput, and OCL offers some flexibility in formulating invariants and side-effect-free

operations, I believe that future work in reformulating the SLAng semantics has the potential to address

this issue.

8.1. Evaluation of SLAng versus requirements 221

SLA 11, pg. 42 – Cost

SLAs should be as cheap to produce, protect and administer as possible.

SLAng SLAs are both highly formal, and typically require the definition of extensions to the core

language. These characteristics tend to increase the cost of production of SLAng SLAs, as demonstrated

by the case-study which required an extensive analysis effort to inform the production of the SLAs, and

the definition of language extensions of a similar size to the SLAng core language itself. Naturally, these

activities also require expertise to complete, which may not be commonly available.

However, the characteristics that increase the cost of preparation of SLAng SLAs were all intro-

duced to meet other requirements that seem to be essential to the production of quality SLAs, such as the

ability to express the conditions that are actually required to mitigate the risks that parties experience in

an ASP scenario, and to do so in a precise manner. It therefore seems reasonable to consider the cost of

preparation of a SLAng SLA as being analogous to the payment of the premium on an insurance policy.

If greater protection is required, a higher premium must be paid.

The cost of preparation of SLAng SLAs is diminished to some extent by the restrictiveness of the

language, and by its automatability, which allows the automatic generation of an editor component, and

also consistency checking of SLAng SLAs.

It is undesirable for SLAng SLAs be considered to be only an option for high-value service re-

lationships. Instead, the core language should be augmented with vocabulary from commonly-required

extensions in an effort to increase its adequacy without drastically decreasing its specificity and therefore

resulting in a bloated and unusable language. I demonstrate the potential that SLAng offers as a starting

point for this type of evolution in Section 8.4.

SLA 12, pg. 43 – Machine readability

SLAs should be expressible using an intrinsically machine-readable syntax. This requirement

should not compromise understandability.

SLAng SLAs are expressed in an intrinsically machine-readable manner, as demonstrated by the

development of the UCL UML tools to assist in the specification of the SLAng language and the au-

tomated generation of tool-support capable of editing SLAs and checking them for consistency. As

discussed above, the possibility of expressing SLAng SLAs using the HUTN maintains a tolerable level

of understandability for SLAng SLAs.

SLA 13, pg. 43 – One definitive form of agreement

If multiple forms of an SLA exist, they should be provably equivalent, or it should be clear which is

the definitive form.

The SLAng SLA class includes a URI attribute that should be used to refer to a location at which

the definitive form of an SLA should be accessible to authorised parties.

SLA 14, pg. 43 – Non-exploitability

SLAs should be not be exploitable.

It is not clear how exploitable SLAng SLAs are. This is an important topic for future theoretical

and practical investigation. However, SLAng SLAs do have features that potentially contribute to reduc-

8.1. Evaluation of SLAng versus requirements 222

ing exploitability. SLAng includes support for expressing throughput constraints, which allow service

providers to restrict the extent to which a client can exploit the limited capacity of an electronic service

in order to obtain penalty payments. It also allows the expression of availability constraints that can be

used to promote an exchange of information between the parties regarding any faults, thereby reducing

the possibility for either party to exploit information of this kind.

Entering into an SLA can be regarded as entering into a game in which the parties compete to obtain

the greatest entitlement to penalty payments, while trying to avoid incurring costs of various kinds (for

example, associated with lost business opportunities). In the future it will no doubt be useful to examine

how different SLAs can affect the strategies that may be applied by the parties in the scenario, and

hence determine whether any party can gain an unfair advantage. Such a theory would also have to be

supported by empirical studies to determine whether the theoretical model correctly reflects the tactics

that it is possible for a party to apply. Such investigations may be aided by the benefits provided by

SLAng with respect to analysability, discussed below.

SLA 15, pg. 43 – Analysability

SLAs should be amenable to analysis to reveal implications that are not explicitly stated.

I have not discussed analysability extensively in this dissertation. However, in previous work I

described the potential for SLAng SLAs to be used as artifacts in performance analysis activities [119].

This work is in its infancy. However, the advantages that SLAng provides in terms of analysability

can be considered to delivered by two main features of the language: SLAng SLAs can be automated

in various activities related to analysis, including testing and consistency checking (albeit with some

deficiencies related to feasibility, as discussed above); and SLAng benefits from a model-denotational

semantic definition.

The automatability of SLAng, discussed further below, is potentially of use in testing SLAng SLAs

for particular properties. For example, if the conformance of a particular set of events to a SLAng SLA

is in doubt, then it may be checked. Such tests can be used to generate insight into the implications

of a SLAng SLA. If the feasibility of interpreting the OCL components of the SLAng specification can

be improved, then this type of analysis may be performed on a larger scale, for example automatically

administering an SLA as a component in the simulation of a service scenario, to check risk mitigation or

exploitability properties.

In pre-existing, alternative work on language for SLAs, the importance of SLA information in per-

formance analysis activities has been emphasised [28, 69]. In [119] I distinguish between inter-service

composition and intra-service composition. Inter-service composition may be supported by analyses

that match requirements to SLA conditions. If the requirements are expressed as desired conditions,

then SLAng naturally defines a notion that I call SLA compatibility. An SLA, A, is compatible with an

SLA B if all behaviours implying a violation of B also imply a violation of A. This implies that all

behaviours acceptable to A will also be acceptable to B. Compatibility provides a very strong standard

for matching SLAs, but is hard to reason about due to the expressive power of OCL.

Intra-service composition involves determining the overall QoS characteristics of a service based

8.1. Evaluation of SLAng versus requirements 223

on its components, some of which may be services with SLAs attached. This is an extension of standard

performance analysis for services. Previous work on using SLA information to assist in this problem,

for example [28], occasionally overlooks the fact that SLAs do not guarantee performance properties,

but rather that either performance targets will be achieved or a party will become entitled to compensa-

tion. However, SLA information can be useful to performance analysis if assumptions concerning the

likelihood of parties meeting the expressed conditions are added.

The inclusion of a domain model in SLAng duplicates, and was partly inspired by, the practice of

providing a domain model in OMG specifications that are intended to support the analysis of models, in

particular the UML Profile for Schedulability, Performance and Time Specification [89]. The primary

advantage of such models is in the precision they lend to the semantic specification of a language. A

clear understanding of these semantics in clearly essential when implementing tools that perform anal-

ysis on artifacts of the language. However, I believe that this approach partially anticipates a future

requirement for languages in model-driven developments. When multiple domain-specific languages are

used, the requirement to integrate information expressed in diverse languages into analysis processes will

inevitably arise, and consideration must be given to how this integration can be assisted automatically.

This is the case when attempting to reason about intra-service service composition in an MDA develop-

ment. Naturally, many theoretical challenges relate to integrating information from different sources and

reasoning about the validity of inferences derived from the combined information. However, explicit,

machine-readable models of the semantics of the source languages in which the information is expressed

will clearly be assets when providing automated assistance in such tasks.

8.1.2 Remaining requirements for ASP SLA languages

Having considered how SLAng meets the expressiveness requirement for an ASP SLA language in the

previous subsection, I now consider how it meets the remaining requirements that I identified for such

languages:

Language 2, pg. 44 – Understandability

To understand an SLA written in an SLA language it is necessary to understand the language. The

language should be structured so that it is easy to understand.

The understandability of the SLAng language is party dependent on the understandability of the

SLAng language specification, discussed below.

Without attempting an empirical study, and from the subjective viewpoint of the designer of the

language, it is difficult to assess how understandable SLAng is. However, I believe that the understand-

ability of the language is enhanced by the following features, which are related to the language itself

rather than how it is specified:

The semantics of SLAng are defined at the level of abstraction of services, events, parties and

evidence, rather than relying on a more abstract mathematical concepts to describe the concepts to which

the language relates. This should make it easier for people familiar with the domain of electronic services

to understand what is intended by a SLAng SLA.

SLAng is also highly specific to specifying ASP SLAs, as discussed in Section 8.1.3. Hence, a user

8.1. Evaluation of SLAng versus requirements 224

attempting to interpret a SLAng SLA will not be distracted by irrelevant features of the language.

Language 3, pg. 44 – Precision

The meaning of an SLA is dependent on the semantics of the language in which it is expressed.

Therefore, if the SLA is to be precise in its meaning, then the semantics of the language must also be

precisely defined.

The meta-modelling approach used to define SLAng provides precision for the language in three

ways: first, the syntactic structure of the language is precisely defined using an abstract-syntax model;

second, the addition of a domain-model and the use of the model-denotation approach to define seman-

tics for the language make it clear how SLAs relate to the real world – moreover this joint model can be

automated to gain insight into how an SLA applies to a particular situation; finally, the close and system-

atic coupling of natural language descriptions of all elements, syntactic and semantic, in the language

specification definitively establishes the correspondence between formal elements in the specification

and real-world entities, and make it harder for a human user to misinterpret the formal elements.

Language 4, pg. 44 – Restrictiveness

The language should exclude SLAs that do not meet the requirements specified in Section 2.7.

Constraints included in the syntactic model of SLAng act to rule out illogical SLAs where this

can be anticipated. Constraints include multiplicity constraints, such as that specifying that behaviour-

restriction conditions must be associated with at least one behaviour, and OCL invariants applying within

the syntactic model, such as the constraint that the reliability clauses referenced by an availability clause,

establishing the conditions under which a client may issue a bug-report, must refer to failure modes

occurring within the usage mode covered by the availability condition (so that unavailability in some

usage mode cannot be established by the unreliability of requests in a disjoint usage mode).

The syntactic model also contains constraints designed to require good quality SLAs. For example,

associating any type of electronic-service behaviour-restriction condition clause with an administration

clause implies that a permanent, fixed, service-usage-record recording-accuracy clause must also be

associated with the administration clause, to establish a basic standard of accuracy for recording service

usages. Note that this constraint could have been omitted – a poor SLA might still be useful without

a standard for accuracy. Alternatively, the SLA author could have been required to ensure that the

requirement that all service-usages have a constrained accuracy was met without prescribing the use of

a particular type of clause (note that other clauses can be used in addition to a permanent, fixed clause,

to tighten the accuracy requirements under specific circumstances). This would have been more flexible,

but provided a large opportunity to introduce flaws into an SLA.

All constraints in the SLAng specification can be checked, either for an SLA, instances of types

of the domain model, or some combination of both, using a repository generated from the language

specification using the UCL UML tools.

Language 5, pg. 44 – Ease of use

In addition to being easy to understand, the syntax should be easy to write, possibly with the aid of

tools.

8.1. Evaluation of SLAng versus requirements 225

Currently support exists for authoring SLAng SLAs using the HUTN, which is intended to be easy

for humans to use, or using a tree-structured JMI-repository editor for Eclipse allowing the specification

of objects conforming to the types in the abstract-syntax of SLAng. It is probably fair to say that nei-

ther of these two approaches represent the apogee of usability for producing SLAs. However, they do

demonstrate features, such as restrictiveness, and amenability to consistency checking, that contribute to

the usability of SLAng. The repository editor also demonstrates the retrieval of documentation from the

SLAng language specification, which is presented in tool-tips to provide context-sensitive help for the

author of an SLA.

Language 6, pg. 44 – Power

Because the SLA language is only defined once, but may be reused in multiple SLAs, as much of

the burden of expressing the SLA as possible should be placed on the SLA language, except where this is

incompatible with requirements for understandability for either the SLA or the language.

As described in Section 8.1.3, SLAng, when augmented with SLA-specific extensions, is extremely

powerful. For example, a power measurement of 0.97 for SLA 1 can be interpreted as stating that (at

least) 97% of the information burden of the SLA is conveyed by the language specification rather than

the SLA itself.

This result suggests that SLAs expressed in SLAng are quite concise.

However, such an observation cannot be used as a measure for the overall usefulness of the core

SLAng language, because SLAng only obtained an adequacy measurement of 0.58 for SLA 1, which

could be taken to mean that only 58% of the 97% (56% overall) of the information carried by the SLA

was contributed by the language, although it is not at all clear that the information provided by the

language has the same value as that provided by the extensions.

In Section 8.4 I discuss improving the adequacy of SLAng by incorporating extensions that are not

essential to all ASP SLAs, therefore potentially compromising the specificity of the language.

Language 7, pg. 45 – Automatability

It should be possible to produce tools that take SLAs expressed in the language as their input. The

tools should rely for their functionality only on the specification of the language, so that anybody who

has access to the language definition can reuse the tools successfully.

SLAng is automatable to a high degree. It is possible to generate a repository for authoring SLAng

SLAs, checking the consistency of SLAng SLAs, and testing the conformance of scenarios to SLAng

SLAs. However, due to problems related to the feasibility of checking large scenarios described above,

the automatability of SLAng could be improved.

Language 8, pg. 45 – Analysability

The semantics of the language should be oriented towards that of known analysis models, provided

this is compatible with expressing the true requirements of the client, and any additional constraints

required to avoid exploitability.

SLAng does not really meet this requirement to a high degree. As discussed in Section 6.1, I

rejected the notion of basing the semantics of SLAng on a process algebra as I felt that the simplifying

8.1. Evaluation of SLAng versus requirements 226

assumptions on which such algebras depend are incompatible with specification of a precise agreement

concerning the way in which real services should be delivered. However, as discussed above, SLAng

to some extent anticipates future analysis techniques that will be needed in model-driven development

activities, by providing an explicit domain model.

The SLAng language as it is manifested in the SLAng language specification is also amenable to

analysis, as a result of being defined using an object-oriented meta-modelling language, which can be

regarded as a common theory of objects. The metrics used to measure the language in Section 8.1.3 are

an example of such an analysis technique.

8.1.3 Requirements for ASP SLA language specifications

I now consider how language specifications, derived by compiling the SLAng specification sources with

extensions, and compiling the resulting language into an XMI document, per the recommendations de-

scribed in Section 6.11, meet the specification requirements described in Section 2.9:

Specification 1, pg. 45 – Completeness

The specification should fully define an SLA language meeting all of the requirements specified

in 2.8.

As discussed in Section 6.11, SLAng, as an abstract language, requires a representation that can

easily be used as the basis for extensions. At present that is best provided by the custom syntax provided

by the UCL MDA tools for language specifications based on EMOF and OCL, as this syntax allows the

modularisation of a specification into several files. It would however be preferable if SLAng could be

definitively represented using a standard concrete syntax, such as XMI.

Since SLAng is an abstract language, its specification will never meet all of the requirements for an

SLA language, due to the limitations on its expressiveness. The SLAng language is fully defined by the

SLAng language specification. However, the SLAng language itself does not fully meet its expressive-

ness requirement, in that it must be extended to specify most SLAs.

Because SLAs expressed in SLAng must refer to a single language specification, every time exten-

sions are included with SLAng, this effectively creates a new language. As a consequence of type and

syntax checking the sources for this language, an XMI file can be produced, and this should be regarded

as the specification for the extended language. Such a specification will necessarily be complete for the

statements that will be expressed using the extended language.

Specification 2, pg. 45 – Understandability

The specification must define the SLA language in a way that is understandable.

The SLAng language specification is the combined EMOF, OCL and English description of the

language provided in the non-standard syntax required by the UCL MDA tools, which resembles HUTN

to some extent, but also a block-structured programming language such as Java. This syntax, although

non-standard, is, I believe, reasonable easy for the average programmer to read or write. It may also be

compiled to XMI, and this XMI representation is a suitable stating point for transformations to easier-

to-read representations. The UCL MDA tools provide two tools for generating documentation from a

language specification, in either HTML or LATEX format. The LATEX documentation tool was used to

8.1. Evaluation of SLAng versus requirements 227

generate Appendix E. Naturally, the same arguments apply to extensions of the language.

Specification 3, pg. 45 – Precision

The specification must define the SLA language in a way that is precise.

The SLAng language specification defines SLAng according to the simple but unambiguous object-

orient type theory provided by the EMOF model, and also the OCL 2 specification. Its precision is

therefore controlled by the quality of these standards to some extent.

The specification also relies of statements in English to definitively establish the meaning of ele-

ments in the domain model. The precision of these statements is difficult to assess. However, because the

statements are defining simple correspondences between domain-model classes and familiar elements of

an electronic-service provisioning scenario, it is to be expected that they are reasonably precise. This is

one of the main intended benefits of adopting a model-denotational approach to defining SLAng.

Specification 4, pg. 45 – Automatability

The meta-language employed in the specification should be defined in such a way to assist the

development of tools that rely on the SLA language definition, for example, by offering a formal definition

of the SLA language that could be used as the input to software engineering tools.A

As previously discussed, due to its reliance of EMOF and OCL, the SLAng language specifica-

tion, or specifications of languages extending SLAng, compiled into XMI, are highly automatable, for

example as the input to a tool capable of generating JMI repositories.

8.1.4 Summary of conformance to requirements

It is perhaps unsurprising that I should judge that SLAng meets my requirements for languages and spec-

ifications to a high degree. I originally identified these requirements as being important then focussed my

research and the design of SLAng upon meeting them. The usefulness of this subjective evaluation de-

pends first on whether the arguments I provided in Chapter 2 to justify the inclusion of each requirement

are valid, and hence result in a set of requirements that a genuinely useful SLA language must meet, and

then on the validity of my assessment of the degree to which SLAng meets these requirements. I have

attempted to support my conclusions by providing argumentation in support of both steps, both here, in

Chapter 2, and throughout this dissertation wherever I have introduced theoretical innovations.

Nevertheless, I have identified certain areas in which the language is not as successful as I hoped.

One is in the adequacy of the language, which can be improved as discussed in Section 8.4, suggesting

that the language should be viewed not as a final and static accomplishment but as a starting point for

the design of a more pragmatic language. Another is in the feasibility of checking SLA conditions

using the language specification directly. I believe this can be improved by reformulating constraints

in the language, but it may be that a more suitable constraint language will need to be investigated as

a basis for the definition of the language. Finally, SLAng does not offer strong support for analysis of

SLAs, except is so far as it has a formally defined semantics, and a specification that is amenable to

measurement.

The ultimate evaluation of the language itself will be the extent to which evidence emerges as to its

usefulness in the future. This may be indicated by adoption of the language as a basis for defining SLAs

8.2. Survey of related languages 228

in real ASP scenarios, or by the reuse of theoretical innovations described here in future improvements

to the state-of-the-art for SLA languages.

However, the theoretical concern of this dissertation is not to demonstrate the quality of SLAng as

an absolute, but rather in comparison to previous work, which is discussed in the next section.

8.2 Survey of related languages
Appendix A provides a survey of languages either intended for, or conceivably of use in specifying

SLAs for ASP. Where I deemed sufficient information concerning a language to be available, I have

attempted an assessment of the language against my requirements, which I have condensed into three

main questions:

1. To what extent does the SLA language provide support for expressing conditions to mitigate

the risks involved in the ASP scenario?

This requires the ability to express reliability, latency and throughput constraints, and constraints

on the real-world behaviour of the service, associated either with financial penalties or the right to

terminate the SLA. Also to enable the provider to charge for the service, and to associate penalties

with the decision by either party to prematurely terminate the agreement. The language should

also not be exploitable.

2. How do SLAs expressed using the language contribute to increasing the likelihood that a

dispute concerning an SLA will be resolved according to the original agreement?

This includes being: understandable; precise; monitorable; having a principled approach to the

treatment of measurement error; expressing only conditions, conformance to which can feasibly

be calculated; and identifying the definitive form of any agreement.

3. How does the design of the language and its specification contribute to reducing the costs of

outsourcing activities, including the authoring of SLAs?

Is the language restrictive, powerful, easy to use, automatable and analysable?

I now summarise the main findings of this exercise.

The perception of a need to either describe or constrain the QoS properties of web services, CORBA

services, or in general client/server services consistent with the model proposed in Section 2.1, has mo-

tivated a large amount of previous research. Recent work has ranged between that focussing on describ-

ing requirements for the quality-of-service for web-services, and that describing contractual obligations

more generally. Older work focussed on describing QoS for CORBA systems.

Most recent approaches to defining SLA languages have provided, or asserted the availability

of, an XML schema for their language. This includes: the Web-Service Level Agreement language

(WSLA, Section A.1, pg. 249); the Web-Services Offering Language (WSOL, Section A.2, pg. 251);

the Web-Services Management Language (WSML, Section A.3, pg. 252); the Rule-Based Service-Level

Agreement Language (RBSLA, Section A.4, pg. 254); the Web-Services Agreement Specification (WS-

Agreement, Section A.6, pg. 257); and the Business-Contract Language (BCL, Section A.7, pg. 258).

8.2. Survey of related languages 229

The use of XML is clearly intended to ease integration with other web-services technology, such as

WSDL or SOAP that are also dependent on XML, and conveys some benefits related to automatabil-

ity. Of these languages, only BCL advertises a non-standard human-usable notation as an alternative to

XML, increasing its usability.

WSLA, WSOL, WSML, RBSLA and WS-Agreement all rely on the provision of extensions of

some kind to permit the complete expression of an SLA, with WSLA, WSML and WS-Agreement

providing abstract data-types in their schemas to guide extensions, and RBSLA and WSOL relying on

the use of externally provided ontologies (although the precise requirements for these remain unclear

in both cases). The languages surveyed provide very little support for expressing latency, reliability or

throughput conditions. In each case, either syntax for such conditions is missing, and the expression of

such conditions therefore relies entirely upon language extensions, or syntactic elements exist but are not

accompanied by semantic definitions of sufficient precision to support the calculation of violations. The

support provided by the abstract schema types is very scanty and nowhere is documentation provided

offering any guidance in producing extensions. In contrast, SLAng provides base-classes that encode

much of the required semantics for these types of conditions, with extensions required only to provide

those details that are SLA specific. These extensions are largely straightforward to define as they involve

the overriding of well-documented abstract operations. In addition, examples provided of the use of

the languages are universally hypothetical, in contrast to SLAng, the expressiveness of which has been

demonstrated in a case-study involving a real service.

All of the alternative languages suffer from imprecision due to a number of factors. Universally,

a separation exists between the XML schema definition of the language, and the language specification

document, or documents. This hinders traceability between SLAs and the definition of their semantics.

WSLA, WSOL, WSML and WS-Agreement all have informally defined semantics expressed solely

using natural language. The semantics for RBSLA are incompletely specified. WSOL, RBSLA and

BCL have no definitive language specification document, and instead are described in collections of

academic publications. Neither BCL, not EXecutable Contracts (X-contracts, Section A.5, pg. 255),

a similar language targeted at the expression of business contracts, benefit from a publicly available

definition of their syntax. Clearly, whatever other qualities these languages may have, it would not be

feasible to adopt them as the basis for specifying SLAs with genuine financial implications, as the parties

to these SLAs would have no strong basis for arguing for any particular interpretation of the SLAs in the

event of a disagreement.

BCL, RBSLA and X-contracts are principally concerned with the expression of rules in a similar

manner to, or explicitly based on, deontic logic. Deontic logic allows the statement of permissions and

obligations for parties to perform various actions [137]. This emphasis tends to create a language that

makes it easy to describe the protocols by which interact parties are bound, and results in useful SLA

terminology in situations where the risk is primarily related to violations of this protocol. For example,

the failure to deliver a good following the submission of a purchase order may result in an obligation to

pay a penalty.

8.2. Survey of related languages 230

However, it is not clear how easy it is use such semantics as a basis for precisely describing more

quantitative conditions, such as a reliability condition limiting the number of failed service requests

within a sliding window. In addition to describing relationships between boolean propositions, such as

a violation implying the obligation to pay a penalty, it is also necessary to describe judgements over

more complicated domains, such as whether a set of events, with properties represented by strings or

numerical values, represents a violation.

The highly-expressive combination of EMOF and OCL, used to define SLAng and its extensions,

supports this in a very understandable way, thanks to its reliance on object orientation, and can also

represent permissions and obligations implicitly by associating violations with the history of monitored

events, and explicitly by asserting in definitive documentation that the violation of a constraint represents

the violation of a permission or obligation pertaining to a party. BCL and RBSLA tend to obscure the

semantics of complex judgements by relying on external definitions of non-primitive events (e.g. the vio-

lation of a latency constraint), or external ontologies of metrics. X-contracts, which have a representation

and semantics based on finite-state machines are likely to require unfeasibly complicated statements to

represent conditions pertaining to a large amount of service history, due to the state-explosion problem.

These contract languages do highlight the advantages of a more restricted formal underpinning

in work relating to the validation of contracts: for example, checking for conflicting obligations, or

asserting liveness properties of the protocols being described. EMOF and OCL, by contrast, allow

testing of these properties. Testing typically does not offer such strong guarantees as validation that

relies on model checking. However, it may be applicable to more types of quality attribute. A possible

future enhancement for SLAng may be to define a sub-language for the expression of permissions and

obligations, to make conditions that are naturally expressed in this manner more amenable to automated

validation.

X-contracts are the only prior work to consider monitorability in any sense. The authors recommend

that a middleware supporting non-repudiable message exchange be used to monitor contracts. This

would make it impossible to deny violations related only to positive actions (for example, violations of

prohibitions). However, I do not believe it solves monitorability issues related to obligations or temporal

constraints, because of the difficulty of attributing the cause of delays or faults to the action of a single

party in the case where interaction is with multiple remote parties, for example, both an electronic- and

network-service provider.

To the best of my knowledge, SLAng is unique in providing support for accuracy constraints in

relation to the gathering of evidence. SLAng’s support for, and emphasis on conditions relating to

the termination of SLAs is also novel, reflecting a general lack of understanding that the duration of a

service-provisioning relationship may be a major risk factor for the parties involved. However, both re-

quirements are mentioned in early work related to BCL, but not elaborated upon in later work describing

the language.

Older related work is principally concerned with describing QoS for various types of electronic

service interface. This includes OWL-S (Section A.8, pg. 259), QML (Section A.9, pg. 259), and QuO-

8.2. Survey of related languages 231

QDL (Section A.10, pg. 262). This work relies on the implicit assumption that service providers can be

trusted to describe the quality-of-service provided by their own services, and then deliver services to that

level. Based on this, the focus of these works is first to develop vocabularies of useful metrics, then to

consider how these specifications can be used to compose services with predictable QoS characteristics.

In my view this work relies on a fundamentally unrealistic assumption, and the languages are unsuitable

for describing SLAs since they do not allow the specification of penalties and hence the mitigation of

risk. Moreover, the definitions of the metrics are typically informal, hindering reliable analysis. QML,

for example, allows the matching of contracts according to user-defined orderings of metrics, which, as

discussed in [119] can result in matches that are less safe than my notion of compatibility for SLAs.

The QuA project (Section A.11, pg. 262) has described an approach to formalising the semantics

of SLAs that was somewhat influential in the decision to base the semantics of SLAng on a model of

service behaviour.

I also surveyed JSDL (Section A.11, pg. 262), a language for specifying parameters for jobs to be

executed on a computational grid, discussed previously in relation to the case-study. The information

specified using JSDL impacts upon the QoS properties of the job execution, so the comparison with SLA

languages is relevant. JSDL suffers from the flaw that it allows the client to specify how quality should be

delivered, rather than what is required, which is unfairly restrictive of the service provider. This approach

is not appropriate for SLAs between financially independent parties, and is unlikely to be appropriate

even for computation grids where the grid provider and the client are financially independent.

Finally, I examined the use of property values in trading services such as CORBA trading, and

UDDI. The trading services do not ascribe any semantics to the properties that may be expressed, and

again rely on the good auspices of the service provider to ensure that the service levels implicitly guar-

anteed are delivered. However, the flexibility of these services means that a language like SLAng could

be used to specify commodity SLAs when advertising service offerings.

In summary, all of the languages reviewed suffered from serious deficiencies with respect to my

requirements. My principle complaints against all of these languages are, that in comparison to SLAng

they are not particularly helpful in expressing the conditions that need to be included in ASP SLAs. The

languages do not define what is needed, or provide a significant contribution or guidance towards the

production of necessary extensions. Also, having an SLA drafted in one of these languages inspires no

real confidence that it can be used as a mechanism to mitigate risk, because the SLA will be imprecise –

largely due to imprecision in the definition of the language, and a lack of traceability between the SLA

and the specification of the language in which it is defined – or because the conditions included in the

SLA cannot be monitored – most frequently because they related to the state of a computer system that

cannot directly be observed. In comparison, SLAng meets these requirements to a large extent.

It may be that in some cases the usefulness of these languages could be radically improved with

relatively little effort. In particular, BCL and X-contracts both seem to have contributions to make

with respect to modelling business protocols. However, in neither case has a syntactic definition of

the language been made available. Details of the languages can only be inferred from descriptions and

8.3. The power, adequacy and specificity of SLAng 232

examples published in academic papers.

8.3 The power, adequacy and specificity of SLAng
I now consider in more detail the extent to which SLAng meets the requirements for power and re-

strictiveness in SLA languages, in so far as these are measured by the metrics for power, adequacy and

specificity that I defined in Section 4.5.

The metrics defined in Section 4.5 all depend on a size metric, which can be regarded as a mapping

from language specifications or models to the domain of real numbers, and also a function that maps a

model to those elements of its language specification upon which it depends. In Section 4.5.3 I described

how these functions could be defined for languages based on EMOF and OCL with embedded comments

in natural language, the approach used in SLAng.

The size metric developed in Section 4.5.3 had a number of parameters that control the weight

given to various features in a model. I now investigate what choices of parameter values are suitable for

measuring SLAng and SLAs expressed using SLAng.

i
n
s
t
a
n
c
e
W
e
i
g
h
t

r
e
f
e
r
e
n
c
e
W
e
i
g
h
t

e
n
u
m
e
r
a
t
i
o
n
W
e
i
g
h
t

n
u
l
l
W
e
i
g
h
t

i
n
t
e
g
e
r
W
e
i
g
h
t

b
o
o
l
e
a
n
W
e
i
g
h
t

r
e
a
l
W
e
i
g
h
t

s
t
r
i
n
g
W
e
i
g
h
t

s
t
r
i
n
g
E
l
e
m
e
n
t
W
e
i
g
h
t

size()
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3030.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10520.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 705.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 42875.0
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 866.0
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 966.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 12.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 3325.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 162001.0
1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 16099.0
1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 19424.0
1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.1 32299.1

Table 8.1: Various measures of the size of the SLAng specification

Table 8.1 shows various measurements of the size of the SLAng specification, based on different

choices of parameter values. The first nine lines all represent measurements in which the weight of a

single kind of feature has been set to 1, and all other kinds set to zero. This provides a set of counts of

the features of various kinds in specification.

In order for measures of power, specificity and adequacy to reflect the balance of effort in producing

a language, its extensions and a model, it is necessary to apply the same size metric to all three elements

when calculating the measurements. It is also preferable for the size metric to correctly measure the

proportion of effort devoted to defining each type of feature in a model or language specification, as there

8.3. The power, adequacy and specificity of SLAng 233

is no guarantee that the relative proportions of each type of feature will be the same across languages,

models and extensions. Therefore a bias in weighting the features could result in a bias in the calculation

of the derived metrics for power, specificity and adequacy.

Determining the relative efforts involved in specifying different types of features is difficult, and an

empirical study would be required to determine values with any degree of confidence. However, based on

the measurements of individual feature types for SLAng, it is possible to apply some “rules of thumb”.

Nulls in a model or language can represent a conscious decision to omit some information. How-

ever, 42, 875 nulls are present in the SLAng specification, in comparison to 10, 520 object references

and only 16, 394 attribute values of all kinds (the sum of reference, enumeration, integer, boolean, real

and string counts). Therefore, weighting nulls equally to other values would disproportionately skew

the size metric towards specifications with large number of optional attributes. In fact, the high number

of nulls in the SLAng specification is due to the structure of the OCL metamodel, in which the various

syntactic types potentially have several different possible types of owners in the syntax tree, only one

of which is ever actually present. Due to the large number of OCL expressions and sub-expressions in

SLAng, this results in a lot of nulls, but the choice of super-expression for a sub-expression can’t really

be regarded as a major decision in the specification process (the reverse decision contributes to the the

reference count).

The other overwhelmingly large size measurement is the count of the characters in all strings in-

cluded in the specification. The vast majority of these characters are in natural-language comments

embedded in the specification. These characters are important in explaining the specification, and defini-

tively establishing the semantics of the domain model. However, they are clearly not an order of mag-

nitude more important than all other types of feature put together. However, perhaps they are equally

important.

In light of these considerations I have opted for a combination of parameters that assigns no impor-

tance to nulls or to the number of discrete strings. It weights instances, references, enumeration values,

integers and reals as 1. It weights characters in strings as 0.1, thus providing a measure for the size of

SLAng of 32, 299.1, around half of which is contributed by characters in strings, and the rest by the

structure of the specification, and the non-null primitive values (apart from strings) that it includes.

In Table 8.2, I present more size measurements for various sub-components of the SLAng language,

and the language extensions and SLAs produced in the case-study. Because the weighted size metric po-

tentially obscures the relative importance of strings and structural elements, I also present measurements

of the number of strings, characters, and other types of features, for each measured artifact.

These size measurements provide a number of useful insights. Most significantly, despite the im-

portance of the domain model for improving the precision of SLAng, the definition of the syntax of the

language is more than five times larger. This difference in size is even more pronounced in the extensions

required for SLA 1 and SLA 4 which, combined with the high specificity of these extensions (measured

below), suggests that the domain model provided by SLAng is highly adequate.

This is a useful observation because at present it is not clear how the contribution of the domain

8.3. The power, adequacy and specificity of SLAng 234

Artifact Non-string elements Strings Characters Weighted
SLAng syntax 12321.0 2486.0 113803.0 23701.3
SLAng semantics 2010.0 457.0 24710.0 4481.0
SLAng types 1504.0 328.0 11187.0 2622.7
SLAng generic syntax 6783.0 1369.0 58143.0 12597.3
SLAng electronic-service syntax 5538.0 1117.0 55660.0 11104.0
SLA 1 extensions 9345.0 1931.0 88249.0 18169.9
SLA 1 syntactic extensions 8865.0 1815.0 82081.0 17073.1
SLA 1 semantic extensions 476.0 114.0 5992.0 1075.2
SLA 1 generic syntax extensions 4599.0 950.0 39387.0 8537.7
SLA 1 electronic-service syntax extensions 4266.0 865.0 42694.0 8535.4
SLA 1 905.0 163.0 6091.0 1514.1
SLA 4 extensions 6553.0 1356.0 58129.0 12365.9
SLA 4 semantic extensions 19.0 8.0 502.0 69.2
SLA 4 syntax extensions 6530.0 1346.0 57451.0 12275.1
SLA 4 generic syntax extensions 4405.0 913.0 38406.0 8245.6
SLA 4 electronic-service extensions 2125.0 433.0 19045.0 4029.5
SLA 4 370.0 58.0 1126.0 482.6

Table 8.2: Sizes for various sub-components of the SLAng language, and language extensions and SLAs
produced in the case-study

model to the power of the language can be calculated (the used function proposed in Section 4.5.3

only identifies relevant syntactic types). However, because the domain model is relatively small, it will

not greatly influence the metrics. In the measurements below I calculate specificity both including and

excluding the semantic types. The measured specificity is lower when including the semantic types,

because the measurement implicitly assumes that these types are not relevant to the SLA. However, it is

clear that these types are at least somewhat relevant to the SLA, as they serve as the foundation for the

semantics of the language in which it is defined. The specificity measurements therefore define a range

within which the true specificity of the language (or extension) must reside.

I now present the results of power, adequacy and specificity measurements of SLAng plus the

extensions defined for SLA 1 to the expression of SLA 1:

• Power of SLAng plus SLA 1 extensions for SLA 1: 0.966

• Adequacy of SLAng to SLA 1: 0.604

• Specificity of SLAng syntax to SLA 1: 0.990

• Specificity of SLA 1 syntactic extensions to SLA 1 : 1.00

• Specificity of SLAng syntax plus extended syntax to SLA 1: 0.994

• Specificity of SLAng overall to SLA 1: 0.847

• Specificity of SLA 1 extensions overall to SLA 1: 0.943

• Specificity of SLAng plus extensions overall to SLA 1: 0.873

The fairly obvious conclusions to be derived from these values are that the definition of SLAng plus

the extensions needed for SLA 1 is overwhelmingly larger than SLA 1 itself, so taken together SLAng

8.3. The power, adequacy and specificity of SLAng 235

plus the extensions represents an extremely powerful language for expressing SLA 1. However, SLAng

required significant extensions to support the expression of SLA 1, only contributing around 60% of the

specification requirements. Regardless of whether semantic elements are considered, SLAng and the

extensions are highly specific to the expression of the SLA. SLAng syntax only fails to be 100% specific

due to the inclusion in the specification of the concrete class InformalFailureModeDefinition,

which turns out to be not useful to SLA 1. This insight suggests that specificity measurements are

useful for identifying the accidental inclusion of inessential elements when developing domain-specific

language support.

A similar set of values were obtained for SLA 4:

• Power of SLAng plus SLA 4 extensions for SLA 4: 0.987

• Adequacy of SLAng to SLA 4: 0.682

• Specificity of SLAng syntax to SLA 4: 0.990

• Specificity of SLA 4 syntactic extensions to SLA 4: 0.993

• Specificity of SLAng syntax plus extended syntax to SLA 4: 0.991

• Specificity of SLAng overall to SLA 4: 0.847

• Specificity of SLA 4 extensions overall to SLA 4: 0.990

• Specificity of SLAng plus extensions overall to SLA 4: 0.879

In the case of SLA 4, SLAng plus the extension were again highly powerful, and SLAng was some-

what more adequate to this SLA. This reflects the fact that the electronic-service to which conditions in

SLA 4 were related was a simple, stateless, synchronous webservice, and the conditions required were

more straightforward than for SLA 1. SLA 4 therefore required a smaller extension to the core language.

Here the specificity measurements for the syntax of the extension also reveal the inclusion of a super-

fluous class FixedDeadlineTerminationByReportReconciliationAdministration-

Clause.

In summary, an approach to defining SLAs using SLAng as a basis results in highly concise SLAs

in comparison to the overall information burden of the SLA. The remaining information is encoded

in SLAng, and extensions to the language. In the case-study, SLAng provided more than half of the

specification requirements for both SLAs.

The fact that the specificity of the SLAng syntax to both SLAs is high indicates that almost all of

the core SLAng syntactic definition is used in some way in both SLAs, suggesting that the design of

SLAng correctly anticipated the expressiveness requirements for these two SLAs, and contains little that

is superfluous. Combined with constraints in the language to prevent the expression of bad SLAs, this

result contributes to the assessment that SLAng is highly restrictive, a good property in a domain-specific

language, as it reduces the effort required to construct a correct statement.

8.4. A trajectory for SLAng 236

The adequacy of the core SLAng language to the case-study SLAs was not as good as might be

desired (strictly speaking, 100% adequacy is always desirable; however, this is not necessarily compat-

ible with producing a powerful and restrictive language). However, based on my survey of alternative

languages, summarised in the previous section, I contend that SLAng is probably more adequate to

these SLAs than any other alternative language. This assertion may be supported by the observation

that although the SLAng core language contains very few concrete classes, specificity is still high. This

indicates that almost all of the core SLAng classes are being used in extensions that are subsequently

being used in SLAs. SLAng contains sophisticated support for conditions such as timeliness, reliability,

and throughput which are either omitted or not specified with the same degree of precision in previous

languages, in addition to support for conditions relating to termination and measurement precision that

are universally absent from other languages. Clearly to express the same conditions using one of the

alternative languages surveyed, support for these elements would have to be included in a language ex-

tension, as it is absent from the cores of these languages. I would therefore expect these languages to be

less adequate to the expression of these SLAs.

In the next section, I discuss how future evolution of SLAng could improve its adequacy to new

SLAs.

8.4 A trajectory for SLAng
In the previous section I concluded that SLAng is potentially the basis for powerful languages and has

good specificity for ASP SLAs, as demonstrated by the SLAs prepared for the case-study. However, the

adequacy of SLAng was not as good as might be desired, with both case-study SLAs requiring extensions

that took a significant amount of effort to produce, as indicated by their size relative to the core SLAng

language specification.

As indicated by the high specificity of the core SLAng language to both case-study SLAs, up to

this point SLAng has been designed to express only that which is essential to all ASP SLAs. However,

there is potentially plenty of SLA syntax which is necessary for many SLAs, but not all. If this were

incorporated into the core language, then the expected amount of support provided for any new SLA

would increase, at the risk of incorporating support for statements that will not in fact be required in a

particular SLA. In other words, the average adequacy of the language can be improved at the expense

of the average specificity. However, this approach must not be taken to extremes, as this will result in a

bloated language specification that is consequently difficult to understand and automate.

In this section, I demonstrate that under some circumstances it is possible to obtain large gains in

the average adequacy of a language, in return for relatively small decreases in average specificity.

The measure taken to seek to improve the adequacy of SLAng to SLAs 1 and 4, while maintaining a

high specificity is very simple. I produced a language specification in which all extension elements com-

mon to both SLA 1 and SLA 4 are combined. This is the language specification that forms Appendix E.

By regarding the combined extensions as part of the core language, the adequacy of this core is clearly

increased. Moreover, because the extension elements are required by both SLA 1 and SLA 4 (the original

extensions for which were highly specific), specificity of this core language does not decrease.

8.5. Summary 237

Artifact Non-string elements Strings Characters Weighted
Combined extensions 4888.0 1020.0 44472.0 9335.2
SLA 1 extensions 4468.0 919.0 44466.0 8914.6
SLA 4 extensions 1632.0 331.0 13575.0 2989.5

Table 8.3: New sizes of the language extensions for the case-study SLAs after common elements are
combined

The new sizes of the extensions, and the size of the combined extension elements are shown in

Table 8.3.

The power, adequacy and specificity measurements obtained for the SLAs expressed using the

combined language, plus residual extensions are as follows:

• Power of SLAng, with combined extensions, plus SLA 1 extensions to SLA 1: 0.966

• Adequacy of SLAng plus combined extensions to SLA 1: 0.818

• Specificity of SLAng syntax plus combined syntactic extensions to SLA 1: 0.993

• Power of SLAng, with combined extensions, plus SLA 4 extensions to SLA 4: 0.987

• Adequacy of SLAng plus combined extensions to SLA 4: 0.923

• Specificity of SLAng syntax plus combined syntactic extensions to SLA 4: 0.993

As expected, the figures show an increase in adequacy, without a corresponding drop in specificity.

Naturally, the decision to incorporate new syntax into a language must be based on the requirement

to support the expression of a known set of statements. The set of statements consisting of SLA 1 and

SLA 4 is a small one on which to base this decision. However, evolution of the language must necessarily

proceed based on the assumption that future SLAs will tend to resemble those already encountered to

some degree, and as further work generates a greater corpus of SLAs on which to base language design

decisions, these decisions can become more sophisticated.

The work described in this section highlights the usefulness of my metrics as a tool for guiding

the evolution of a domain-specific language such as SLAng, which has open-ended expressivity require-

ments. It also suggests a future trajectory for the design of SLAng, in which future design decisions

are informed by the experience of conducting more case-studies, but regulated by the evaluation of my

metrics over a corpus of SLAs developed across all of the case-studies.

8.5 Summary
In this chapter I have documented three exercises intended to shed light on the value of SLAng as the

basis for defining ASP SLAs. In the first, I considered in detail the extent to which SLAng conforms

to its requirements. I found SLAng to meet the requirements to a high degree, except in three areas:

expressiveness, because extensions are required to the language to define SLAs; feasibility, because the

formulation of conditions in current versions of the language is not amenable to efficient interpretation;

and analysability, because the semantics of the language are not aligned with the models required by

known analysis techniques.

8.5. Summary 238

In the second exercise, I compared SLAng to alternative languages with the potential to express

SLAs, and found it to be superior to all alternative languages in almost all categories defined by the

requirements. Where some alternative languages had better properties than SLAng, it was related to

analysability. However, these properties also harmed the precision of these languages for expressing the

intent of the parties to the SLA precisely. In all other respects, SLAng was better suited to defining ASP

SLAs. Despite the fact that it does not provide full support for any particular SLA, it still appears to be

more adequate than previous languages in the support provided for the types of conditions commonly

needed in the scenario, such as timeliness, reliability and throughput, and also other necessary elements

absent from other languages, such as conditions related to termination and measurement accuracy. Also,

it is more precise than previous languages, in that it is both formally defined, and traceability can be

maintained between SLAs and the definition of the language. Finally, the emphasis placed on moni-

torability of the language means that the SLAs expressed will be mutually-monitorable, with accuracy

constraints approximately-monitorable by both parties to each agreement.

In the third exercise, I considered in more detail the expressiveness of SLAng, by taking mea-

surements of the language, and the language extensions and SLAs defined in the case-study. These

demonstrated that defining SLAs based on SLAng resulted in concise SLAs compared with the size of

the language specification, and that the language specification was highly specific to the task of defining

the SLAs in the case-study. However, large extensions to the language were needed to define the ex-

tensions, confirming the earlier assessment that the language was not as expressive as might be desired,

an inevitable consequence of the conflicting requirements for restrictiveness and expressiveness in ASP

SLAs.

In a continuation to this final exercise, I demonstrated how the experience of applying SLAng to the

definition of SLAs could be used to refine the design of the language in order to increase its adequacy,

by incorporating syntax from extensions found to be useful in multiple SLAs. Specificity measurements

may be used to control this process in order to prevent the language specification from becoming bloated

and hence unusable.

239

Chapter 9

Summary

In this chapter I summarise the research contributions made by the work presented in this dissertation,

offer some final perspectives concerning the work, and present some initial ideas concerning future

research continuing from the work.

9.1 Contributions of this work
Faced with the opportunity to outsource part of their business using an application service, it is natural

for a party to contemplate entering into an SLA, whether negotiated or fixed by the service provider. The

author of any SLA is likely to seek support for the production of the SLA in the form of a domain-specific

language.

This work has presented the design and implementation of a language for ASP SLAs, SLAng.

SLAng is intended to meet a set of requirements that I enumerated in Chapter 2. These requirements

were based on a number of assumptions, also introduced in that chapter. In my view, the two most

important assumptions made were: first, that the principal role of an SLA is to mitigate for the client

the financial risks implied by an outsourcing relationship; and second, that the domain of services under

consideration were application services, which are characterised by the use of electronic services for the

majority of communications between the parties.

The first assumption, combined with an explicit lack of assumptions concerning the worth of the

service to the client, and the trustworthiness of the parties involved in the service provision relationship,

has led to a focus in this work on the protectability of SLAs, by which I mean those qualities of an

SLA that increase the likelihood that any dispute pertinent to the SLA will be resolved in accordance

with the original intent of the parties. I have looked at two important contributions that a language can

make towards the protectability of the SLAs that are written using it: first, in terms of the precision with

which SLAs may be expressed; and secondly, in terms of restrictions on the SLAs that may be expressed

to ensure that the conditions that they include are monitorable. A precise, mutually-monitorable SLA

will be protectable, because in the event of a dispute, the original intent of the SLA can be retrieved

from its concrete representation, and used to produce an unambiguous judgement in relation to a set of

evidence concerning the service. The trustworthiness of the evidence will be apparent to the parties to

the agreement, because they will have had the opportunity to directly observe the events from which it is

derived, or have evidence concerning the events provided to them by a party that they trust, and which is

not financially interested in the service-provision scenario.

9.1. Contributions of this work 240

The requirement for precision in SLA languages led me to propose the adoption of a meta-modelling

approach to the definition of SLA languages, which requires a language specification to include object-

oriented models of both the syntax of the language being defined, and the semantic domain to which its

statements pertain. The semantics of the language are precisely defined by relationships between these

models, expressed in terms of ordinary object-oriented relationships, refined through the use of a logical

constraint language. The approach I described is based on the standard languages EMOF and OCL, with

HUTN and XMI standards contributing concrete syntices for the language.

Because a concrete document represents the record of an SLA, and because the meaning of that

document depends on the meaning of the language in which it is expressed, the traceability between

statements and language specifications has an impact on the precision of an SLA. If the traceability does

not exists, or is ambiguous, the association of the SLA with the language can be disputed, and hence the

original intent of the SLA can be disputed. I considered the provisions for such traceability in the stan-

dards upon which my language-specification approach is based. As a result, I proposed improvements

to the standards that guaranteed traceability between statements, concrete syntax standards, formal de-

scriptions of syntax and semantics, and any natural language documentation essential for definitively

establishing the semantics of a language. I implemented tool support for these proposals, discussed how

this tool support could be useful in testing a language, and its potential as a component in a system for

monitoring compliance to SLAs.

The requirement for SLAs to be monitorable to the highest degree possible led to my formalisation

of the notion of monitorability as an abstract mathematical model. I described and demonstrated how this

model could be permuted in order to identify systems of SLAs with particular monitorability properties,

and which could act in concert to insure risks to parties in a service-provisioning scenario.

Measurements of events are inevitably subject to error. It would be impractical for an SLA to

require a party to monitor events perfectly, therefore a constraint is required on the measurements used

when calculating violations that permits some error, but not too much. This constraint would preferably

be monitorable by all parties, but this is impossible because no party can know the true values of the

events being monitored with certainty, and so determine whether another party is making an intolerable

number of errors. Therefore, the constraint should be approximately monitorable, so that a party can

assess whether the constraint is being violated with greater than a certain probability. I described the

design of such a constraint, and demonstrated that it was approximately monitorable using a statistical

hypothesis test.

The second assumption upon which this work rests, that electronic services are a characteristic

component of ASP scenarios, permitted the identification of typical service-provision roles and infra-

structure in the services for which SLAs were to be specified. Usually, electronic service interactions

consist of messages passed between some client software and some server software, operating on nodes

distributed in one or more networks. The behaviour of the client software is typically the responsibility

of a client party, the behaviour of the server software is the responsibility of a service-provider party, and

the behaviour of the network may be the responsibility of a separate network-service-provider party. All

9.1. Contributions of this work 241

three parties may be financially independent.

This model serves as the foundation for two major contributions of this work: first, by analysing

the monitorability of systems of SLAs applied to the ASP scenario, I was able to demonstrate that only a

single system existed in which the risk to the client implied by the possibility of delayed responses from

the service was mitigated, all SLAs were mutually-monitorable, and in which the use of SLAs implied no

new financial risks to the parties that are not also mitigated. In this system, the network-service provider

offers an SLA to the client concerning the events constituting the service as it is perceived at the client’s

interface to the network. The service provider then offers the network-service provider a compatible

SLA concerning events at the service-providers interface to the network.

This result is highly significant. It implies either that more work is needed into producing trusted

monitoring solutions, providing parties the opportunity to monitor events in a trustworthy way at loca-

tions in the network to which they do not normally have access, or that network service providers will

have to start to act as service resellers, a business model not in common use today, or that mutually-

monitorable SLAs will not be practical in the ASP scenario. Since monitorability is such a desirable

property for SLAs, in this work I rejected the final possibility, and assumed the second. As a consequence

of this, it was possible to scope the vocabulary for my SLA language at an interface, or electronic-service,

level of abstraction, rather than having to consider QoS in networks.

The second contribution resulting from the assumption of the ASP model also follows from the

monitorability result. Having chosen to produce a language for mutually-monitorable SLAs, in which

conditions on electronic services apply only to events occurring at network interfaces, it was possible to

incorporate into SLAng support for the expression of those conditions that the scenario implied would

commonly be required, designed so as to be mutually-monitorable. In my initial discussion of the sce-

nario, I identified three such types of condition: latency, reliability and throughput. I also observed that

to mitigate all major risks in the scenario, the parties may wish to associate penalties with premature

termination of the SLA, and the provider will need to use the SLA to charge for the service.

In my initial requirements, I highlighted the need for expressiveness in an SLA language, a con-

sequence of the need to express the highly various factors that may affect the magnitude of the risk to

which a party is exposed, and hence imply a need to vary the effect of SLA conditions. However, I also

introduced requirements for restrictiveness, to assist an SLA author in specifying SLAs meeting their re-

quirements to a high degree, and power, so that the language can capture as much domain knowledge as

possible in a reusable manner, therefore reducing the amount of information that needs to be specified in

an SLA. Requirements for expressiveness, on the one hand, and power and restrictiveness, on the other,

appear to be contradictory. To address this issue, I proposed that an SLA language should be specified

in an abstract, extensible manner, and described how this could be achieved using the meta-modelling

approach that I mandate for SLA languages. The example language developed in this work, SLAng, was

implemented in this manner. The consequence of this choice is that usually extensions to SLAng must

be defined before it is possible to fully specify a desired SLA.

The thesis in question in this work concerns whether this language represents an improvement over

9.1. Contributions of this work 242

previous languages designed for the same purpose, particularly in terms of the protectability of the SLAs

that can be expressed using SLAng, and the level of support provided for the expression of the conditions

required in the SLAs. The evaluation of SLAng in these terms presented some further challenges due to

the highly subjective nature of the judgements involved.

In order to demonstrate the practicality of SLAng, I used it to specify SLAs appropriate to an

actual service provisioning scenario, in a case-study. I treated the case-study as an exercise in which a

new technology was introduced into a service-provisioning scenario in an attempt to meet outstanding

requirements. Since SLAs are concerned with mitigating risks, the case-study included a risk analysis

applied to the scenario. I was then able to apply the result of my monitorability analysis of electronic-

service provision to guide the high-level design of a system of SLAs capable of mitigating the identified

risks (except for security risks, which I have ruled outside the scope of this work), and all new risks

implied by the use of SLAs. I subsequently demonstrated that SLAng could be used as the basis for an

implementation of these SLAs, resulting in two fully specified SLAs, and the language extensions upon

which they depend.

Based on the experience of the case-study, I next evaluated SLAng against the my requirements for

SLA languages and language specifications. I also compared SLAng to a broad survey of previous SLA

languages, evaluated in the same terms, and found it to be superior in both the level of support provided

by the language for expressing conditions appropriate to the ASP scenario, and the protectability of the

SLAs produced.

In order to further investigate the contribution provided by SLAng to expressing ASP SLAs, I

proposed a set of metrics for extensible domain-specific languages. ‘Power’ measurements attempt to

assess the distribution of effort between defining the language elements used by a statement, and defining

the statement itself. ‘Adequacy’ measurements assess the relative contributions made by a core language

and its extensions to expressing a statement, and ‘specificity’ measurements act as a control on power and

adequacy measurements, discouraging the production of bloated language specifications by measuring

the relative sizes of used and unused language definition elements with respect to a statement. Having

discussed how these metrics may be defined for languages defined using EMOF and OCL, I applied them

to measuring SLAng, and the SLAs and extensions developed during the case-study.

I found SLAng, combined with the extensions required to specify the SLAs in the case-study, to

be highly powerful and specific, with respect to the case-study SLAs. This suggests that the language

is quite restrictive, correctly implements the required support, and that the cost of producing SLAs may

be low in comparison to the cost of producing the language. These are good features for the language

to have, as they suggest that the language can usefully be reused, and that effort spent specifying the

language will be saved when specifying SLAs using the language.

However, the extensions developed in the case-study were somewhat large compared to the lan-

guage itself, increasing the effort required to specify the SLAs. I therefore demonstrated how SLAng

could be evolved to incorporate commonly required syntactic support, identified as a result of experi-

ence using the language. I combined the extension elements required by both the case-study SLAs into

9.2. Conclusions 243

a common extension package, and demonstrated that if this package were regarded as part of the core

language, then the adequacy of the language for the SLAs was significantly improved, without compro-

mising its specificity. I suggested that the principled incorporation of such extensions, controlled by the

taking of measurements according to my metrics, represents a promising future trajectory for SLAng.

9.2 Conclusions
The principal focus of the work presented in this dissertation has been SLAng, a language for ASP SLAs,

which I have evaluated as meeting a range of requirements for ASP SLA language to a greater extent

than had been previously achieved.

However, I do not consider SLAng in its current form to be a magic bullet, capable of enabling the

immediate widespread adoption of SLAs in ASP, precipitating a revolutionary increase in the degree of

outsourcing in which enterprises engage, thereby delivering all of the increases in quality and efficiency

promised by exponents of that model. This is for two reasons: first, I do not consider SLAng to be the

last word in SLA languages for ASP; and second, that language support alone cannot address all of the

challenges that must be overcome in order to use SLAs successfully.

Making use of SLAng currently involves defining extensions to the language using EMOF and OCL,

requiring expertise which, at the time of writing, is not widely available. I believe that to be broadly

practical, the adequacy of SLAng must be further improved in the manner described in Section 8.4, a

gradual incorporation of syntax that has been found to be useful in practical applications of the language.

Eventually, SLAng might include ready-made syntax such that in many cases no extensions are required,

or the parties will prefer to slightly modify their intended agreement in order that it can be conveniently

expressed in SLAng.

SLAng is also immature. In this work I have identified the capabilities that EMOF and OCL sup-

port for testing a language specification, but a thorough approach to validating a language in this fashion

remains the topic for future work. Without such validation, little confidence can be had that the formal

elements of SLAng truly reflect the design intent described in this document, and embedded in infor-

mal comments in the language specification. Similarly, revision of the language must be considered to

improve the feasibility of automatically checking conditions expressed in the language.

The peripheral challenges surrounding the definition and use of SLAs in ASP scenarios also remain

considerable. This was demonstrated in the case-study, in which although it was possible to identify the

types of risks to which scenario participants are exposed, it was difficult to determine the parameters

or detailed design for SLAs capable of correctly mitigating these risks. This suggests that alongside

future work in developing languages for ASP SLAs, methodological studies are also required to de-

velop approaches to quantifying financial risks experienced by parties in ASP scenarios. The effect of

SLAs on these risks must also be better understood. This includes a more detailed consideration of the

exploitability of SLAs.

In this work I discussed the concept of monitorability, and discovered an interesting result in relation

to the ASP scenario, which was that to achieve mutual-monitorability in a safe system of SLAs, network

providers potentially have to resell services and monitor the provision of these services at the point

9.3. Future work 244

where they are delivered to their clients. Clearly, no insurmountable theoretical barriers prevent this

kind of monitoring. However, the practical implications of this result are tremendous, in that it would

require network service providers to become much more involved in the business of ASP, and to perform

monitoring of a kind that they currently do not. This would inevitably imply increased costs, at least in

terms of initial investments in monitoring infrastructure. Naturally, there will be considerable resistance

to this, and it is likely to be a roadblock to the adoption of this kind of SLA.

However, the requirement for monitorability is based on the assumption that trust between the

parties does not exist. If these trust relationships, which can broadly be summarised as the expectation

that the parties have that other parties will honour their commitments, can be better quantified, then it may

be possible to relax the requirement for monitorability. Alternatively, it may be that future research into

cryptographic techniques, or trusted-computing platforms, can deliver trusted monitoring solutions that

will enable parties to obtain monitoring data from remote locations with a high confidence in its voracity.

This would potentially allow the monitoring of end-to-end QoS properties, essential for monitoring

network services at a network-level of abstraction, and also allow the network service providers to export

monitoring into the infrastructure of their clients, rather than implementing it in the network.

Despite these future challenges, I believe that this work has made a significant contribution to the

state of knowledge concerning the role of SLAs in ASP, and the use of domain-specific languages to

support the authoring of these SLAs. I have found issues relating to ASP SLAs to be surprisingly

complex and multi-dimensional, involving considerations of risk, finance, trust, measurement theory,

and the contribution of domain-specific languages to the qualities of the statements that they express.

The need to confidently address these issues as a prerequisite to using SLAs seems to convincingly

explain the current lack of adoption of what seems to be a promising complementary technology to

conventional electronic-service middleware. I have found that previous work tends to neglect important

considerations in these categories, and the work documented here therefore represents some first steps

in mapping these issues and the contribution that DSLs can make to addressing them.

In the next section I discuss future work in more detail.

9.3 Future work
9.3.1 On domain-specific languages

Model-Driven Engineering (MDE) and the OMG’s Model-Driven Architecture (MDA) are currently hot

topics for research. Approaches based on models tend to emphasise the production of domain-specific

languages or language extensions, and the production of SLAng can be seen to be an example of this

kind of activity.

As discussed in Chapter 4, using a lot of different languages in any enterprise, including soft-

ware development, has advantages and disadvantages. The advantages are delivered by the power and

restrictiveness of the languages. The disadvantages are due to the need to have expertise in each of

the languages used, and to integrate information expressed in numerous different language. I justified

my recommendations for embedding natural-language documentation in language specifications, and for

preserving traceability between statements and the languages in which they are written, with reference to

9.3. Future work 245

these problems. The metrics I developed for the measurement of certain properties of languages and lan-

guage extensions are also intended to be useful MDE settings, as language development will inevitably

need to be the subject of quality control, which can benefit from quantitative support.

However, MDE is not a mature field, and further work needs to be done on the fundamental tech-

nological basis for such developments. The most important technologies required are a meta-modelling

language and related tools, capable of supporting the definition of both the syntax and semantics of lan-

guages, the management and processing of statements in languages, and the integration of information

for statements in different languages. The OMG is making a concerted effort to define such a language

and technologies, with its standards for MOF, OCL, JMI and the Query-View-Transformation (QVT)

language [92], which is intended for data integration. Based on the experience gained implementing

some of these standards for this work, there are problems with them, the most important of which are:

there are too many of them; their integration is not well understood; and they are too complicated.

These problems were manifested to some extent in this work, and the design of SLAng. As dis-

cussed in Chapter 3, there is no true conceptual difference between expressing an instance of an object

using a concrete syntax such as HUTN, or XMI, and describing a MOF class which can only have a

single instance in the context of the model in which it resides. Therefore, it seems that these standards

could be combined, by simply extending EMOF to permit the expression of instances, or rather, classes

containing only properties with constant values. This would eliminate the apparently unnecessary dis-

tinctions between instance specifications (which can describe multiple objects, one in each of several

situations conforming to a statement) and classes (which can describe multiple objects within a situation

conforming to a model), models and meta-models, and power and adequacy measurements. This would

also enable the engineering of model repositories that do not need to be recompiled when new meta-

theories are added. My tool support for calculating metric values, which incorporates the MOF semantic

model into the meta-model for the repository, represents a first demonstration of such functionality.

A similar duality exists between OCL and QVT, both of which essentially only describe relation-

ships between model elements. As evidenced by experiments on an early version of SLAng, it can

be hard to write constraints in OCL that evaluate efficiently. Moreover, OCL cannot specify new in-

stances of objects as a result of expression evaluation, making certain calculations difficult to specify

in an object-oriented manner that is both clear and amenable to evaluation. QVT, with its imperative

constructs can do both these things, but relies on OCL to define invariant relationships between models,

hence resulting in a duplication of specification effort. Preferable would be to have a declarative language

for consistency that could be operationalised to perform model transformations, provided relationships

are described with a sufficient lack of ambiguity. In the context of these issues, further consideration

must also be given to the suitability of OCL as a language for describing constraints that can efficiently

be evaluated, as discussed in Section 4.4.2.

Revolutionary changes to the underlying standard languages aside, more work is also needed to

advance the methodological aspects of model-driven engineering. When developing SLAng, I settled

on the idea of using an abstract, extensible language to address the trade-off between requirements for

9.3. Future work 246

expressiveness and requirements for power and restrictiveness. This could be regarded as being an MDE

design pattern. It may be profitable to document it as such, and consider other design patterns that may

be useful in the development of DSLs.

Further work is also need to develop more sophisticated metrics for measuring the usefulness of

metrics for models and languages. In addition to power and adequacy, a measure of the degree of

structural guidance provided by an extensible language to developers would be desirable, which might

be called extensibility, and measure the reliance that an extension has on abstract types and operations

defined in the core language.

In this work, I have tended to rely on textual notions for my language specification and models.

However, the role of diagrams in MDE developments is still extremely important. As mentioned in

Section 4.1.3, future work is needed to determine the best way to integrate this kind of documentation

into language specifications and models.

9.3.2 On risk

Apart from understanding what qualities a good SLA should have and knowing how to specify one,

issues which I have addressed to some extent in this dissertation, the other major impediment to actually

entering an SLA is knowing what parameters the SLA should include. This requires knowledge of two

things: first, the kinds and magnitudes of the risks to which the parties to the SLA are exposed; and

second, the effect of SLA conditions on these risks.

Obtaining the first kind of information requires an effort of analysis. In the case-study, I was

able to identify the kinds of risks to which the parties were exposed by considering clearly negative

outcomes of the various activities included in use-cases for the system. However, this approach, although

appealing from common-sense perspective, has not been subject to validation, and it would be desirable

to demonstrate that it was genuinely a thorough approach to analysing risks, or find a better alternative.

Also, the approach did not quantify the risks, partly due to a lack of availability of financial information.

It clearly needs refinement.

Under some circumstances there may also be a predictive aspect to this kind of analysis. As dis-

cussed in Chapter 2, the decision to outsource and hence enter into an SLA will often be made before

the investment in integrating an outsourced service. Hence, determining the magnitude of some risks

may also mean making financial and development predictions. Some interesting work at predicting

quantitative aspects of software-development projects using Bayesian belief networks conditioned using

genuine historical data is described in [26]. It would be interesting to consider how this approach could

be extended to include outsourcing decisions.

Clearly, the semantics of the SLA language in which an SLA is defined are relevant to determin-

ing the effect of the SLA on the risks to which scenario participants are exposed. If, as described in

the previous section, the feasibility of checking conditions using the semantics of the language could be

improved, the language specification and SLA have the potential to be used directly in simulations of ser-

vice behaviour, in an attempt to predict cash flows under various assumptions concerning the behaviour

of participants and the service.

9.3. Future work 247

9.3.3 On trust and monitorability

As mentioned above, trusted monitoring platforms could modify the set of respondents to an event, and

hence the potential to specify highly-monitorable SLAs for a given service situation. Most desirable

would be the possibility to specify SLAs that could be arbitrated by a third party that is both mutually

trusted by both the client and provider, and also able to obtain trustworthy evidence concerning all events

pertinent to the SLA. Trusted monitoring platforms would also allow network-service providers to export

monitoring from the network infrastructure into client and service-provider infrastructure, eliminating

the costs of deploying new monitoring infrastructure for the sole purpose of supporting monitorable

SLAs.

Several challenges must be addressed when considering trusted monitoring. These include the need

for monitors and their output to be tamper-proof, as they may be executing on infrastructure controlled

by a party with a financial incentive to cheat. The link between a trusted monitor and the consumer of

its output must similarly be secure. For most applications, trusted monitors will need access to a trusted

source of time-stamp information.

I have also mentioned the interaction between trust and monitorability in the presence, rather than

the absence, of trust between interacting parties. The SLAs described by SLAng imply a rather high

monitoring burden. It would be interesting to considered, theoretically, how quantified levels of trust

between parties could be used to reduce this burden using statistical sampling.

Finally, monitorability has an effect on trust, in that a party can trust a fact if they have observed

it themselves. It would interesting to integrate a well-known model of trust relationships with a model

of monitorability, to observe how confidence in the exchange of information can be established when

certain parties can verify certain facts by observation, and may or may not also be known to be able to

do so.

9.3.4 On SLAng

Although SLAng exists primarily as an exemplar for the theoretical innovations introduced in this work,

it is not inconceivable that it could be used as the starting point for a process of refinement and augmen-

tation that could eventually result in a broadly useful ASP SLA language. I demonstrated the potential

of my metrics to assist with such development in Section 8.4. In order to achieve this, the experience

of defining SLAs in a number of realistic scenarios will be required. One possible approach to obtain-

ing such input would be to propose SLAng, or a similar language, for adoption as a standard by some

industry body. The language could therefore benefit from input from any participating organisations. I

would expect that the language would need to evolve through several versions before reaching a broadly

satisfactory level of maturity, in a similar manner to OMG standards such as UML.

As mentioned above, the formal aspects of SLAng will also require validation to generate confi-

dence that they capture the design intent for the language. Testing is a possibility, but consideration

will need to be given as to how to guarantee coverage. It may be possible to redesign SLAng so that

certain aspects of its semantics, such as constraints over the payment of penalties, are aligned to a known

formalism, such as deontic logic, thereby enabling validation by model checking.

9.3. Future work 248

It is possible that time will show that the monitorability assumptions built into SLAng are too strin-

gent for realistic use. However, precision is a useful property, even for SLAs that are not intrinsically

monitorable. It may therefore ultimately become useful to incorporate additional syntax pertaining to

unmonitorable conditions. Conversely, the development of trusted monitoring systems may eventually

make arbitratable SLAs possible, in which case SLAng could profitably be extended to enable the spec-

ification of this type of SLA.

The application of SLAs to risks related to the security of services have not been considered in

this work. However, requirements to do so in SLAs have been identified in previous work [74], and a

risk that could plausibly be mitigated by an SLA, related to confidentiality, was discovered in the case-

study scenario. A survey of security risks needs to be conducted to differentiate between those to which

SLAs may contribute, and those that are better addressed by service-implementation technologies, such

as access-control systems or secure communications. Where SLAs are an appropriate mechanism to

mitigate a security risk, consideration must then be given to the design and formalisation of conditions

to do so, and the monitorability of these conditions.

Precise SLAs are potentially of relevance to other technical domains. Work in the TAPAS project

highlighted the need to formalise component and application hosting relationships [49]. Such relation-

ships represent a formidable challenge for trusted monitoring. However, assuming that this challenge

could be overcome, it would be helpful to develop SLAs capable of describing the resources provided to

a hosted component over time.

Another important area in which a role for SLAs has been identified is the provision of help-desk

services [126], possibly as an adjunct to an application service. Availability conditions supported by

SLAng, related to the exchange of bug and bug-fix reports (which are essentially support activities), hint

at the possibility of formalising conditions relating to the provision of these services.

249

Appendix A

Critical review of alternative languages for
ASP SLAs

A number of languages for SLAs appropriate to the ASP model have been proposed in the academic

literature, and publicised by industrial organisations. No language has yet achieved broad adoption in

this area, although WS-Agreement is the product of a standardisation effort by the Open Grid Forum

(OGF). Some academic work also exists that attempts to establish principles or requirements for ASP

SLAs without contributing to the definition of any particular language. It is also the case that a number of

distributed systems technologies exist that permit the use of service meta-data that could be considered

to be SLAs.

In this appendix I review work in these categories. Of these, the most complete and recent are

languages for SLAs for web services. Also significant are older attempts to define SLAs for CORBA

platforms.

A.1 The Web-Service Level Agreement language (WSLA)
WSLA is a language for web-service SLAs developed by IBM [34]. The language is specified in a

technical report [34]. The syntax of the language is defined using an XML schema [24], with semantics

described using natural language.

A SLA written in WSLA consists of a set of preliminary definitions, establishing who the parties

to the service are, and what service is being constrained. It then defines ‘service level parameters’ and

a set of ‘service level objectives’. The parameters, described using ‘measurement directives’, identify

quantities to be measured for a service, and provide the opportunity for parties to specify how a quantity

should be measured, who has responsibility for monitoring it, and from where measurement data can be

retrieved. Service objectives are constraints over measured quantities expressed in a typed-expression

sub-language consisting of various functions and predicates that may be combined hierarchically.

In addition to defining service objectives, WSLA SLAs can define obligations on parties to take

particular types of action under given conditions, including the violation of service objectives.

The WSLA specification is separated into a core language, a set of standard extensions, and ac-

knowledges the need for user-specified extensions in addition. WSLA relies on the extensibility of XML

schemas to support this.

To what extent does WSLA provide support for expressing conditions to mitigate the risks

involved in the ASP scenario?

A.1. The Web-Service Level Agreement language (WSLA) 250

WSLA provides no explicit support for expressing reliability, and throughput constraints, or con-

straints on the real-world behaviour of the service. However, it does include a framework of abstract

schema types from which these conditions could straightforwardly be extended, and also the definitions

of some measurable quantities of a service, such as response times and invocation counts. WSLA in-

cludes no explicit support for assigning financial penalties to parties in response to condition violations,

or indicating that an SLA should terminate. It does contain a limited expression language for expressing

conditions over measured values or functions of these values, although this is not expressive enough for

a formal definition of reliability or throughput in terms of primitive events. The violations of such con-

ditions can trigger actions, the only given example of which is notification. However, new action types

may be defined in extensions, so financial penalties could feasibly be defined. WSLA does not discuss

payment schemes, or exploitability.

How do SLAs expressed using WSLA contribute to increasing the likelihood that a dispute

concerning an SLA will be resolved according to the original agreement?

The WSLA specification is quite understandable. SLAs written in WSLA are XML documents,

and are superficially easy to understand. However, they are very imprecise. The semantics of WSLA

are expressed in natural language. Moreover, the most important element of an SLA, the definition of

conditions, is highly reliant on the definition of measurement directives using schema extensions. The

only property of these extensions required by the abstract data-type that they must extend, is that mea-

surements have a defined data-type. This leaves room for significant ambiguity in how the measurements

should be obtained. An example directive given for response time only defines a name and a data type.

Nothing is specified concerning what events contribute to defining response time, so disagreements are

possible concerning whether response time should be measured at the client’s interface or the service

provider’s. Additional imprecision is introduced by a lack of prescription concerning traceability be-

tween SLAs and the specification, and the duality of the schema provided for the language, which is not

definitive, and the PDF specification, which, I assume, is.

No consideration of monitorability or error is given in the specification, although support is given

for specifying who should obtain a given measurement and from where (expressed as a web-service port

from which monitoring data can be obtained). In several places it is suggested that measurements may

be obtained by polling. This is extremely risky from a monitorability perspective because polling fails to

measure the behaviour of the service that is of genuine concern to a party, instead electing to measure a

different behaviour that assumed to be an indicator of required quality. Polling a system for performance

generally requires an identifiable form of request that has no adverse side-effects, as it should be expected

that the poll has no business semantics. Polling request can hence be distinguished from real requests.

It is therefore possible for any party to cheat the intent of conditions over polling requests by reserving

capacity.

How does the design of WSLA and its language specification contribute to reducing the costs

of outsourcing activities, including the authoring of SLAs?

WSLA is somewhat restrictive in that it enforces syntactic rules and provides some minimal guid-

A.2. The Web-Services Offerings Language (WSOL) 251

ance for the producers of specification extensions. It is not highly powerful or adequate, in that it defines

little in the way of semantics, so the burden of expressing the meaning of an SLA is largely passed to the

author of the SLAs and any required extensions. The schema for the language is automatable to check

the validity of WSLA SLAs, but the lack of formal semantics hinders further automation and analysis.

Exploitability of WSLA SLAs is not discussed.

A.2 The Web-Services Offerings Language (WSOL)
WSOL is primarily the work of Vladimir Tosic and Kruti Patel, in post-graduate work at Carleton

University, Ottawa, Canada. Details of the language are revealed in a series of academic publica-

tions [132, 105, 134, 133].

The authors do not claim that the language expresses SLAs, but instead ‘web-service offerings’. An

offering is a specification of both the performance of a service, including constraints over timeliness and

reliability metrics, and its interface, achieved by reference to a WSDL document. Offering hence form a

more complete specification of the behaviour of the service than WSDL can provide alone.

The distinction between offerings and SLAs for web-services is largely artificial. Offerings are

characterised as being authored by the service provider, allowing them to differentiate several pricing

schemes for the same service, and there is the implication that the advertisement and selection of services

based on offerings could be highly automated. However, in practice machine-readable SLAs could

perform the same role, with providers offering commoditized contracts. Conversely, nothing prevents

the parties from negotiating the terms of a web-service offering.

Service offerings are similar to WSLA service objectives. They employ a limited expression lan-

guage to describe a condition on a number of ‘metrics’ over the behaviour of the domain, defined in an

external ontology. They identify an accounting party with the responsibility for monitoring the offering.

They can also include or refer to management statements that describe actions to be undertaken in the

event of a violation of the offering.

To what extent does WSOL provide support for expressing conditions to mitigate the risks

involved in the ASP scenario?

Like WSLA, WSOL relies on extension to provide details of the properties of services to be mea-

sured in relation to conditions. The authors recommend that these be provided in ‘external ontologies’

for QoS metrics, measurement units, measured properties (of a service), measurement metrics, and cur-

rency units. By way of an example, the need to specify the following information in a definition of

a QoS metric is asserted: a name; a textual description; links to the ontology of measured properties;

formulae by which given QoS metric can be computed from other QoS metrics; and invariant relation-

ships with other QoS metrics. Unfortunately no specific requirements are listed for the other ontology

types required. Nor is a prescription made concerning the manner in which the ontologies should be

expressed. A review of existing web ontologies provided by the authors reveals previous work to be

inadequate with respect to the requirements stated, but no example of an adequate ontology for metrics

is provided. In [105] an example ontology for measurement units is defined using XML conforming

to a simple schema for ontologies. The ontology simply lists the well-known measurement unit names

A.3. Web-Services Management Language (WSML) 252

‘millisecond’, ‘second’, ‘minute’ and ‘hour’ without additional documentation.

In light of this highly inadequate treatment of the fundamental properties to which conditions must

relate, it is hard to assert that WSOL provides any real support for mitigating the risks involved in ASP.

WSOL does provide some support for charging schemes and assigning penalties. In the documented

syntax for the language the following types are included: pay-per-use price statements; subscription

price statements; monetary penalty statements; and management responsibility statements. Termination

of agreements is not considered, nor is exploitability.

How do SLAs expressed in WSOL contribute to increasing the likelihood that a dispute con-

cerning an SLA will be resolved according to the original agreement?

WSOL suffers from same problems as WSLA. It is largely defined using natural language, and has

no documented principles for managing its extensions. These problems are seriously compounded by

the lack of definitive documentation for the language (assuring a lack of traceability between SLAs and

their meanings), and the inadequate provision of ontologies defining major parts of the meaning of the

language.

Third parties can be assigned management responsibilities in WSOL service offerings, which may

include monitoring. However, no discussion is provided concerning monitorability in scenarios in which

some parties may not be trustworthy. The monitorability of an offering would depend on metrics and

measured properties defined in an external ontology. Monitorability is not discussed in the requirements

for such ontologies, and nor is measurement error.

How does the design of WSOL and its language specification contribute to reducing the costs

of outsourcing activities, including the authoring of SLAs?

Like WSLA, WSOL inherits usability benefits from its reliance on XML schema to define its syntax.

In addition, considerable efforts have been spent by the authors to make service-offering specifications

reusable via various mechanisms. These include an extension mechanism for service offerings, the

ability to cross reference declarations made elsewhere in a number of contexts, and a template system

for parameterising several types of syntax. It is not clear why these are required. WSOL would be a

powerful language if it had an adequate semantic definition – much of the semantic burden of an offering

would be assumed by the documentation of the language and any external ontologies used. Offerings

should therefore be concise. It is also not clear whether this type of reusability is useful in a language

for expressing documents to which confidentiality requirements may apply.

The lack of clearly defined ontologies or standards for these ontologies for WSOL is clearly a

barrier to analysability and automatability.

A.3 Web-Services Management Language (WSML)
WSML is described in a technical note published by Hewlett Packard [111]. The objective of WSML

is to express SLAs for application-services, and it is acknowledged that this may include real-world

behaviour as well as constraints on electronic services. Like WSLA and WSOL its syntax is defined

using an XML schema. Also like WSLA it requires schema extensions to provide concrete types for

certain necessary elements in an SLA.

A.3. Web-Services Management Language (WSML) 253

The design of WSML places its main emphasis on two properties of the language, flexibility and

precision. The report in which the language is described states that flexibility is necessary because of

the broad variety of requirements that a client may have. The requirement for precision in WSML is

stated differently from my use of the term. For the authors of WSML ‘precision’ connotes a complete,

categorised description of the requirements of the parties. Hence the authors state that every service-level

objective in an SLA should specify the following information:

• A time constraint on when the clause applies

• What physical quantity is being measured.

• When the condition should be evaluated.

• What subset of measurements is relevant to calculate the condition.

• What function is used to calculate whether the condition holds.

• What action should be taken if the condition is violated.

Each of these categories of information is represented by an abstract syntactical type which can be

extended to allow the specification of whatever details are pertinent to a particular SLA. This perspective

was influential in the design of SLAng when considering how classes should define abstract operations

to guide extensions.

To what extent does WSML provide support for expressing conditions to mitigate the true

risks involved in the ASP scenario?

Like WSLA a set of concrete semantic extensions are in the technical note defining WSML, al-

though no claim is made for the completeness or usefulness of these. Instead they serve as examples

to support the claim that WSML can express any contents that users could desire in an SLA. Example

measurement functions include determining whether a service has been available for a percentage of

some period, and determining whether response time is greater than some threshold. No discussion is

made of reliability, or of how the correct functional behaviour of the system could be documented or

referred to in an SLA. However, an extension to the language could in principle address this issue. No

example of the constraint of real-world behaviour is given, although the author’s assert the capabilities

of the language in this respect.

No example is provided of the specification of actions in response to service-level objectives being

violated. To mitigate financial risk in a predictable manner an extension describing the payment of

penalties would be needed. Termination of SLAs is not discussed, nor is exploitability.

How do SLAs expressed in WSML contribute to increasing the likelihood that a dispute con-

cerning an SLA will be resolved according to the original agreement?

In a nod to the notion that the semantics of SLAs should be formally defined, the report states that

the function whereby violations are calculated should be specified in a mathematical notation such as

MathML [140]. However, no example of this is provided in the report.

A.4. Rule-Based Service-Level Agreement language (RBSLA) 254

In other respects, WSML suffers from the same defects as WSLA in terms of understandability. Its

semantics are defined in natural language, and it relies on extension of its specification without defining

how those extensions should be managed or documented.

Although not explicitly stated as a requirement for extensions, the examples given make explicit

use of XML schema documentation elements, which represents a responsible, if informal approach to

preserving the meaning of the language in situ with syntactic definitions.

However, with respect to the core language, it is not clear whether the report in which the language

is documented should be considered normative documentation of the language for any reason except

pragmatically as no other documentation is publicly available.

The structuring of service level objectives around the ontology for such definition discussed above

does support a responsible approach to defining SLAs. In particular the language is superior to WSLA

in its insistence that the quantity being measured, as opposed to the means by which measurements are

obtained, be specified.

The designers of WSLA rightly think it suitable to specify constraints in relation to other properties

of an electronic service than solely the responses received over the network, for example the state of

availability of the service. However, the authors rely on the implicit, and in my view unrealistic assump-

tion that anything that may be constrained in an SLA is either monitorable or the party responsible for

the quantity can be trusted to report on it. No treatment of error is provided in the description of the

language or provided for in its syntax

How does the design of WSML and its language specification contribute to reducing the costs

of outsourcing activities, including the authoring of SLAs?

Like WSLA and WSOL, WSML accrues benefits related to its reliance on XML schema. WSML

is not a highly adequate language, but once extensions have been defined, it is reasonably powerful. A

realistic example SLA given in the report is 70 lines of XML, although this SLA cannot be said to meet

my requirements to a high degree.

The informal semantics of WSML do not intrinsically support analysis, and no discussion of anal-

ysis is provided. Nothing prevents the expression of exploitable SLAs in WSML. Exploitability is not

discussed in any work related to the language.

A.4 Rule-Based Service-Level Agreement language (RBSLA)
RBSLA is a language for the specification of SLAs for electronic services, designed according to the

(undischarged) assumption that it is preferable to base the semantics of an SLA language on logic pro-

gramming [103] rather than any other approach. It extends the standard rule language RuleML [110]

with a number of new concepts, which the author asserts are useful for expressing SLAs. RuleML is a

language for rules based on the Resource-Description Framework standard (RDF) [144], a language for

describing resources, their properties, their relationships, and their types, which is in turn based on XML

and XML schemas. The extension proposed for RBSLA are: typed logic with types and modes; procedu-

ral attachments; external data integration; ECA rules with sensing, monitoring and effecting; (situated)

update primitives; complex event processing and state changes (fluents); deontic norms including vio-

A.5. EXecutable Contracts (X-Contracts) 255

lations and exceptions; defeasible rules and rule priorities; built-ins, aggregate and compare operators,

and lists; additional compact if-then-else-syntax; SLA-domain-specific elements such as metrics, escala-

tion levels and ontology-based domain-specific contract vocabularies; and test cases for verification and

validation of SLA specifications.

To what extent does RBSLA provide support for expressing conditions to mitigate the true

risks involved in the ASP scenario?

It is difficult to assess the true level of support provided by RBSLA, due to the lack of a compre-

hensive specification document. A complex XML schema for the language is available, but it does not

appear to provide any vocabulary particularly related to reliability, timeliness or throughput conditions.

The semantics of the language are clearly being developed incrementally. [104] provides an account

of the semantics for the event-condition-action extensions to RuleML, which clearly support part of the

RBSLA proposal. [103] indicates that, similarly to WSOL, SLA-domain specific elements will be pro-

vided by external ontologies, and suggests the use of OWL ontologies [143] or Java class-hierarchies.

However, a documented example of this has not yet been made available.

How do SLAs expressed in RBSLA contribute to increasing the likelihood that a dispute con-

cerning an SLA will be resolved according to the original agreement?

RBSLA clearly represents an attempt to place the specification of SLAs on a highly formal basis.

However, the understandability of the language is seriously undermined by the assumption of a massive,

but incompletely-documented, formal apparatus supporting the semantics of the language. Contrast this

with the relatively simple object-oriented domain theory provided by EMOF. Because of the barrier to

comprehension that it imposes, the use of such apparatus must be justified in terms of the kinds of proofs

of correctness and consistency that can be provided for the language or the SLAs that it is used to express.

However, this is not adequately motivated in discussions of the language.

How does the design of RBSLA and its language specification contribute to reducing the costs

of outsourcing activities, including the authoring of SLAs?

RBSLA does not seem to be a particularly powerful domain-specific language. Instead, it focusses

on highly flexible syntax supporting a number of different types of rules concerning the conduct of

parties and services. These rules appear to be a light syntactic sugaring of what is, in essence, a logic

programming language, so RBSLA more closely fulfils the role of EMOF than SLAng. Although using

RBSLA may be easier than expressing an SLA in Prolog, it still seems likely to require a high degree of

expertise by the author. This may be an acceptable trade-off in that it may result in SLAs that are highly

amenable to analysis (such as proofs of correctness) and automation. However, the precise contribution

of the formal underpinnings of the language to the practical aspects of service management have yet to

be demonstrated.

A.5 EXecutable Contracts (X-Contracts)
X-contracts are a proposed representation for contracts related to interactions between electronic ser-

vices, principally aimed at enabling monitoring and enforcement, where ‘enforcement’ although not

explicitly defined, appears to connote the automation of contractual obligations [71]. The principal

A.5. EXecutable Contracts (X-Contracts) 256

recommendation of the approach is that bilateral contracts be represented using pairs of Finite State Ma-

chines (FSMs), one each for the client and provider parties. Transitions in the machines are labelled with

events, which correspond to actions the parties have a right to perform, and to external circumstances

such as timeouts, and with outputs, which represent the enactment of obligations. Shared events cause

the co-evolution of the state of both machines over the duration of the relationship between the parties.

X-contracts may be used to specify SLAs. However, the main focus of the work is on supporting

the specification of protocols by which the parties to an agreement must abide. These protocols may

include temporal constraints, and hence touch upon issues of quality-of-service.

To what extent do X-contracts provide support for expressing conditions to mitigate the true

risks involved in the ASP scenario?

FSMs are a useful formalism for describing protocols. X-contracts therefore represent a reason-

able approach to representing agreements in situations where risks are primarily related to adherence to

protocols. [70] includes a realistic example in which a purchase order and invoice must be exchanged

according to a loose schedule. Failure to adhere to this protocol implies the obligation to pay penalties.

On the other hand, it is not clear how adequate FSMs are as a formalism to specify the desired behaviour

of a service in terms of the functional relationship between its inputs and outputs, or its aggregate perfor-

mance over a large number of usages (which would tend to require a large FSM to maintain a history).

The X-contract approach also does not provide any reusable support for defining common requirements,

a flaw that the authors acknowledge, and suggest could be rectified by the construction of a contract tem-

plate database. X-contracts are not discussed in relation to defining constraints on real-world behaviours,

although it is possible that these could be represented as events.

How do X-contracts contribute to increasing the likelihood that a dispute concerning an SLA

will be resolved according to the original agreement?

X-contracts have the potential to be extremely precise. Thus far, this potential does not appear to

have been completely realised. The FSM model used could easily be associated with a formal semantic

definition; however, the authors have not yet provided this, or even a definitive syntax for representing

X-contracts. Also, although a graphical notation is demonstrated for representing FSMs, it is not clear

to what standard this conforms. In [124], the authors encode an X-contract using the language Promela,

which does have a formally defined syntax and semantics, but it is not clear whether this approach should

always be used to specify X-contracts, or whether it is the result of applying an unspecified translation

from some other representation of an X-contract. The need to precisely define the meaning of events and

actions referred to in X-contracts is not considered, nor is the need to specify standards relating to the

measurement of the time of occurrence of events.

Some consideration is given to monitorability in work relating to X-contracts. In particular, in [71]

the use of the B2Bobject middleware is proposed to mediate interactions [15]. This middleware abstracts

interactions as a shared stateful object. Updates to the object are non-repudiable, hence bad-behaviour

related to positive action by a party will be monitorable. However, the B2Bobject middleware cannot

guarantee timestamp values for events. Nor can it demonstrate whether the absence of an event was due

A.6. Web-Services Agreement Specification (WS-Agreement) 257

to a network delay or a protocol violation by a participating party.

How do the recommendations relating to X-contracts contribute to reducing the costs of out-

sourcing activities, including the authoring of SLAs?

FSMs are not particularly restrictive or powerful. However, they are highly analysable and automat-

able. In [124] the authors verify a Promela specification of an X-contract against various requirements

using the model checker, SPIN. Implicit in the notion of enforcement frequently referred to in relation

to X-contracts is the potential to base the implementation of a service on the automated enactment of its

X-contract obligations. Likewise, automated monitoring using the B2Bobject middleware is enabled by

the simulation of an X-contract at runtime.

A.6 Web-Services Agreement Specification (WS-Agreement)
The WS-Agreement specification [100] has the distinction of being the only proposed standard support-

ing the representation of SLAs for electronic services. It is under review by the Open Grid Forum (OGF)

for standardisation.

In common with several languages for the same purpose, WS-Agreement provides an extensible

XML Schema. Abstract elements that can be made concrete in order to support the definition of a

particular SLA are: identifiers for the client and provider of the service; references to related agreements;

service descriptions; and guarantee terms. A service description must have a name. A guarantee term

must: reference the service in relation to which the guarantee is being made; list some domain-specific

variables to which the guarantee pertains; optionally express a precondition under which the guarantee

holds; express the condition that must be met to satisfy the guarantee; and assign a ‘business value’ that

associates a priority, and a penalty or reward with the guarantee. Penalty definitions may include the

definition of an assessment interval, a quantity or expression defining the penalty, and a unit.

In addition to this syntactic framework, the standard specifies a service and life-cycle for the creation

and management of agreements using a web-services. According to this life-cycle, an agreement factory

maintains a list of agreement templates, which are parameterised agreements together with a set of

prerequisites for entering the agreement. A client contacts the factory with an agreement offer, which

satisfies the prerequisites and sets the parameters for the agreement. This triggers the instantiation of

two new webservices, one to represent the agreement, and the other a client-specific port onto the service

that was originally requested. The service modelling the agreement provides access to agreement details,

can indicate the state of the underlying service, and indicates whether guarantees in the agreement are

currently being violated.

To what extent does WS-Agreement provide support for expressing conditions to mitigate the

true risks involved in the ASP scenario?

The extent to which WS-Agreement provides support for specifying agreements is described in full

above. WS-Agreement provides no intrinsic support for expressing reliability, latency and throughput

conditions. Indeed, due to the informal and high-level way in which the semantics of the language are

specified, and the extremely abstract nature of the language, it is debatable whether WS-Agreement

should be regarded as a language at all, rather than a vague description of the gross properties that an

A.7. The Business Contract Language (BCL) 258

SLA should possess.

The definitions of penalties in WS-Agreement acknowledge the need to consider issues of admin-

istration and finance in SLAs. However, they are too vaguely defined to be an adequate basis for an

agreement as to these elements without further extension.

How do SLAs expressed in WS-Agreement contribute to increasing the likelihood that a dis-

pute concerning an SLA will be resolved according to the original agreement?

Since WS-Agreement defines no semantics specific enough to determine whether violations of an

agreement are being met, it cannot be regarded to contribute anything towards guaranteeing the produc-

tion of protectable SLAs. This will entirely be the contribution of extensions to the language.

The lifecycle described by the WS-Agreement standard is also highly dubious from a monitorability

perspective. Clearly the service-provider would implement the agreement factory, and therefore the

webservice representing the agreement. The implication seems therefore to be that the service provider

will monitor the service on behalf of the client. Even assuming the service-provider could be trusted to

do this honestly, they will not necessarily have access to the point of service provision of interest to the

client, namely the client’s own interface to the network.

How does the design of WS-Agreement and its language specification contribute to reducing

the costs of outsourcing activities, including the authoring of SLAs?

Again, the sparsity of syntactic definitions and lack of actionable semantics for the language make

it impossible to say that it contributes usefully to the production of SLAs. Although it is intended that

a monitoring service should be instantiated automatically as a result of entering into a WS-Agreement,

this will necessarily require knowledge of the semantics of terms in the agreement, none of which are

specified by the WS-Agreement standard.

A.7 The Business Contract Language (BCL)
BCL is a language for describing contracts consisting of sets of deontic obligation, described in a number

of research publications [55, 29, 74].

In BCL a contract is a reification of the concept of a community taken from to RM-ODP speci-

fication [36]. BCL defines community types. A community type has a set of roles, action templates,

policies, events, states, sub-communities and instantiation rules, which govern when a community con-

forming to the type is deemed to exist. Roles identify parties and objects in abstract. Action templates

define types of actions in which objects may participate, and have action roles. Constraints may be ap-

plied to roles. Policies are constraints with deontic modes: permissions, prohibitions and obligations.

Conditional policies may be modelled by the exchange of tokens: permits and burdens. Communities

can be hierarchically combined by regarding the community as an object whose overt behaviour can

satisfy the conditions on a role. Events may be primitive or emergent. Event matching constraints and

event patterns bridge the gap between primitive events and non-primitive events and actions. State occu-

pancy may related to events and referred to in constraints. State may be represented by a combination of

variables with various types.

The author’s assert that BCL has an XML representation, and also a non-standard human-usable

A.8. Ontology Web Language for Services (OWL-S) 259

notation, and further that tools supports exists for deserialising these notations [55]. However, neither

tools nor definitions of these representations are available in the public domain.

To what extent does BCL provide support for expressing conditions to mitigate the true risks

involved in the ASP scenario?

From the example provided in [55] it seems that BCL primarily provides a type theory for contracts,

in other words, asserting that everything of interest to a contract can be described using one of the

syntactic types defined above. The events, actions and policies for a contract must then be implemented

in a particular contract. It seems that, similarly to RBSLA, BCL is aiming to provide a richer, but more

complicated and restrictive, meta-theory for SLAs than that provided by EMOF. BCL does not seem to

contain domain-specific support for defining reliability, latency or throughput constraints for electronic

services. The need to consider termination conditions is mentioned in the requirements stated for the

language, as is the payment of penalties [74], and an example of the obligation to pay a penalty is

included in [55].

How do SLAs expressed in BCL contribute to increasing the likelihood that a dispute con-

cerning an SLA will be resolved according to the original agreement?

Clearly the intention for BCL is to provide a precise semantic for the language, based in part on

deontic logic. In [29] a mapping from BCL policy statements to a logic is described in order to detect

conflicting obligations or prohibitions. However, this mapping is partial and not definitive of the seman-

tics of the language. Moreover, the unavailability of a complete description of the syntax of the language

makes it hard to assess its expressive capabilities.

Monitorability is not considered. Also, the example of an SLA provided in [55] includes a definition

of availability based on events related to the transition of a webservice from an operational to inoperative

state, an event that is unlikely to be fully monitorable even to the provider of a web-service, still less the

client. The treatment of error is also not considered, although is mentioned in an earlier paper concerning

the requirements for BCL [74].

How does the design of BCL and its language specification contribute to reducing the costs of

outsourcing activities, including the authoring of SLAs?

BCL does not seem to be a highly powerful language, in that it does not succinctly describe contracts

by reusing known constraint types. However, the structuring of the syntax described by the authors does

suggest that the language would be restrictive. However, BCL will contribute little towards defining

SLAs or any other contract until a sufficiently complete and unambiguous description of its syntax and

semantics is published.

A.8 Ontology Web Language for Services (OWL-S)
OWL [143] is a language for Web ontologies, based on the RDF. OWL is a cornerstone of the Semantic

Web initiative. It is a powerful language for defining ontologies, which are in turn vocabularies for

expressing meta-data about resources on the web. The intent of the Semantic Web initiative is that

internet resources should be extensively labelled with meta-data using such vocabularies in order to

support a high level of automated reasoning about, and manipulation of these resources. This could

A.9. Quality-of-service Modelling Language (QML) 260

include more intelligent search algorithms than are currently possible, and automated composition of

services.

OWL-S [146], formerly known as DAML-S, is an OWL ontology for web services. It allows the

specification of three types of meta-data concerning services:

• A service profile.

• The process by which the service should be used.

• The grounding of a service.

The OWL-S specification states that the service profile may be used in service discovery, and that

it can specify functional and non-functional properties for the system. The specification of functional

properties is supported by the definition of meta-data properties for services such as pre- and post-

conditions. The specification of non-functional properties relies on the definition of ontologies external

to OWL-S, with no specific examples given.

In its intent to describe the properties that a web-service has, without involving the client in any

negotionation, OWL-S is similar to WSOL. It would require extensions to the specification of truly

bilateral agreements between parties.

OWL has a highly formal semantics closely related to description logics that supports inferences

over meta-data descriptions. However, these inferences are largely to do with categorisation, and it is

not clear that a QoS ontology expressed using OWL would be any more valid, or less ambiguous in its

relationship to the service domain than less structured approaches. In contrast SLAng, with its explicit

service model provides a direct description of the meaning of measurement data and conditions over

that data. In principle, an ontology of SLAng constraints could perhaps be described in OWL with

reference to the SLAng specification, allowing the reuse of SLAng statements in meta-data compatible

with OWL-S.

A.9 Quality-of-service Modelling Language (QML)
QML is a well-defined language specified in a technical report from Hewlett Packard. It’s intent is

quality-of-service description, rather than the expression of SLAs, although this is clearly an important

component of an SLA language. Despite predating WSML, also from HP, there is little resemblance

between the languages.

The syntax of QML is defined using a traditional BNF grammar. It is machine readable, but not

based on XML. Instead it resembles an interface definition language, such as CORBA IDL [90], with

which it is intended to be complementary.

In contrast to the languages previously reviewed, QML does not rely on language extension to

provide flexibility. Despite the emphasis placed on modelling QoS rather than expressing SLAs, QML

relies heavily on the concept of a QoS contract. It allows the definition of contract types, which consist

of sets of dimensions. Each dimension is a user defined QoS property, with a type. Numeric dimension

types may be given a user defined order, which indicates whether larger or smaller values of the type are

considered to deliver better performance.

A.9. Quality-of-service Modelling Language (QML) 261

Contracts are instantiations of contract types, in which each of the dimensions is associated with a

constraint. For numeric types this includes the expression of standard relationships that must be true for

the values in the dimension, and also constraints on statistics of the value, such as the mean and variance.

Finally contracts may be associated with an appropriate interface element, such as an operation,

with the interpretation that quality attributes of the element conforming to dimensions in the contract

must conform to the constraints specified in the contract. The association is called a profile for the

element, and in the sense that an element may have multiple profiles is similar to WSOLs notion of a

service offering.

QML provides no syntax relating to penalties or actions to be performed in the event of an element

failing to conform to a profile with which it is associated. I therefore do not consider it an SLA language,

and will forego detailed comparison with our requirements.

Another major deficiency in the language relates to the ability of users to define custom contract

and dimension types. Definitions of these types only identify the mathematical structure of the domains

of these types, and give them a name, without allowing further description of what instances of the type

are supposed to correspond to in the real world. Whilst the type system makes the language highly

extensible the meaning of the individual metrics in the context of the software system is not formally

established. Since exchange of SLAs between parties requires a common understanding of such metrics,

this can be regarded as a serious deficit.

QML does define a rigourous semantic for its contracts and profiles, but this definition is not based

upon their real-world interpretation. Instead a denotational semantic describes how contract declarations

imply the existence of elements in a mathematical contract domain. Axioms then allow deductions

concerning the typing of these elements.

Additional axioms define a relationship called conformance that pertains between contracts and

also between profiles. Conformance is discussed further below in the section on SLA analysis. A

contract is said to conform to another if it is compatible with the type of the second and its constraints

are stronger according to the user-defined ordering on their dimensions. This allows comparison of

contracts. However, discisions made on the basis of these comparisons may not be safe due the the

disconnection between the semantics and the real-world systems described.

The emphasis on typing is clearly an attempt to make the language flexible, without relying on

extensions to the language definition, therefore permitting the assertion that the language in its published

form is adequate to the expression of any SLA. However, unlike programming languages that incorporate

similar type facilities, an SLA language cannot rely on a semantic definition consisting of a few primitive

notions, constructed by types and data structures into more complex behaviours, because it may have to

refer to things in the real world not anticipated by the language designer. Consequently, the language

must either allow the embedding of extra documentation in contracts, or be extensible. QML supports

neither of these options, and so is semantically inadequate to the expression of SLAs.

QML has been reused in the architecture description language CBabel [3] to specify QoS contracts

using infrastructure dependent dimensions prior to the deployment of a system.

A.10. Quality-of-service for CORBA Objects QoS Description Language (QuO-QDL) 262

A.10 Quality-of-service for CORBA Objects QoS Description Lan-
guage (QuO-QDL)

QuO [57] is a CORBA specific framework for QoS adaptation based on proxies. It includes a quality

description language, QDL, used for describing QoS states, adaptations and notifications. Part of the lan-

guage relates to the definition of ‘contracts’, which in this case are expected relationships between client

behaviour and received QoS. Within contracts, ‘regions’ of QoS behaviour (expressed as constraints

over multiple QoS dimensions) are specified, including permissable transitions between regions related

to changes in client behaviour and resource availability. The use of the term contract in this context is

more closely related to its meaning in contract based programming, where it has the sense of a technical

guarantee, than in an SLA where the sense is legalistic.

Dimensions in the language are defined to be the domain of results obtained by invoking instrumen-

tation methods on remote objects. Like WSLA, no formal constraints are placed on the implementation

of these methods. In the context of the QuO project, this instrumentation is related to adaptable QoS

properties supported by the framework. In this sense the semantics of the dimensions are directly related

to the implementation of the service. This is appropriate given that contracts in QuO are supposed to help

clients plan their usage, and the system to adapt. However, in the absence of strong trust relationships

between clients and service providers, contracts of this form would not be appropriate SLAs. In addi-

tion no facilities are provided to describe the consequences of the service deviating from its prescribed

regions of QoS.

A.11 Quality-of-service aware component Architecture (QuA)
The QuA project adopts the most rigorous approach to defining the semantics of QoS properties [125],

although to my knowledge they have yet to define a concrete syntax for representing SLAs. According

to their model, all QoS properties are related to the performance of a service, which supplies a set of

operations. Input and output messages are causally related by operation invocations. Output messages

are characterised by a set of variables. A set of error functions are defined over the difference vector

between an observed output trace for a particular input trace, and the ideal trace as it would be observed

were the service deployed on infinitely fast equipment operating without error. SLAs are defined using

constraints on the values of error functions.

It is possible to see correspondences between our semantics and the QuA approach. In our case the

service model defines the information available concerning service operation, and the OCL constraints

provide a concrete representation of the error functions. Features of our semantics not obvious in the

QuA approach are constraints independent of a service model assumption, such as the constraint that the

service provider must be capable of providing the monitoring solution specified in an ASP SLA, and the

ability to constrain client behaviour (in QuA terms, the input trace).

A.12 Quality-of-service Interface Definition Language (QIDL)
QIDL [10] is an extension of CORBA IDL [90]. It does not define constraints on the QoS of a service,

but specifies data types and extensions to the functional interface, that are concerned with the monitoring

and adaptation of QoS, rather than the direct provision of the service. QIDL allows the implementation

A.13. Job Submission Description Language (JSDL) 263

of generic QoS management systems for CORBA services. However, it omits any specification of the

protocol according to which this management should proceed to meet the requirements of the client and

service provider. It is also not clear that clients in situations where SLAs are required should be offered

access to QoS adaptation mechanisms. QIDL is hence not useful for describing SLAs.

A.13 Job Submission Description Language (JSDL)
Like WS-agreement, JSDL is a nascent standard of the OGF. It allows a client submitting a job to a

grid-scheduler to specify execution parameters for the job intended to guarantee a certain quality of

service [99].

Information in a JSDL job specification can be grouped into essentially four categories:

• Meta-data describing the job: an id, name, annotations and project information.

• Identification of the application/program to be run: At an abstract level a name and version for the

application. JSDL also defines POSIX specific extensions, which includes the ability to specify

the executable to run, and user and group permissions required.

• A description of the resources that must be made available to the application by the computa-

tional resource manager. This information includes names and locations for jobs, required CPU

architectures and speeds, memory, operating system and disk partition information, amongst other

things.

This optionally includes specification of: the specific hosts (identified by name) on which the

application should be run, any filesystems that should be present, how they should be named, what

logical type they should have (normal, swap, temporary or spool), where they should be mounted,

show much space should be available to them, whether the application should execute exclusively

on its resource, the operating system within which it should be executed, specified by type, name,

and version; also quantities of various types of resources, expressed either per-processing node or

for the job as a whole: the CPU architecture and speed required, the number of CPUs, CPU time,

network bandwidth, virtual memory, and physical memory required.

POSIX specific extensions allow the specification of limits (representing the upper bound of what

may be used and the lower-bound of what is required presumably) on file sizes, core dumps, data

segment sizes, locked memory, memory, open file descriptors, pipe sizes, stack sizes, process

counts, and thread counts.

• Data staging requirements: These specify required data movements prior and post job execution,

and consist of source and target destination specifications.

From this list it can be seen that JSDL is primarily concerned with specifying the means to complete

a job successfully according to the client’s requirements. Unlike an SLA, it does not attempt to specify

the ends required, i.e. what the client’s QoS requirements are, or what should occur when these require-

ments are not met. Since the owners of computational grids and the parties submitting jobs to these

grids are likely to be financially independent, the future appropriateness of JSDL seems in question, as

A.14. SLA information in trading services 264

the client must be trusted with assessing what resources are required. This fixes the pricing model of

the grid-owner to a reservation-based approach, which may lead to low levels of utilisation in the grid.

A results-based pricing model would allow the grid owner more flexibility concerning the allocation of

resources.

A.14 SLA information in trading services
The CORBA Trading Object Service [77] allows the advertisement and selection of service offers based

on constraints over typed properties. These properties can include QoS specifications, and generally can

take any IDL type. Their semantics is not formally defined; neither are external ontologies specified. It

is therefore up to the trader and its clients to agree an interpretation for the properties.

UDDI [101] is a directory system for web-services incorporating WSDL descriptions and additional

meta-data. It has been criticised for not allowing the specification of quality properties or management

information. UDDIe [113] is a proposed extension of the standard that adds additional categories of

meta-data, including QoS specifications, to the information provide by UDDI. This QoS information

could be regarded as being binding when payment is required for a client to access a service, and so an

instance of an SLA. However, the description of eUDDI provides no guidance as to what QoS informa-

tion should be specified.

It is possible that when using systems such as CORBA trading and UDDIe, which specify the

availability of service meta-data, but no strong restrictions on its form or meaning, participants could

agree to standardise on a vocabulary for SLAs such as that provided by SLAng.

265

Appendix B

Case-study material

B.1 Use-case 1: conduct an experiment
B.1.1 Initiating Actor

• Chemist

B.1.2 Preconditions

• Chemist has the necessary access to the Polymorph Search Webclient, and has prepared

input data files.

B.1.3 Postconditions

• The chemist has completely retrieved the experimental results via the Polymorph Search

Webclient.

B.1.4 Steps

1. A chemist collects the requirements of the computation. These include application parameters,

input and output file requirements, dependencies and system requirements.

There are no significant risks to any party in this step.

2. The chemist uploads parameters and input files using the Polymorph Search Webclient,

which is installed on the submission node. The Chemist is interacting with the CS-managed sub-

mission node across three networks, that managed by the Chemistry department, the IS network

and the CS network.

Risks to the chemist:

The chemist will need to engage in a sequence of interactions with the web-client to perform this

step. Faults and delays in this process may occur in the Chemist’s node, the chemistry network,

the IS network, the CS network or the CS node. Therefore, the chemist may be exposed to the

following risks:

Chemistry 1 Delays in configuring the experiment could significantly delay access by the chemist

to the results of the experiment. This could mean missed deadlines, an inability to produce timely

results in comparison to researchers from other universities, and similar material harm to the

individual chemist and the Chemistry Department.

B.1. Use-case 1: conduct an experiment 266

Chemistry 2 Faults may occur at any point in the infrastructure supporting the process. Obvious

faults may be temporary, or require intervention by another stakeholder. Non-obvious faults may

result in the corruption of the parameters or the input files for the experiment. In theory these

faults could occur at any point in the infrastructure. Non-obvious faults become increasingly

problematic while they remain undetected. The worst-case scenario in this case is that corruption

of data results in the production of invalid scientific results that are relied upon in future by the

Chemists.

It may be assumed that the introduction of non-obvious scientific errors is rare. Data corruption

is likely to invalidate files to the extent that the experiment either fails altogether or produces

obviously implausible results. Replication of experiments and other validation techniques should

trap most residual errors. Nevertheless, such errors may result in a serious amount of wasted time

and effort.

Chemistry 3 The chemistry network must be linked to the IS network and communicate with the

web-client. It must therefore be prepared to accept network traffic from the IS network that appears

to originate from the CS network. The traffic may potentially act in a manner inconsistent with this

behavioural description, either maliciously or accidentally, causing faults or resource exhaustions

that reduce the capacity of the Chemistry nodes to perform their usual duties. This is a security

risk.

I cite ‘security risk’ used in this sense in several different contexts below. Note that such security

risks, although normal in today’s open networks, are a direct consequence of the need to interact

with other networks to communicate and use services. In this case study, I am initially making the

conservative assumption that without the motivation to perform computational experiments, the

Chemistry department would not necessarily have any need to interact with either IS or CS.

Risks to IS:

IS 1 Traffic appearing to originate from nodes within the Chemistry and CS networks may be

problematic if it acts maliciously. This is a security risk.

IS must also be aware of the possibility that the communications between Chemistry and CS may

be large in volume. Note that Chemistry does not bear an equivalent risk, because it may be

assumed that provided risk Chemistry 3 is mitigated, the web-client will function correctly (or

Chemistry will receive compensation) and Chemistry should be able to anticipate and therefore

deal with the volume of data arriving from CS in response to their service requests.

IS 2 The IS network must be connected to the Chemistry and CS networks. It must be prepared

to accept legitimate traffic from both networks appearing to originate from nodes within those

networks. This traffic may be problematic if it appears in too great a volume.

B.1. Use-case 1: conduct an experiment 267

IS will also need to address the risk that they will not be able to obtain compensation for providing

the service.

IS 3 Conveying legitimate traffic between Chemistry and CS implies a cost to IS. This represents

a risk to IS because they may not receive compensation for providing the service.

Risks to CS:

CS 1 The CS network must be connected to the IS network. It must be prepared to receive traffic

that appears to have originated from nodes in the chemistry department. This may present a

security risk.

CS 2 Legitimate behaviour may also be problematic if it arrives in too great a volume leading

to resource exhaustion. CS servers are a valuable resource, and may not be used exclusively

to provide the polymorph search service. Therefore it would be senseless for CS to allow its

submission node to be overwhelmed by requests. Webpage requests may reduce the functionality

of the Polymorph Search Webclient if they arrive in too great a volume. The upload of

large amounts of data may exhaust the storage capacity of a CS server, rendering it useless for

other purposes and clients.

Like IS, CS will also need to find some way to charge for using the polymorph-search service:

CS 3 Servicing operation requests submitted to the Polymorph Search Webclient im-

plies costs for CS due to the provision of network and processing resources. This implies a risk to

CS that they will not receive adequate compensation to cover these costs.

3. The chemist triggers the computation and the web-client acknowledges the start of the computation

by displaying an initial status. Again this interaction is with the submission node and occurs across

Chemistry, IS and CS networks.

Risks to the chemist:

Chemistry 4 Delays starting the experiment are a risk to the Chemist because the Chemist wastes

time waiting for an acknowledgement, and the production of results is also delayed.

Chemistry 5 Faults starting the experiment are a risk to the Chemist because the Chemist may

wastes time in the attempt.

The risk that an experiment appears to have started but subsequently fails is covered below.

Network access continues to imply a security risk (Chemistry3).

Risks to IS:

Risks are due to opening network to traffic from Chemistry and CS (IS 1, IS 2, IS 3).

B.1. Use-case 1: conduct an experiment 268

Risks to CS:

Granting network and service access to Chemistry nodes continues to imply risks (CS 1, CS 2,

CS 3).

4. The web-client triggers the eMaterials workflow installed in the BPEL engine on the work-

flow node. This occurs within CS.

Risks to the chemist:

From this point the task of performing the analysis is automated by various parties on behalf of

the Chemistry department. Delays and errors occurring in any step of the process can negatively

impact upon the chemist. Hence:

Chemistry 6 All steps must be completed in a timely fashion for the experiment to be achieved in

a timely fashion.

Chemistry 7 All steps must be completed in such a manner as to generate correct results. Hence,

data must not be corrupted during transfer, and all components must behave correctly according

to this behavioural specification.

Risks to CS:

This step continues to imply risk CS 3, the risk that CS will not be compensated for the service

they provide.

The following two steps only involve action by or between nodes operated by CS:

5. The eMaterials workflow, implemented by the BPEL engine, triggers the individual jobs

by passing JSDL specifications to a GridSAM service instance installed on the submission

node.

6. The GridSAM service translates the JSDL to a Condor submission file and places it in the

Condor submit queue by signalling the Condor submit daemon.

The risks implied by these steps implied are those previously identified to Chemistry (Chemistry 6,

Chemistry 7). Also, CS 3.

7. The Condor controller node polls the Condor submit daemon on the submit node

occasionally for information about the queue. When it discovers new submissions, it applies

its grid scheduling policy to allocate grid nodes to processing these submissions, informing the

submit daemon of the location of the allocated nodes, and each grid node of their allocation to the

submission (effectively granting access control of the nodes to the daemon).

This activity involves communication between nodes operated by CS and cluster nodes operated

by IS.

Risks to CS:

B.1. Use-case 1: conduct an experiment 269

CS 4 CS servers must communicate with nodes managed by IS. This may constitute a security

risk.

This risk is an additional security risk to (CS 1) as CS servers must now communicate with nodes

appearing to be located within the IS network as well as the chemistry network. There is as yet

no traffic volume risk to CS as CS initiates the communication with the IS nodes. CS continues to

bear a risk related to its costs (CS 3).

Risks to IS:

IS cluster nodes provide services to IS’s primary clients, who are students (and some academics)

at UCL. Interactions with cluster nodes should not interfere with the provision of these services.

Communicating with CS servers poses the following risks:

IS 4 The volume of communications may require an unacceptable amount of cluster node re-

sources to process.

IS 5 The communications with cluster nodes may be malicious, in that they behave other than as

specified in this behavioural description. This is a security risk.

Network security and utilisation risks also still apply (IS 1, IS 2).

IS is now engaged in direct communication with CS so incurs risk IS 3 relating to the cost of these

communications. However IS is now also using computational resources, implying a cost, and

therefore the risk that compensation will not be forthcoming.

IS 6 IS offers computational resources to service requests for processing by CS. This implies a

cost, and therefore a risk that IS will not be reimbursed for this cost.

Risks to the chemist:

This step implies the following risks previously identified: (Chemistry 6, Chemistry 7).

8. The Condor submit daemon contacts the allocated grid nodes for a submission, stages the

parameters and input files to them and instructs them to begin processing.

This step implies the same risks as the previous step.

9. The grid nodes process their individual jobs.

Risks to chemist:

Delays and faults in the processing of the jobs are risks to the the chemist (Chemistry 6, Chem-

istry 7).

Risks to IS:

IS 7 The jobs scheduled may place an unacceptable load on the cluster nodes.

B.1. Use-case 1: conduct an experiment 270

IS 8 The IS node will be running some software for which IS is not directly responsible. This may

cause failures of the node meaning that IS cannot deliver their core services (providing worksta-

tions for the university population).

Also, IS 6.

10. The grid nodes notify the submission node when they have completed their jobs. They then stage

the results files back to the submission node.

This activity involves communication between IS and CS nodes. CS bears a security risk (CS 4),

but should otherwise be able to anticipate the volume and size of results. IS also bears a security

risk (IS 5). CS and IS both bear cost related risks (CS 3, IS 3, IS 6). The chemist still bears the

risks of delays or faults (Chemistry 6, Chemistry 7).

11. The BPEL engine polls the GridSAM service for the status of jobs on the queue. The completion

of a job may trigger the scheduling of additional jobs. Following MOLPAK jobs, DMAREL jobs are

scheduled. Scheduling of jobs is the responsibility of the CS department.

This step includes the repetition of steps 5 – 10. All risks associated with this step have been

previously identified.

12. Each time a DMAREL job completes the workflow engine coordinates the production or update of

the results website by invoking the polyutilsPartner web-service on the submission node.

This occurs within the CS network and implies no additional risks.

13. As part of its operation the polyutilsPartner web-service invokes the plotws web-service

in Southampton to prepare a scatter graph of the results. The invocation is synchronous and is

between a CS node and a Southampton node. The request and response pass across the CS net-

work, the Internet and the Southampton network. Servicing the request is the responsibility of

Southampton University.

Risks to chemist:

This step implies the following risks previously identified: (Chemistry 6, Chemistry 7).

Additionally:

Chemistry 8 Results data owned by the chemist will be passed to Southampton via the Internet.

The data will be in a form appropriate for plotting, so may not have any intrinsic value. However,

if it does, there may be a risk that the data will be intercepted.

Risks to CS:

The cost-related risk CS 3. Also:

CS 5 The CS network must be connected to the Internet network and be prepared to accept traffic

appearing to originate from certain nodes within Southampton’s network. This is a security risk.

B.1. Use-case 1: conduct an experiment 271

Risks to the ISP:

ISP 1 The ISPs network must be connected to both the CS network and Southampton’s network.

This is a security risk.

ISP 2 Legitimate traffic between CS and Southampton may (in an extremely improbably worst

case) exhaust the ISPs network capacity, hindering their ability to provide network capacity to

other clients.

ISP 3 The ISP, if it chooses to convey traffic between CS and Southampton, will incur costs. There

is the risk that the ISP will not be reimbursed for these costs.

Risks to Southampton:

Southampton 1 Southampton’s network must be connected to the Internet network and be pre-

pared to accept traffic appearing to originate from certain nodes with UCL CS’s network.

Southampton’s plot server may accept plot requests which may be improperly constructed. This is

a security risk.

Southampton 2 Southampton must be prepared to process requests for graph plots. Legitimate

requests may exhaust Southampton’s network or processing resources if they arrive in to great a

volume, hindering Southampton in the performance of their usual business.

Southampton 3 If Southampton chooses to process requests to the plot service, they will incur

costs. There is a risk that Southampton may not be reimbursed for these costs.

14. The Chemist occasionally checks the results website. When the results are ready, the chemist may

view the plot of the results and download result-data files. These interactions occur between a

Chemistry and a CS node, and pass across the Chemistry, CS and IS networks.

Risks to chemist:

Clearly, the completion or delay of this step represents the ultimate realisation of the cardinal risks

to the chemist (Chemistry 6, Chemistry 7), that experiment processing will be completed with

serious delays or with errors (causing further delays and/or duplicated effort).

Risks to CS:

Security risk CS 2 and cost-related risk CS 3.

Risks to IS:

IS 1 and IS 2.

B.2. SLA clauses and risk analysis 272

B.2 SLA clauses and risk analysis
B.2.1 SLA 1: Provision of Polymorph Search Webclient by IS to Chem-

istry
Risk mitigation
SLA 1 is the SLA between IS and Chemistry. As the only SLA in the proposed system in which Chem-

istry participates, SLA 1 is the only SLA with the potential to insure all of the risks to Chemistry that

relying on the outsourced grid service implies. For each of the eight risks to Chemistry previously iden-

tified, I now either design mitigating conditions to be included in this SLA, or argue that they should be

overlooked:

• (Chemistry 1, pg. 265) The risk of delays during experimental setup should be mitigated by as-

sociating penalties with poor performance of the Polymorph Search Webclient, as

measured at the interface between the chemistry and IS networks.

Delays may also be caused by the unavailability of the service. As previously discussed, the

monitorable evidence indicating an unavailability may be a sequence of failures, in which case it

will be mitigated by the same SLA conditions that will mitigate the risks due to faults in the service.

However, the parties may choose to distinguish unavailability from unreliability by relating

penalties to the intervals between bug and bug-fix reports, thereby allowing differentiation of

penalties. This is discussed further below.

• (Chemistry 2, pg. 266) The risk of introducing parameterisation errors during experimental setup

should be mitigated in two ways. Firstly by associating penalties with incorrect behaviours

of the Polymorph Search Webclient for intermediate steps in the configuration process

(such as when reviewing parameter values). Secondly, by defining any penalties related to the

overall correctness of the experimental process in terms of the data provided by the Chemist

during configuration requests, as opposed to the possibly incorrect data held by the web-client

immediately prior to the commencement of the experiment.

• (Chemistry 3, pg. 266) Concerning the security risk implied by allowing communication with

Chemisty nodes by CS nodes: in order to mitigate Chemistry 2, Chemistry 5 and Chemistry 7,

which are all risks due to faulty behaviour of the service, the SLA will need to include a more or

less formal description of the behaviour of the service, thereby establishing a basis for agreement

between the parties on when a fault has occurred. If polymorph search experiments were the

only type of interaction between CS nodes and chemistry nodes, other types of interaction with

Chemistry’s network could be forbidden in the SLA and associated with penalties, termination or

breaching of the agreement.

In fact, Chemistry, IS and CS participate in many other legitimate types of network interactions.

All parties in this scenario accept the risks of operating open networks connected to the Internet.

Therefore this risk, and security risks identified as applying other parties will not be addressed

further in this case-study. This applies to the following risks: Chemistry 3, IS 1, IS 5, CS 1, CS 4,

CS 5, ISP 1, and Southampton 1.

B.2. SLA clauses and risk analysis 273

Note that the risk of certain types of malicious behaviour associated with network interactions is

mitigated by statute. At the time of writing, in the British jurisdiction (in which the parties in this

case-study abide) several types of malicious behaviour are legislated against in the criminal law

covered by the Computer Misuse Act of 1990.

Other types of malicious behaviour are limited by technical means. The Polymorph Search

Webclient requires a login to prevent unauthorised access. This mitigates risk CS 1 to some

extent. Condor also implements a number of security mechanisms, partially mitigating risks IS 1,

IS 5 and CS 4.

• (Chemistry 4, pg. 267) Harm caused by delays occurring during the in the initiation of experiments

should be mitigated by penalties related to the delay taken to acknowledge that the experiment

has started, since this represents time wasted by the chemist waiting to determine whether a fault

has occurred.

• (Chemistry 5, pg. 267) Faults starting the experiment represent delays and wasted effort for the

chemist who must repeatedly attempt to start the experiment. They should therefore be penalised.

• (Chemistry 6, pg. 268) The risk of delays in the completion of the experiment, following the

triggering of its execution, is the one of the two risks with the potential to cause the most harm to

the chemist, the other being Chemistry 7, the risk that a fault will occur during the execution of

the experiment. These risks are harmful because experiments take such a long time to complete,

meaning that these events may not be detected for a long time, meaning that the delays caused,

and the effort required to recover the situation, may be large. Clearly the risk of delays in the

overall completion of the experiment must be mitigated by associating a latency condition over

the amount of time it takes for results to become available.

• (Chemistry 7, pg. 268) Faults may occur during any stage in the processing of the experiment.

Many of these faults will be detectable by CS, who will have the opportunity to recover the exper-

iment by repeating all or part of its execution. This will be undetectable by the chemist unless it

results in a delay, which will be penalised by a latency condition.

Some faults may result in corruption of the results of the experiment, that CS will miss but the

chemist may eventually be able to detect. These should be penalised by a reliability condition.

Catastrophically, the service may fail in such a way that no results of any kind are ever delivered.

For this to happen, CS would have to lose the original parameters of the experiment, as may happen

in a failure of the submission node. An SLA to penalise this occurrence would rely on evidence of

the event happen being communicated between CS and IS, then IS and Chemistry, perhaps using

a reporting mechanism similar to that used to terminate an SLA. However, this will be covered by

the latency condition, and there will be a cap on the magnitude of penalties for delayed results.

• (Chemistry 8, pg. 270) The risk that information of value to the chemistry department is leaked

during the processing of the experiment can be mitigated by associating a penalty with the event

B.2. SLA clauses and risk analysis 274

that the chemistry department and IS become aware that a leak has occurred. Assessing the mag-

nitude of this risk, defining it formally and monitoring pertinent events is a difficult problem,

probably related to the modelling of other security characteristics, so we defer consideration of

this important area to future work.

Risks to IS:

Chemistry’s behaviour also results in two previously identified risks to IS. Since SLA 1 is the only

agreement made between Chemistry and IS it is the place to address this risks. It is:

• (IS 2, pg. 266) The risk that the volume of service traffic will overwhelm IS’s network is realisti-

cally a slight one since IS’s network will be high capacity compared with anything but the most

concerted efforts to produce large volumes of service traffic. Nevertheless, it may be managed by

including throughput conditions to limit the amount of experiment configuration, unsuccessful ex-

periment invocation requests, and service result requests that the Chemist may make in an interval

of time.

• (IS 3, pg. 267) SLA 1 can be used by IS to require compensation from Chemistry for the provision

of the service, hence covering the cost of providing network services. The SLA must therefore

include a payment scheme.

New risks to Chemistry:

SLA 1, with correctly parameterised clauses as specified above, should mitigate the risks to Chem-

istry of using the polymorph-search service. However, the decision to enter the SLA poses an additional

risk:

Chemistry 9 Chemistry will probably have to make a small investment to begin using the service, so if

SLA 1 is terminated unexpectedly by IS before the end of its agreed period, Chemistry may not get the

benefit of this investment. This is a termination risk.

In the current case-study, we observe that Chemistry is already using the service, and that the

development costs invested to do so are nugatory since only a web-browser is required to access the

service. However, assuming that Chemistry would have to pay IS to use the service, Chemistry may

wish to protect the administrative cost of negotiating the SLA and setting up payment systems. Moreover,

Chemistry may want the confidence to make decisions on the basis that the service is available for the

foreseeable future.

This risk can only be mitigated in SLA 1, by including a penalty for termination.

New risks to IS:

As a result of entering into SLA 1, IS will assume some additional risks due to the behaviour of

others that would not otherwise apply:

IS 9 Delays or faults in the polymorph webclient website, due to the actions of CS, the ISP or Southamp-

ton, may cause IS to be liable to pay penalties to Chemistry. This is a safety risk as previous described,

in that it is a direct consequence of entering into an SLA.

B.2. SLA clauses and risk analysis 275

This safety risk will be mitigated by SLA 2.

As described in the next section, CS will require a condition in SLA 2 to protect its ability to deliver

responses in a timely manner. This results in an additional safety risk for IS.

IS 10 An excess of requests originating in Chemistry may violate the input throughput condition required

by CS in SLA 2, resulting in IS having to pay penalties to CS. This is a safety risk.

This risk can only be mitigated safely in SLA 1, by imposing a condition on the rate at which

Chemistry can access the polymorph search service. Such a condition has already been proposed as

a remedy for risk IS 2, but I now observe that the parameters of the condition must be compatible with

the parameters for CS’s condition in SLA 2.

CS will also require a limit on the number of experiments that can be successfully started in a given

period of time, in order to protect its ability, and that of the cluster, to calculate results in a timely manner.

This results in the following safety risk to IS:

IS 11 An excess of successfully started experiments originating in Chemistry may violate the condition

on successfully started experiments required by CS in SLA 2, resulting in IS having to pay penalties to

CS. This is a safety risk.

This risk can only be mitigated safely in SLA 1, by imposing a condition on the rate at which

Chemistry can successfully start experiments, compatible with the condition in SLA 2.

As discussed below, CS will require a payment scheme in SLA 2 to cover its costs. This results in

the risk:

IS 12 IS may have to pay CS for the provision of the Polymorph Search Webclient but may not

be paid themselves.

This is a safety risk, which can be mitigated by increasing the payment scheme applied in SLA 1

so that costs implied by the need to pay CS for the service are covered in addition to the cost of providing

network services (the cost of providing cluster services is covered in SLA 3).

Chemistry provides IS with the MOLPAK and DMAREL executables. Chemistry then provides the

executables to CS, who provide them back to IS when configuring cluster nodes. IS ultimately guar-

antees the performance of individual cluster jobs in SLA 3, meaning that they need a guarantee of the

performance of MOLPAK and DMAREL from CS. Therefore, CS needs a guarantee of the performance

from IS in SLA 2 (note that this is not quite purely reciprocal, because CS could in theory modify the

executables before configuring the nodes). Therefore, finally, there may be a safety risk that IS is obliged

to guarantee the performance of MOLPAK and DMAREL to CS without receiving equivalent guarantees

from Chemistry.

IS 13 IS must guarantee the performance of the MOLPAK and DMAREL executables to CS in SLA 2. This

represents a safety risk if IS cannot obtain equivalent guarantees from Chemistry.

This risk can only be addressed by obtaining a guarantee concerning the performance of

MOLPAK and DMARE from Chemistry

B.2. SLA clauses and risk analysis 276

Finally, by entering into SLA 1, IS also assumes a termination risk.

IS 14 IS will probably have to make a small investment to begin using the service, so if SLA 1 is termi-

nated unexpectedly by Chemistry before the end of its agreed period, IS may not get the benefit of this

investment. This is a termination risk.

This risk can only be mitigated in SLA 1, by including a penalty for termination.

Summary of conditions
1. Latency conditions on the setup operations of the webclient;

2. optionally, availability conditions relating to the service;

3. reliability conditions on the setup operation of the webclient;

4. latency condition on the experiment invocation operation of the webclient;

5. reliability condition on the experiment invocation operation of the webclient;

6. latency condition on the amount of time taken for experimental results to become available;

7. reliability condition on results retrieval operations;

8. throughput conditions on all operations;

9. a payment scheme, charging Chemistry for use of the service;

10. a termination penalty for IS terminating the service;

11. a limit on the rate at which experiments can be started;

12. a guarantee concerning the performance of MOLPAK and DMAREL from Chemistry;

13. a termination penalty for Chemistry terminating the service.

Service interface

http://sse.cs.ucl.ac.uk/omii-bpel/polymorph/index.htm
GET
Returns main frame with polymorph-search parameter-file frame
embedded, and links to invoke frame and results frame.
http://trout1.cs.ucl.ac.uk:18080/PolymorphSearchWebClient/-
PolymorphSearch.htm
GET
Form for specifying files to upload for Fileuploader.jsp
http://trout1.cs.ucl.ac.uk:18080/PolymorphSearchWebClient/-
Invoke.htm
GET
Form for specifying parameters for Invoke.jsp

Table B.1: HTTP service interface to the Polymorph search webclient, returning static pages

The interface to the Polymorph Search Webclient is accessed using the HTTP protocol.

Requests to the webclient fall into three main categories; several pages present user interface components

http://sse.cs.ucl.ac.uk/omii-bpel/polymorph/index.htm
http://trout1.cs.ucl.ac.uk:18080/PolymorphSearchWebClient/-
PolymorphSearch.htm
http://trout1.cs.ucl.ac.uk:18080/PolymorphSearchWebClient/-
Invoke.htm

B.2. SLA clauses and risk analysis 277

http://trout1.cs.ucl.ac.uk:18080/PolymorphSearchWebClient/-
Fileuploader.jsp
POST
Parameters are:
fileBondlengths – a file used to determine which are the covalent bonds within
the structure, defining the organic molecule to be held rigid
fileCadpacCharges – a file describing the charge density of the molecules in terms of
charges, dipoles, quadrupoles, etc. at each atom
fileDmarelAxis – a file defining the axis system needed to define dipoles, quadrupoles, etc.
in cadpac.charges.
fileMolpakXyz – a file giving the coordinates and atom types of the molecule, the only
input needed for MOLPAK
filePoteDat – a file defining the parameters for the model for the repulsion and dispersion
forces between the molecules
Expected results: A page acknowledging the upload of the parameter files
http://trout1.cs.ucl.ac.uk:18080/PolymorphSearchWebClient/-
Invoke.jsp
POST
parameters are:
analysisID18 - a string identifying the experiment
pt – a list of packing types to consider
Expected results: A page acknowledging the successful invocation of an experiment

Table B.2: HTTP service interface to the Polymorph search webclient, for submission of con-
figuration files and execution of experiments

for the convenience of specifying parameters for requests that have an effect configuring an experiment

or launching it; other pages accept these parameters and cause a change in the state of the service; finally,

a set of pages provides access to the results of the service.

URLs, access methods, and intended results for the first category of pages, static configuration

pages, are listed in Table B.1.

The second category of pages, parameter submission and experiment execution pages, are listed in

Table B.2.

The third category of pages, results, are listed in Table B.3. The URLs for results pages are specific

to particular experiments. ID in the URLs listed represents the identifier string specified as a parameter

for the experiment:

B.2.2 SLA 2: Provision of Polymorph Search Webclient by CS to IS
Risk mitigation

The following risks to IS should be addressed by an SLA with CS in respect of the Polymorph

Search Webclient:

• (IS 9, pg. 9) If delays and faults occur in the web-client or during the processing of an experiment,

IS will be liable to pay penalties to Chemistry. The faults will be monitorable on the interface

between IS and CS. Hence, for all clauses identified in SLA 1 that may result in IS paying

a penalty to CS, IS should demand a compatible clause in SLA 2 from CS. The parameters

for the guarantees offered by IS to Chemistry will be looser than those offered by CS to IS to

accommodate extra faults and delays introduced by the IS network.

http://trout1.cs.ucl.ac.uk:18080/PolymorphSearchWebClient/-
Fileuploader.jsp
http://trout1.cs.ucl.ac.uk:18080/PolymorphSearchWebClient/-
Invoke.jsp

B.2. SLA clauses and risk analysis 278

http://trout1.cs.ucl.ac.uk:18080/axis/polymorph
GET
Listing of results pages
http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID.html
GET
A page summarising the completed DMAREL executions
http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID.png
GET
A scatter graph summarising the completed DMAREL executions
http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID.xml
GET
Experimental results in XML format
http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID/-
bondlengths
GET
The original bondlengths file, uploaded before the experiment was invoked
http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID/-
cadpac.charges
GET
The original cadpak.charges file, uploaded before the experiment was invoked
http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID/dmarel.axis
GET
The original dmarel.axis file, uploaded before the experiment was invoked
http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID/molpak.xyz
GET
The original molpak.xyz file, uploaded before the experiment was invoked
http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID/pote.dat
GET
The original pote.dat file, uploaded before the experiment was invoked

Table B.3: HTTP service interface to results generated by the Polymorph search webclient

http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID.html
http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID.png
http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID.xml
http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID/-
bondlengths
http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID/-
cadpac.charges
http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID/dmarel.axis
http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID/molpak.xyz
http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/ID/pote.dat

B.2. SLA clauses and risk analysis 279

In addition, CS will wish to mitigate the following risks:

• (CS 2, pg. 267) Too much request throughput could diminish the efficiency of the web-client. In

addition the uploading of too much data could overload the resources of the server on which the

web-client resides. These risks can be mitigated by assigning input-throughput constraints to the

relevant configuration operations. The functional behaviour of the service will guarantee that disk

resources are not violated, since the size of configuration files is bounded, and an input throughput

constraint will limit the number of unique configurations possible.

• (CS 2, pg. 267) CS can mitigate the risk of not being paid for providing the polymorph-search

service by requiring payment from IS in SLA 2.

• (CS 10, pg. 282) In SLA 3, IS requires a guarantee from CS concerning the performance of

the versions of MOLPAK and DMAREL used in cluster jobs. This represents a safety risk to CS,

therefore it must obtain a guarantee concerning the performance of the versions of MOLPAK

and DMAREL provided by IS.

New risks to IS:

By entering into SLA 2, IS will solve the problem of their safety risk, but at the expense of a reliance

on SLA 2, which is a termination risk:

IS 15 IS relies on SLA 2 to mitigate the safety risks implied by SLA 1. If SLA 2 terminates, then IS will

probably need to terminate SLA 1 and therefore pay a penalty. This is a termination risk.

This risk can only be mitigated by including a termination penalty in SLA 2.

New risks to CS:

CS 6 By guaranteeing latency and reliability properties of the overall experiment service to IS, CS

assumes the additional risk that the experiment will be faulty or delayed due to problems occurring in IS

cluster machines, the Internet or Southampton’s plotting service. This is a safety risk.

This risk is mitigated in SLAs 3 and 4.

CS 7 The cluster has a finite capacity, access to a proportion of which is insured by SLA 3. Over-

utilisation of the service may exhaust the capacity of the cluster, causing CS to be incapable of meeting

latency constraints in SLA 2.

This risk must be addressed by a throughput constraint on successfully started experiments.

If CS is going to offer guarantees on the latency of experimental result production, it will need

to obtain guarantees concerning the behaviour of MOLPAK and DMAREL from IS, so it can offer these

guarantees back to IS in SLA 3.

CS 8 CS must provide guarantees to IS concerning the behaviour of MOLPAK and DMAREL in SLA 3.

This represents a risk if CS does not receive a compatible guarantee from IS.

B.2. SLA clauses and risk analysis 280

IS must provide a guarantee concerning the performance of MOLPAK and DMAREL to CS in

SLA 2.

CS may perceive a risk due to loss of income from the polymorph-search service if this SLA were

terminated:

CS 9 The termination of SLA 2 would potentially deprive CS of income from the polymorph-search

service, and may leave CS with residual payment responsibilities provided by IS or the ISP in SLAs 3

and 4. This is a termination risk.

This risk may be mitigated by a termination penalty included in SLA 2.

Summary of conditions
1. Latency conditions on the setup operations of the webclient;

2. optionally, availability conditions relating to the service;

3. reliability conditions on the setup operation of the webclient;

4. latency condition on the experiment invocation operation of the webclient;

5. reliability condition on the experiment invocation operation of the webclient;

6. latency condition on the amount of time taken for experimental results to become available;

7. reliability condition on results retrieval operations;

8. throughput conditions on all operations;

9. a payment scheme, charging IS for use of the service;

10. a guarantee concerning the performance of the versions of MOLPAK and DMAREL provided by IS

to CS;

11. a termination penalty for CS terminating the service;

12. a limit on the rate at which experiments can be started;

13. a termination penalty for IS terminating the service.

Service interface
The service interface for SLA 2 is the same as that for SLA 1.

B.2.3 SLA 3: Provision of Condor cluster services by IS to CS
Risk mitigation
SLA 3 covers the interaction between the submission and Condor manager nodes in the CS network, and

cluster nodes provided by IS.

Risks to CS:

• (IS 6, pg. 279) the safety risk that CS assumes when it offers guarantees concerning the overall

experimental execution time, specifically the part of that risk due to the potential for poor perfor-

mance from the cluster nodes.

B.2. SLA clauses and risk analysis 281

Determining how CS’s safety risk should properly be mitigated is complicated by the fact that

the precise protocols by which Condor nodes communicate with the Condor controller and

the Condor submit daemon are not documented and reverse engineering Condor represents a

greater effort than can be afforded in this case study. However, I speculate that the SLA should provide

guarantees as follows:

Cluster nodes provide notifications to the Condor Manager as to their availability for processing

tasks. The SLA should specify that at any given time, a certain number of nodes should be appar-

ently either available for processing or already assigned to a job. The SLA should also specify that

with a high reliability, nodes advertising themselves as available for processing will also accept a

job assignment. This will insure that CS has access to a predictable amount of processing capacity.

Jobs should then be subject to latency and reliability constraints to ensure that they are genuinely

getting their fair share of node resources.

Note that in this respect SLA 3 represents a gamble for IS. If all of their machines are suddenly

required by students, they will be required to pay CS for the lack of availability. However, IS is the only

party with the power to control this risk, for example by restricting student access to cluster rooms, or

installing new cluster nodes to improve capacity. It must therefore be prevailed up to mitigate the risk.

Clearly in order to execute this job assignment protocol reliably, latency and reliability constraints

will have to apply at a fine granularity to the exchange of messages between IS and CS.

Risks to IS:

• (IS 4, pg. 269) The risk that legitimate communications with the cluster nodes may require an

unacceptable amount of cluster node resources may be mitigated by a throughput condition on

cluster node operation invocations.

• (IS 6, pg. 269) The cost-related risk that IS assumes providing cluster services to CS must be

mitigated by incorporating aa payment scheme into SLA 3.

• (IS 7,, pg. 269) The risk that the load placed on cluster nodes is too great must be mitigated by

imposing a limit on job assignments to cluster nodes. Whether this would be a rate limitation or

related to the configuration of cluster nodes is not currently known.

• (IS 8, pg. 270) The risk that IS assumes by running software provided by a third party, is hard to

mitigate in an SLA, so will be ruled out. In practice, this type of risk is better mitigated either

through some kind of certification scheme, or by running software in a secure manner so that it

cannot interfere with the node on which it is executing.

New risks to IS:

IS will essentially be providing a delegated execution service in SLA 3. The performance of such

a service will depend on the performance of the executables provided to it, in this case MOLPAK and

DMAREL. Therefore, to offer latency guarantees for the overall completion of a job, IS will require a

guarantee in respect of the performance of these executables from CS.

B.2. SLA clauses and risk analysis 282

IS 16 The overall completion time of a cluster job depends in part on the executable being executed.

If IS guarantees this latency without receiving a guarantee on the performance of the executable, this

represents a safety risk.

This risk can only be mitigated in SLA 3 by requiring guarantees from CS regarding the execu-

tion time of MOLPAK and DMAREL.

New risks to CS:

CS must provide IS with a guarantee of the performance of MOLPAK and DMAREL. However, these

executables will be provided by IS to CS originally. If CS does not obtain a guarantee of performance of

the executables from IS, then it cannot offer the guarantee back.

CS 10 CS must make a guarantee concerning the performance of MOLPAK and DMAREL to IS. If it does

not obtain a compatible guarantee from IS, this represents a safety risk.

This safety risk is mitigated in SLA 2.

Summary of constraints
1. A throughput condition on cluster node operation invocations;

2. a condition relating to the number of nodes available for job assignment, or running jobs;

3. a reliability condition on starting new jobs on nodes;

4. a latency condition on job execution;

5. a reliability condition on job execution;

6. latency conditions on communications with the nodes;

7. reliability conditions on communications with the nodes;

8. a payment scheme;

9. a limit on job assignments to nodes;

10. a guarantee concerning the execution times of MOLPAK and DMAREL made by CS.

Service interface
At present the prohibitive degree of effort required to reverse engineer Condor means that the service

interface to Condor nodes remains obscure.

B.2.4 SLA 4: Provision of plotws web-service by ISP to CS
Risk mitigation
This SLA addresses the remainder of the safety risk to CS of guaranteeing a latency constraint on the

availability of experimental results. These results include a graph plotted by the plotws web-service

provided by Southampton university. Delays or errors producing this graph will result in CS being liable

to pay penalties to IS. In order that guarantees provided to CS be monitorable, the service must be resold

by a network service provider who can provide a connection between CS and Southampton (or more

B.2. SLA clauses and risk analysis 283

generally a chain of such parties with a chain of agreements; however, we assume the existence of a

single party).

Risks to CS:

• (CS 6) the risk that the guarantees offered by CS in terms of latency and reliability for the com-

pletion of experiments will be impossible to meet due to faults or delays in the plotting service

should be addressed by reliability, latency and possibly availability constraints placed on the

plotting service as delivered at the interface between the networks owned by CS and the ISP.

Risks to ISP:

• (ISP 2, pg. 271) The risk that legitimate traffic will overwhelm the ISPs network capacity is of

course largely irrelevant to the production of these SLAs, since the ISP will no doubt have vastly

greater capacity than could be exhausted by anything other than a concerted malicious effort,

which SLAs could do little to prevent. However, an input-throughput constraint on operation

requests will limit the volume of traffic, and more importantly also address the ISPs safety risk

(ISP 5, pg. 284) due to SLA 5.

• (ISP 3, pg. 271) The risk that the ISP will not be able to cover the cost of providing network

services to CS and Southampton may be mitigated by including a payment scheme in SLA 4.

This also covers a safety risk (ISP 6, pg. 285) implied by Southampton’s requirement for payment

in SLA 5.

New risks to CS:

CS may wish to protect their investment in integrating the plot service (even though they did so on

faith in the first instance), mitigating a termination risk:

CS 11 SLA 4 may represent a termination risk to CS, because the unavailability of the plot service would

force CS to find or implement another similar service at short notice.

This risk can be mitigated in SLA 4 with a termination penalty.

The ISP, as a reseller of the service, assumes the following additional risk:

ISP 4 The capability of the ISP to deliver the plotting service in a reliable and timely manner to CS

depends on it being delivered by Southampton in a reliable and timely manner to the ISP. If this does not

happen the ISP may be liable to pay penalties to CS.

This is a safety risk that is addressed in SLA 5. An additional safety risk is a consequence of the

need to enter SLA 5. Southampton will require an input-throughput clause to protect their ability to

deliver timely and correct results. The ISP must have an equivalent constraint, or else be liable to pay

penalties to Southampton if CS exceeds Southampton’s permitted capacity.

The ISP doesn’t seem to suffer from major termination risk in this case, but may wish to safeguard

their income with a termination penalty.

B.2. SLA clauses and risk analysis 284

Summary of conditions
1. A latency condition on plot operations;

2. a reliability condition on plot operations;

3. an availability condition on plot operations;

4. a payment scheme;

5. a termination penalty for the ISP cancelling the SLA;

6. an input-throughput constraint on operations;

7. a termination penalty for CS cancelling the SLA.

Service interface
The plotws service is a web-service specified at http://plotws.omii.ac.uk:18080/

PlotWS/services/Graph?wsdl. It is accessed using SOAP over HTTP, and provides five opera-

tions as follows.

The precise graphical presentation and output format (SVG or PNG) of the graph is controlled by

the opt parameter, which is of a complex schema type.

The current implementation of the polymorph-search service only uses the makeplot xy opera-

tion.

B.2.5 SLA 5: Provision of Plot service by Southampton to IS
Risk mitigation
This SLA addresses the safety risk to the ISP of insuring the performance of Southampton’s plotting

service.

• (ISP 4) The risk that the ISP will have to pay penalties to CS for the poor performance of the

plotws service should be mitigated by including in SLA 5 clauses compatible with the latency,

reliability and availability conditions included in SLA 5.

This SLA also mitigates two risks previously identified to Southampton:

• (Southampton 2) The risk that Southampton’s server will be overwhelmed by plot requests should

be mitigated by an input-throughput condition included in SLA 5.

• (Southampton 3) The risk that Southampton will not receive compensation for their service should

be mitigated by including a payment scheme in SLA 5.

New risks to the ISP:

The inclusion of an input-throughput condition in SLA 5 implies a safety risk for the ISP, which is

mitigated in SLA 4

ISP 5 There is a danger that requests made by CS will exceed the input-throughput condition in SLA 5,

causing the ISP to be liable to pay penalties to Southampton.

http://plotws.omii.ac.uk:18080/PlotWS/services/Graph?wsdl
http://plotws.omii.ac.uk:18080/PlotWS/services/Graph?wsdl

B.2. SLA clauses and risk analysis 285

makePlot xyy – plot a graph with one X-series and multiple Y-series
In parameters:
xi – X-series data
yi – Y-series data (array of arrays of doubles)
opt – Plot options
Out parameters:
makePlotReturn – The plotted graph
makePlot xy – plot a graph with an X and Y series
In parameters:
xi – X-series data
yi – Y-series data
opt – Plot options
Out parameters:
makePlotReturn – The plotted graph
makePlot x – plot a graph with an X series only
In parameters:
xi – X-series data
opt – Plot options
Out parameters:
makePlotReturn – The plotted graph
makePlot xxyy – plot a graph with multiple X and Y series
In parameters:
xi – X-series data (array of arrays)
yi – Y-series data (array of arrays)
opt – Plot options
Out parameters:
makePlotReturn – The plotted graph
makePlot3d xyz – Plot a surface
In parameters:
xi – X-series data
yi – Y-series data
zi – Z-series data
opt – Plot options
Out parameters:
makePlotReturn – The plotted graph

Table B.4: SOAP interface to the plotws webservice

If the ISP is obliged to pay Southampton for the use of the service, there is a risk that the ISP may

not be able to cover the cost of the service.

ISP 6 The ISP must pay Southampton for the use of the plotws service. This is a risk if the ISP does

not obtain compensation to cover this cost.

This risk is mitigated in SLA 4.

The ISP enters into SLA 5 in order to mitigate its safety risk from entering SLA 4. Therefore SLA 5

represents a termination risk to the ISP:

ISP 7 If Southampton terminates SLA 5, the ISP will need to find a replacement service or terminate

SLA 4. Either course will financially disadvantage the ISP, particularly since SLA 4 includes a termina-

tion penalty clause. SLA 5 is therefore a termination risk for the ISP.

This risk should be mitigated by a termination penalty in SLA 5.

B.3. Case-study risks by party 286

The plot service is a fairly simple and generic service. Southampton is therefore unlikely to be

unduely concerned about termination, as income associated with SLA 5 would likely be small and other

customers potentially available. However, they may also desire a termination penalty.

There are no new risks for Southampton implied by entering into SLA 5.

Summary of conditions
1. Latency condition on plot operations;

2. reliability condition on plot operations;

3. availability condition on plot operations;

4. a termination penalty for the Southampton cancelling the SLA;

5. an input-throughput constraint on operations;

6. a termination penalty for the ISP cancelling the SLA.

Service interface
The service interface is the same as for SLA 4.

B.3 Case-study risks by party
B.3.1 Chemistry

• (Chemistry 1, pg. 265) Delays in configuring the experiment could significantly delay access by

the chemist to the results of the experiment. This could mean missed deadlines, an inability to

produce timely results in comparison to researchers from other universities, and similar material

harm to the individual chemist and the Chemistry Department.

Mitigated by: SLA 1, pg. 272

• (Chemistry 2, pg. 266) Faults may occur at any point in the infrastructure supporting the process.

Obvious faults may be temporary, or require intervention by another stakeholder.

Non-obvious faults may result in the corruption of the parameters or the input files for the exper-

iment. In theory these faults could occur at any point in the infrastructure. Non-obvious faults

become increasingly problematic while they remain undetected. The worst-case scenario in this

case is that corruption of data results in the production of invalid scientific results that are relied

upon in future by the Chemists.

Mitigated by: SLA 2, pg. 272

• (Chemistry 3, pg. 266) The chemistry network must be linked to the IS network and communicate

with the web-client. It must therefore be prepared to accept network traffic from the IS network

that appears to originate from the CS network. The traffic may potentially act in a manner in-

consistent with this behavioural description, either maliciously or accidentally, causing faults or

resource exhaustions that reduce the capacity of the Chemistry nodes to perform their usual duties.

This is a security risk.

Mitigated by: Ruled out, pg. 272

B.3. Case-study risks by party 287

• (Chemistry 4, pg. 267) Delays starting the experiment are a risk to the Chemist because the

Chemist wastes time waiting for an acknowledgement, and the production of results is also de-

layed.

Mitigated by: SLA 1, pg. 273

• (Chemistry 5, pg. 267) Faults starting the experiment are a risk to the Chemist because the Chemist

may wastes time in the attempt.

Mitigated by: SLA 1, pg. 273

• (Chemistry 6, pg. 268) All steps must be completed in a timely fashion for the experiment to be

achieved in a timely fashion.

Mitigated by: SLA 1, pg. 273

• (Chemistry 7, pg. 268) All steps must be completed in such a manner as to generate correct results.

Hence, data must not be corrupted during transfer, and all components must behave correctly

according to this behavioural specification.

Mitigated by: SLA 1, pg. 273

• (Chemistry 8, pg. 270) Results data owned by the chemist will be passed to Southampton via the

Internet. The data will be in a form appropriate for plotting, so may not have any intrinsic value.

However, if it does, there may be a risk that the data will be intercepted.

Mitigated by: Ruled out, pg. 273

• (Chemistry 9, pg. 274) Chemistry will probably have to make a small investment to begin using

the service, so if SLA 1 is terminated unexpectedly by IS before the end of its agreed period,

Chemistry may not get the benefit of this investment. This is a termination risk.

Mitigated by: SLA 1, pg. 274

B.3.2 IS

• (IS 1, pg. 266) Traffic appearing to originate from nodes within the Chemistry and CS networks

may be problematic if it acts maliciously. This is a security risk.

Mitigated by: Ruled out, pg. 272

• (IS 2, pg. 266) The IS network must be connected to the Chemistry and CS networks. It must be

prepared to accept legitimate traffic from both networks appearing to originate from nodes within

those networks. This traffic may be problematic if it appears in too great a volume.

Mitigated by: SLA 1, pg. 274

• (IS 3, pg. 267) Conveying legitimate traffic between Chemistry and CS implies a cost to IS. This

represents a risk to IS because they may not receive compensation for providing the service.

Mitigated by: SLA 1, pg. 274

B.3. Case-study risks by party 288

• (IS 4, pg. 269) The volume of communications may require an unacceptable amount of cluster

node resources to process.

Mitigated by: SLA 3, pg. 281

• (IS 5, pg. 269) The communications with cluster nodes may be malicious, in that they behave other

than as specified in this behavioural description. This is a security risk.

Mitigated by: Ruled out, pg. 272

• (IS 6, pg. 269) IS offers computational resources to service requests for processing by CS. This

implies a cost, and therefore a risk that IS will not be reimbursed for this cost.

Mitigated by: SLA 3, pg. 281

• (IS 7, pg. 269) The jobs scheduled may place an unacceptable load on the cluster nodes.

Mitigated by: SLA 3, pg. 281

• (IS 8, pg. 270) The IS node will be running some software for which IS is not directly responsible.

This may cause failures of the node meaning that IS cannot deliver their core services (providing

workstations for the university population).

Mitigated by: Ruled out, pg. 281

• (IS 9, pg. 274) Delays or faults in the polymorph webclient website, due to the actions of CS, the

ISP or Southampton, may cause IS to be liable to pay penalties to Chemistry. This is a safety risk

as previous described, in that it is a direct consequence of entering into an SLA.

Mitigated by: SLA 2, pg. 277

• (IS 10, pg. 275) An excess of requests originating in Chemistry may violate the input throughput

constraint required by CS in SLA 2, resulting in IS having to pay penalties to CS. This is a safety

risk.

Mitigated by: SLA 1, pg. 275

• (IS 11, pg. 275) An excess of successfully started experiments originating in Chemistry may vi-

olate the constraint on successfully started experiments required by CS in SLA 2, resulting in IS

having to pay penalties to CS. This is a safety risk.

Mitigated by: SLA 1, pg. 275

• (IS 12, pg. 275) IS may have to pay CS for the provision of the Polymorph Search

Webclient but may not be paid themselves.

Mitigated by: SLA 1, pg. 274

• (IS 13, pg. 275) IS must guarantee the performance of the MOLPAK and DMAREL executables to CS

in SLA 2. This represents a safety risk if IS cannot obtain equivalent guarantees from Chemistry.

Mitigated by: SLA 1, pg. 275

B.3. Case-study risks by party 289

• (IS 14, pg. 276) IS will probably have to make a small investment to begin using the service, so

if SLA 1 is terminated unexpectedly by Chemistry before the end of its agreed period, IS may not

get the benefit of this investment. This is a termination risk.

Mitigated by: SLA 1, pg. 276

• (IS 15, pg. 279) IS relies on SLA 2 to mitigate the safety risks implied by SLA 1. If SLA 2

terminates, then IS will probably need to terminate SLA 1 and therefore pay a penalty. This is a

termination risk.

Mitigated by: SLA 2, pg. 279

• (IS 16, pg. 282) The overall completion time of a cluster job depends in part on the executable

being executed. If IS guarantees this latency without receiving a guarantee on the performance of

the executable, this represents a safety risk.

Mitigated by: SLA 3, pg. 282

B.3.3 CS

• (CS 1, pg. 267) The CS network must be connected to the IS network. It must be prepared to

receive traffic that appears to have originated from nodes in the chemistry department. This may

present a security risk.

Mitigated by: Ruled out, pg. 272

• (CS 2, pg. 267) Legitimate behaviour may also be problematic if it arrives in too great a volume

leading to resource exhaustion. CS servers are a valuable resource, and may not be used exclu-

sively to provide the polymorph search service. Therefore it would be senseless for CS to allow its

submission node to be overwhelmed by requests. Webpage requests may reduce the functionality

of the Polymorph Search Webclient if they arrive in too great a volume. The upload of

large amounts of data may exhaust the storage capacity of a CS server, rendering it useless for

other purposes and clients.

Mitigated by: SLA 2, pg. 279

• (CS 3, pg. 267) Servicing operation requests submitted to the Polymorph Search

Webclient implies costs for CS due to the provision of network and processing resources.

This implies a risk to CS that they will not receive adequate compensation to cover these costs.

Mitigated by: SLA 2, pg. 279

• (CS 4, pg. 269) CS servers must communicate with nodes managed by IS. This may constitute a

security risk.

Mitigated by: Ruled out, pg. 272

• (CS 5, pg. 270) The CS network must be connected to the Internet network and be prepared to

accept traffic appearing to originate from certain nodes within Southampton’s network. This is a

security risk.

B.3. Case-study risks by party 290

Mitigated by: Ruled out, pg. 272

• (CS 6, pg. 279) By guaranteeing latency and reliability properties of the overall experiment service

to IS, CS assumes the additional risk that the experiment will be faulty or delayed due to problems

occurring in IS cluster machines, the internet or Southampton’s plotting service. This is a safety

risk.

Mitigated by: SLAs 3 and 4, pgs. 280, 283

• (CS 7, pg. 279) The cluster has a finite capacity, access to a proportion of which is insured by

SLA 3. Over-utilisation of the service may exhaust the capacity of the cluster, causing CS to be

incapable of meeting latency constraints in SLA 2.

Mitigated by: SLA 2, pg. 279

• (CS 9, pg. 280) The termination of SLA 2 would potentially deprive CS of income from the

polymorph-search service. This is a termination risk.

Mitigated by: SLA 2, pg. 280

• (CS 10, pg. 282) CS must make a guarantee concerning the performance of MOLPAK and DMAREL

to IS. If it does not obtain a compatible guarantee from IS, this represents a safety risk.

Mitigated by: SLA 2, pg. 279

• (CS 11, pg. 283) SLA 4 may represent a termination risk to CS, because the unavailability of the

plot service would force CS to find or implement another similar service at short notice.

Mitigated by: SLA 4, pg. 283

B.3.4 ISP

• (ISP 1, pg. 271) The ISPs network must be connected to both the CS network and Southampton’s

network. This is a security risk.

Mitigated by: Ruled out, pg. 272

• (ISP 2, pg. 271) Legitimate traffic between CS and Southampton may (in an extremely improbably

worst case) exhaust the ISPs network capacity, hindering their ability to provide network capacity

to other clients.

Mitigated by: Ruled out, pg. 283

• (ISP 3, pg. 271) The ISP, if it chooses to convey traffic between CS and Southampton, will incur

costs. There is the risk that the ISP will not be reimbursed for these costs.

Mitigated by: SLA 4, pg. 283

• (ISP 4, pg. 283) The capability of the ISP to deliver the plotting service in a reliable and timely

manner to CS depends on it being delivered by Southampton in a reliable and timely manner to

the ISP. If this does not happen the ISP may be liable to pay penalties to CS.

Mitigated by: SLA 5, pg. 284

B.3. Case-study risks by party 291

• (ISP 5, pg. 284) There is a danger that requests made by CS will exceed the input-throughput

condition in SLA 5, causing the ISP to be liable to pay penalties to Southampton.

• (ISP 6, pg. 285) The ISP must pay Southampton for the use of the plotws service. This is a risk

if the ISP does not obtain compensation to cover this cost.

Mitigated by: SLA 4, pg. 283

• (ISP 7, pg. 285) If Southampton terminates SLA 5, the ISP will need to find a replacement service

or terminate SLA 4. Either course will financially disadvantage the ISP, particularly since SLA 4

includes a termination penalty clause. SLA 5 is therefore a termination risk for the ISP.

Mitigated by: SLA 5, pg. 285

B.3.5 Southampton

• (Southampton 1, pg. 271) Southampton’s network must be connected to the Internet network and

be prepared to accept traffic appearing to originate from certain nodes with UCL CS’s network.

Southampton’s plot server may accept plot requests which may be improperly constructed. This

is a security risk.

Mitigated by: Ruled out, pg. 272

• (Southampton 2, pg. 271) Southampton must be prepared to process requests for graph plots.

Legitimate requests may be harmful if they arrive in to great a volume.

Mitigated by: SLA 5, pg. 284

• (Southampton 3, pg. 271) If Southampton chooses to process requests to the plot service, they will

incur costs. There is a risk that Southampton may not be reimbursed for these costs.

Mitigated by: SLA 5, pg. 284

292

Appendix C

SLA 1: Chemistry and IS

1 /∗
2 This is an SLA written using the Human−Usable Textual Notation (HUTN) for
3 the language SLAng.

5 HUTN is a concrete−syntax standard of the OMG (available http://www.omg.org/)

7 The SLA is the only object with type ::slang::MutuallyMonitorableSLA.
8 ∗/

10 specification =
11 ”http://uclslang.sourceforge.net/specifications/thesis−combined.emofxmi”

13 configuration =
14 ”http://uclslang.sourceforge.net/specifications/thesis−combined.hutn”

16 // SLA starts here

18 using ::slang {

20 MutuallyMonitorableSLA(”SLA between Chemistry and IS”) {

22 uRI = ”http://uclslang.sourceforge.net/thesis/sla1.hutn”;

24 parties = {

26 PartyDefinition[chemistry](
27 ”The Department of Chemistry, University College London”),

29 PartyDefinition[uclis](
30 ”Information Services, University College London”)
31 }

33 services = {

35 es::ElectronicServiceDefinition[polymorph](
36 ”The provision of the Polymorph Search Webclient by IS to Chemistry”
37) {

39 provider = PartyDefinition[uclis]

41 client = PartyDefinition[chemistry]

43 interfaces = {

293

45 es::ElectronicServiceInterfaceDefinition[polymorph](
46 ”HTTP interface to the Polymorph Search Webclient”) {

48 owner = PartyDefinition[uclis]

50 operations = {

52 es::OperationDefinition[static1](
53 ”http://sse.cs.ucl.ac.uk/omii−bpel/polymorph/index.htm”) {

55 parameters = {

57 es::ParameterDefinition(
58 ”HTTP response status code”, OUT),
59 es::ParameterDefinition(
60 ”HTTP response message body”, OUT)
61 }
62 },
63 es::OperationDefinition[static2](
64 ”http://trout1.cs.ucl.ac.uk:18080/PolymorphSearchWebClient/—

PolymorphSearch.htm”) {

66 parameters = {

68 es::ParameterDefinition(
69 ”HTTP response status code”, OUT),
70 es::ParameterDefinition(
71 ”HTTP response message body”, OUT)
72 }
73 },
74 es::OperationDefinition[static3](
75 ”http://trout1.cs.ucl.ac.uk:18080/PolymorphSearchWebClient/—

Invoke.htm”) {

77 parameters = {

79 es::ParameterDefinition(
80 ”HTTP response status code”, OUT),
81 es::ParameterDefinition(
82 ”HTTP response message body”, OUT)
83 }
84 },
85 es::OperationDefinition[submit](
86 ”http://trout1.cs.ucl.ac.uk:18080/PolymorphSearchWebClient/—

Fileuploader.jsp”) {

88 parameters = {

90 es::ParameterDefinition(”Post parameter fileBondlengths −—
determining the covalent bonds within the structure, —
defining the organic molecule to be held rigid”, IN),

91 es::ParameterDefinition(”Post parameter fileCadpacCharges —
− describing the charge density of the molecules in —
terms of charges, dipoles, quadrupoles, etc. at each —
atom”, IN),

92 es::ParameterDefinition(”Post parameter fileDmarelAxis −—
a file defining the axis system needed to define dipoles,—

294

quadrupoles, etc. in cadpac.charges”, IN),
93 es::ParameterDefinition(”Post parameter fileMolpakXyz − a—

file giving the coordinates and atom types of the —
molecule”, IN)

94 es::ParameterDefinition(”Post parameter filePoteDat − a file—
defining the parameters for the model for the repulsion—
and dispersion forces between the molecules”, IN),

95 es::ParameterDefinition(”HTTP response status code”, OUT—
),

96 es::ParameterDefinition(”HTTP response message body”, —
OUT)

97 }
98 },
99 ::sla1::slang::es::DelegatedExecutionOperationDefinition[invoke](

100 ”Operation: makePlot xyy”) {

102 parameters = {

104 es::ParameterDefinition[invokeId](”Post parameter —
analysisID18 − the ID of the experiment”, IN),

105 es::ParameterDefinition(”Post parameter pt − a list of —
packing types to consider”, IN),

106 es::ParameterDefinition(”HTTP response status code”, OUT—
),

107 es::ParameterDefinition(”HTTP response message body”, —
OUT)

108 }

110 executables = {

112 ::sla1::slang::es::FixedDurationExecutableDefinition[—
molpak](

113 ”The MOLPAK executable”) {

115 referenceNodeSpeed = 1.0;

117 maxDuration = ::types::Duration(1, hr)

119 maintainer = PartyDefinition[chemistry]
120 },

122 ::sla1::slang::es::FixedDurationExecutableDefinition[dmarel—
](

123 ”The DMAREL executable”) {

125 referenceNodeSpeed = 1.0;

127 maxDuration = ::types::Duration(1, hr)

129 maintainer = PartyDefinition[chemistry]
130 }
131 }
132 },

134 es::OperationDefinition[results](
135 ”Results page http://trout1.cs.ucl.ac.uk:18080/axis/polymorph”) —

{

295

137 parameters = {

139 es::ParameterDefinition(
140 ”HTTP response status code”, OUT),
141 es::ParameterDefinition[resultsId](
142 ”HTTP response message body”, OUT)
143 }
144 },

146 es::OperationDefinition[results1](
147 ”Results page http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/—

ID.html”) {

149 parameters = {

151 es::ParameterDefinition[results1Id](
152 ”Experiment ID, a component of the operation URL”, —

IN),
153 es::ParameterDefinition(
154 ”HTTP response status code”, OUT),
155 es::ParameterDefinition(
156 ”HTTP response message body”, OUT)
157 }
158 },
159 es::OperationDefinition[results2](
160 ”Results page http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/—

ID.png”) {

162 parameters = {

164 es::ParameterDefinition[results2Id](
165 ”Experiment ID, a component of the operation URL”, —

IN),
166 es::ParameterDefinition(
167 ”HTTP response status code”, OUT),
168 es::ParameterDefinition(
169 ”HTTP response message body”, OUT)
170 }
171 },
172 es::OperationDefinition[results3](
173 ”Results page http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/—

ID.xml”) {

175 parameters = {

177 es::ParameterDefinition[results3Id](
178 ”Experiment ID, a component of the operation URL”, —

IN),
179 es::ParameterDefinition(
180 ”HTTP response status code”, OUT),
181 es::ParameterDefinition(
182 ”HTTP response message body”, OUT)
183 }
184 },
185 es::OperationDefinition[results4](

296

186 ”Results page http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/—
ID/bondlengths”) {

188 parameters = {

190 es::ParameterDefinition[results4Id](
191 ”Experiment ID, a component of the operation URL”, —

IN),
192 es::ParameterDefinition(
193 ”HTTP response status code”, OUT),
194 es::ParameterDefinition(
195 ”HTTP response message body”, OUT)
196 }
197 },
198 es::OperationDefinition[results5](
199 ”Results page http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/—

ID/cadpac.charges”) {

201 parameters = {

203 es::ParameterDefinition[results5Id](
204 ”Experiment ID, a component of the operation URL”, —

IN),
205 es::ParameterDefinition(
206 ”HTTP response status code”, OUT),
207 es::ParameterDefinition(
208 ”HTTP response message body”, OUT)
209 }
210 },
211 es::OperationDefinition[results6](
212 ”Results page http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/—

ID/dmarel.axis”) {

214 parameters = {

216 es::ParameterDefinition[results6Id](
217 ”Experiment ID, a component of the operation URL”, —

IN),
218 es::ParameterDefinition(
219 ”HTTP response status code”, OUT),
220 es::ParameterDefinition(
221 ”HTTP response message body”, OUT)
222 }
223 },
224 es::OperationDefinition[results7](
225 ”Results page http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/—

ID/molpak.xyz”) {

227 parameters = {

229 es::ParameterDefinition[results7Id](
230 ”Experiment ID, a component of the operation URL”, —

IN),
231 es::ParameterDefinition(
232 ”HTTP response status code”, OUT),
233 es::ParameterDefinition(
234 ”HTTP response message body”, OUT)

297

235 }
236 },
237 es::OperationDefinition[results8](
238 ”Results page http://trout1.cs.ucl.ac.uk:18080/axis/polymorph/—

ID/pote.dat”) {

240 parameters = {

242 es::ParameterDefinition[results8Id](
243 ”Experiment ID, a component of the operation URL”, —

IN),
244 es::ParameterDefinition(
245 ”HTTP response status code”, OUT),
246 es::ParameterDefinition(
247 ”HTTP response message body”, OUT)
248 }
249 }
250 }
251 }
252 }

254 clients = {

256 es::ElectronicServiceClientDefinition[csClient](
257 ”Any computer with an IP address owned by chemistry”) {

259 owner = PartyDefinition[chemistry]
260 }
261 }

263 behaviours = {

265 es::InformalUsageModeDefinition[anyUsage](
266 ”Request of any page”) {

268 operations = {

270 es::OperationDefinition[static1],
271 es::OperationDefinition[static2],
272 es::OperationDefinition[static3],
273 es::OperationDefinition[submit],
274 ::sla1::slang::es::DelegatedExecutionOperationDefinition[invoke],
275 es::OperationDefinition[results],
276 es::OperationDefinition[results1],
277 es::OperationDefinition[results2],
278 es::OperationDefinition[results3],
279 es::OperationDefinition[results4],
280 es::OperationDefinition[results5],
281 es::OperationDefinition[results6],
282 es::OperationDefinition[results7],
283 es::OperationDefinition[results8]
284 }
285 }
286 ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailure—

ModeDefinition[anyHTTPError](
287 ”Any request results in a code that is not 200”) {

298

289 availabilityClauses = {

291 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

292 }

294 satisfyingConditions = {

296 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

297 }

299 operations = {

301 es::OperationDefinition[static1],
302 es::OperationDefinition[static2],
303 es::OperationDefinition[static3],
304 es::OperationDefinition[submit],
305 ::sla1::slang::es::DelegatedExecutionOperationDefinition[invoke],
306 es::OperationDefinition[results],
307 es::OperationDefinition[results1],
308 es::OperationDefinition[results2],
309 es::OperationDefinition[results3],
310 es::OperationDefinition[results4],
311 es::OperationDefinition[results5],
312 es::OperationDefinition[results6],
313 es::OperationDefinition[results7],
314 es::OperationDefinition[results8]
315 }

317 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
318 },
319 ::sla1::slang::es::FixedLatencyAvailabilityDependentViolationDependent—

FailureModeDefinition
320 [nuisanceDelay](”An annoying delay accessing a page”) {

322 availabilityClauses = {

324 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

325 }

327 satisfyingConditions = {

329 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

330 }

332 maxDuration = ::types::Duration(10, S)

334 operations = {

336 es::OperationDefinition[static1],
337 es::OperationDefinition[static2],
338 es::OperationDefinition[static3],

299

339 es::OperationDefinition[submit],
340 ::sla1::slang::es::DelegatedExecutionOperationDefinition[invoke],
341 es::OperationDefinition[results],
342 es::OperationDefinition[results1],
343 es::OperationDefinition[results2],
344 es::OperationDefinition[results3],
345 es::OperationDefinition[results4],
346 es::OperationDefinition[results5],
347 es::OperationDefinition[results6],
348 es::OperationDefinition[results7],
349 es::OperationDefinition[results8]
350 }

352 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
353 },
354 ::sla1::slang::es::FixedLatencyAvailabilityDependentViolationDependent—

FailureModeDefinition[seriousDelay](
355 ”A serious delay accessing a page that should be treated as a failure.”) {

357 availabilityClauses = {

359 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

360 }

362 satisfyingConditions = {

364 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

365 }

367 maxDuration = ::types::Duration(30, S)

369 operations = {

371 es::OperationDefinition[static1],
372 es::OperationDefinition[static2],
373 es::OperationDefinition[static3],
374 es::OperationDefinition[submit],
375 ::sla1::slang::es::DelegatedExecutionOperationDefinition[invoke],
376 es::OperationDefinition[results],
377 es::OperationDefinition[results1],
378 es::OperationDefinition[results2],
379 es::OperationDefinition[results3],
380 es::OperationDefinition[results4],
381 es::OperationDefinition[results5],
382 es::OperationDefinition[results6],
383 es::OperationDefinition[results7],
384 es::OperationDefinition[results8]
385 }

387 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
388 },
389 ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailure—

ModeDefinition[static1](

300

390 ”Response is not a valid HTML document defining overall presentation of—
polymorph search webclient”) {

392 operations = {

394 es::OperationDefinition[static1]
395 }

397 availabilityClauses = {

399 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

400 }

402 satisfyingConditions = {

404 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

405 }

407 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
408 },
409 ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailure—

ModeDefinition[static2](
410 ”Result is not a form allowing the specification of parameters for, and —

invocation of the submit page.”) {

412 operations = {

414 es::OperationDefinition[static2]
415 }

417 availabilityClauses = {

419 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

420 }

422 satisfyingConditions = {

424 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

425 }

427 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
428 },
429 ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailure—

ModeDefinition[static3](
430 ”Result is not a form allowing the specification of parameters for, and —

invocation of the invoke page.”) {

432 operations = {

434 es::OperationDefinition[static3]
435 }

301

437 availabilityClauses = {

439 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

440 }

442 satisfyingConditions = {

444 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

445 }

447 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
448 },
449 ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailure—

ModeDefinition[submit](
450 ”Result is not a page acknowledging receipt of submitted parameters”) {

452 operations = {

454 es::OperationDefinition[submit]
455 }

457 availabilityClauses = {

459 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

460 }

462 satisfyingConditions = {

464 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

465 }

467 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
468 },
469 ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailure—

ModeDefinition[invoke](
470 ”Result is not a page acknowledging the initiation of an experiment”) {

472 operations = {

474 ::sla1::slang::es::DelegatedExecutionOperationDefinition[invoke]
475 }

477 availabilityClauses = {

479 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

480 }

482 satisfyingConditions = {

302

484 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

485 }

487 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
488 },
489 ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailure—

ModeDefinition[results](
490 ”Result is not a page listing available results”) {

492 operations = {

494 es::OperationDefinition[results]
495 }

497 availabilityClauses = {

499 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

500 }

502 satisfyingConditions = {

504 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

505 }

507 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
508 },
509 ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailure—

ModeDefinition[results1](
510 ”Result is not a valid HTML page summarising all DMAREL executions—

”) {

512 operations = {

514 es::OperationDefinition[results1]
515 }

517 availabilityClauses = {

519 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

520 }

522 satisfyingConditions = {

524 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

525 }

527 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
528 },

303

529 ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailure—
ModeDefinition[results2](

530 ”Result is not a valid PNG graphics file representing a scatter graph —
summarising all DMAREL executions”) {

532 operations = {

534 es::OperationDefinition[results2]
535 }

537 availabilityClauses = {

539 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

540 }

542 satisfyingConditions = {

544 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

545 }

547 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
548 },
549 ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailure—

ModeDefinition[results3](
550 ”Result is not a valid XML file containing the results of all DMAREL —

executions”) {

552 operations = {

554 es::OperationDefinition[results3]
555 }

557 availabilityClauses = {

559 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

560 }

562 satisfyingConditions = {

564 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

565 }

567 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
568 },
569 ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailure—

ModeDefinition[results4](
570 ”Result is not the original bondlengths file, uploaded prior to the —

commencement of the experiment with the ID specified”) {

572 operations = {

304

574 es::OperationDefinition[results4]
575 }

577 availabilityClauses = {

579 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

580 }

582 satisfyingConditions = {

584 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

585 }

587 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
588 },
589 ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailure—

ModeDefinition[results5](
590 ”Result is not the original cadpak.charges file, uploaded prior to the —

commencement of the experiment with the ID specified”) {

592 operations = {

594 es::OperationDefinition[results5]
595 }

597 availabilityClauses = {

599 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

600 }

602 satisfyingConditions = {

604 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

605 }

607 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
608 },
609 ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailure—

ModeDefinition[results6](
610 ”Result is not the original dmarel.axis file, uploaded prior to the —

commencement of the experiment with the ID specified”) {

612 operations = {

614 es::OperationDefinition[results6]
615 }

617 availabilityClauses = {

619 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

305

620 }

622 satisfyingConditions = {

624 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

625 }

627 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
628 },
629 ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailure—

ModeDefinition[results7](
630 ”Result is not the original molpak.xyz file, uploaded prior to the —

commencement of the experiment with the ID specified”) {

632 operations = {

634 es::OperationDefinition[results7]
635 }

637 availabilityClauses = {

639 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

640 }

642 satisfyingConditions = {

644 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

645 }

647 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
648 },
649 ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailure—

ModeDefinition[results8](
650 ”Result is not the original pote.dat file, uploaded prior to the —

commencement of the experiment with the ID specified”) {

652 operations = {

654 es::OperationDefinition[results8]
655 }

657 availabilityClauses = {

659 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

660 }

662 satisfyingConditions = {

664 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

306

665 }

667 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
668 },

670 ::combined::slang::es::InformalSuccessModeDefinition[invoke](
671 ”Successful initiation of an experiment.”) {

673 operations = {

675 ::sla1::slang::es::DelegatedExecutionOperationDefinition[invoke]
676 }

678 incompatibleFailureModes = {

680 ::sla1::slang::es::InformalAvailabilityDependentViolationDependent—
FailureModeDefinition[invoke],

681 ::sla1::slang::es::FixedLatencyAvailabilityDependentViolation—
DependentFailureModeDefinition[seriousDelay]

682 }

684 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
685 },

687 ::combined::slang::es::InformalSuccessModeDefinition[anyResults](
688 ”Successful retrieval of any experimental results.”) {

690 operations = {

692 es::OperationDefinition[results1],
693 es::OperationDefinition[results2],
694 es::OperationDefinition[results3],
695 es::OperationDefinition[results4],
696 es::OperationDefinition[results5],
697 es::OperationDefinition[results6],
698 es::OperationDefinition[results7],
699 es::OperationDefinition[results8]
700 }

702 incompatibleFailureModes = using ::sla1::slang::es {

704 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results1],

705 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results2],

706 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results3],

707 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results4],

708 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results5],

709 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results6],

710 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results7],

711 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results8]

307

712 }

714 usageModes = { es::InformalUsageModeDefinition[anyUsage] }
715 },

717 ::sla1::slang::es::FixedLatencyFixedDeadlineDelegatedExecutionDependent—
AvailabilityDependentViolationDependentAsynchronousFailureMode—
Definition[resultsPageProduction](

718 ”A failure to successfully retrieve all results, without hinderance, within a—
week commencing 24 hours after the experiment was started.”) {

720 asynchronousReliabilityClauses = {

722 ::sla1::slang::PermanentFixedWindowFixedOccurrencesFixedPenalty—
MaximalServiceBehaviourRestrictionConditionClause[serious]

723 }

725 asynchronousAvailabilityClauses = {

727 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general]

728 }

730 satisfyingConditions = {

732 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput],

733 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
experimentThroughput]

734 }

736 operations = {

738 ::sla1::slang::es::DelegatedExecutionOperationDefinition[invoke]
739 }

741 requestOperation =
742 ::sla1::slang::es::AsynchronousOperationDefinition(
743 ”The request operation”) {

745 operation = ::sla1::slang::es::DelegatedExecutionOperationDefinition—
[invoke]

747 iDParameter = es::ParameterDefinition[invokeId]

749 successMode = ::combined::slang::es::InformalSuccessMode—
Definition[invoke]

750 }

752 resultsOperations = {

754 ::sla1::slang::es::AsynchronousOperationDefinition(
755 ”Results 1”) {

757 operation = es::OperationDefinition[results1]

308

759 iDParameter = es::ParameterDefinition[results1Id]

761 successMode = ::combined::slang::es::InformalSuccessMode—
Definition[anyResults]

762 },
763 ::sla1::slang::es::AsynchronousOperationDefinition(
764 ”Results 2”) {

766 operation = es::OperationDefinition[results2]

768 iDParameter = es::ParameterDefinition[results2Id]

770 successMode = ::combined::slang::es::InformalSuccessMode—
Definition[anyResults]

771 },
772 ::sla1::slang::es::AsynchronousOperationDefinition(
773 ”Results 3”) {

775 operation = es::OperationDefinition[results3]

777 iDParameter = es::ParameterDefinition[results3Id]

779 successMode = ::combined::slang::es::InformalSuccessMode—
Definition[anyResults]

780 },
781 ::sla1::slang::es::AsynchronousOperationDefinition(
782 ”Results 4”) {

784 operation = es::OperationDefinition[results4]

786 iDParameter = es::ParameterDefinition[results4Id]

788 successMode = ::combined::slang::es::InformalSuccessMode—
Definition[anyResults]

789 },
790 ::sla1::slang::es::AsynchronousOperationDefinition(
791 ”Results 5”) {

793 operation = es::OperationDefinition[results5]

795 iDParameter = es::ParameterDefinition[results5Id]

797 successMode = ::combined::slang::es::InformalSuccessMode—
Definition[anyResults]

798 },
799 ::sla1::slang::es::AsynchronousOperationDefinition(
800 ”Results 6”) {

802 operation = es::OperationDefinition[results6]

804 iDParameter = es::ParameterDefinition[results6Id]

806 successMode = ::combined::slang::es::InformalSuccessMode—
Definition[anyResults]

807 },
808 ::sla1::slang::es::AsynchronousOperationDefinition(

309

809 ”Results 7”) {

811 operation = es::OperationDefinition[results7]

813 iDParameter = es::ParameterDefinition[results7Id]

815 successMode = ::combined::slang::es::InformalSuccessMode—
Definition[anyResults]

816 },
817 ::sla1::slang::es::AsynchronousOperationDefinition(
818 ”Results 8”) {

820 operation = es::OperationDefinition[results8]

822 iDParameter = es::ParameterDefinition[results8Id]

824 successMode = ::combined::slang::es::InformalSuccessMode—
Definition[anyResults]

825 }
826 }

828 usageModes = { es::InformalUsageModeDefinition[anyUsage] }

830 latency = ::types::Duration(24, hr)

832 deadline = ::types::Duration(7, day)
833 }
834 }
835 }
836 }

838 penalties = {

840 ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition[day1—
](

841 ”Pay 10 pounds sterling within 30 days of administration.”) {

843 amount = 10.0;

845 deadline = ::types::Duration(30, day)
846 },
847 ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition[day2—

](
848 ”Pay 20 pounds sterling within 30 days of administration.”) {

850 amount = 20.0;

852 deadline = ::types::Duration(30, day)
853 },
854 ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition[day3—

](
855 ”Pay 30 pounds sterling within 30 days of administration.”) {

857 amount = 30.0;

859 deadline = ::types::Duration(30, day)
860 },

310

861 ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition[day4—
](

862 ”Pay 40 pounds sterling within 30 days of administration.”) {

864 amount = 40.0;

866 deadline = ::types::Duration(30, day)
867 },
868 ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition[day5—

](
869 ”Pay 50 pounds sterling within 30 days of administration.”) {

871 amount = 50.0;

873 deadline = ::types::Duration(30, day)
874 },
875 ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition[day6—

](
876 ”Pay 60 pounds sterling within 30 days of administration.”) {

878 amount = 60.0;

880 deadline = ::types::Duration(30, day)
881 },
882 ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition[—

serious](
883 ”Pay 200 pounds sterling within 30 days of administration.”) {

885 amount = 30.0;

887 deadline = ::types::Duration(30, day)
888 },
889 ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition[—

nuisance1](
890 ”Pay 10 pounds sterling within 30 days of administration.”) {

892 amount = 10.0;

894 deadline = ::types::Duration(30, day)
895 },
896 ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition[—

nuisance2](
897 ”Pay 10 pounds sterling within 30 days of administration.”) {

899 amount = 30.0;

901 deadline = ::types::Duration(30, day)
902 },
903 ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition[—

experimentFailure](
904 ”Pay 200 pounds sterling within 30 days of administration.”) {

906 amount = 200.0;

908 deadline = ::types::Duration(30, day)
909 },

311

910 ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition[per—
UseCharge](

911 ”Pay 100 pounds sterling within 30 days of administration.”) {

913 amount = 100.0;

915 deadline = ::types::Duration(30, day)
916 }
917 ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition[—

termination](
918 ”Pay 2000 pounds sterling within 30 days of administration.”) {

920 amount = 2000.0;

922 deadline = ::types::Duration(30, day)
923 }

925 }

927 administrationClauses = {

929 ::combined::slang::es::ScheduledConsecutiveAvailabilityAwareReconciliation—
AdministrationClause[a1]() {

931 /∗ Agreement starts on this date ∗/
932 administrationStart = ::types::TAIDate(1, 5, 2007)

934 /∗ Agreement is administered every friday for three months ∗/
935 schedule = {

937 ::combined::slang::PeriodicInterval[fridays]() {

939 name = ”Every friday for the duration of the agreement”;

941 startDate = ::types::TAIDate(1, 5, 2007)

943 period = ::types::Duration(7, day)

945 duration = ::types::Duration(1, day)

947 endDate = ::types::TAIDate(1, 5, 2008)
948 }
949 }

951 accuracyClauses = {

953 es::PermanentFixedServiceUsageRecordAccuracyClause[a1]() {

955 dateErrorMargin = ::types::Duration(1, S)

957 durationErrorMargin = ::types::Duration(1, S)

959 typeIErrorRate = ::types::Percentage(0.001);

961 confidence = ::types::Percentage(0.99);
962 },

312

964 PermanentFixedReportRecordingAccuracyClause[a2]() {

966 errorMargin = ::types::Duration(1, min)

968 typeIErrorRate = ::types::Percentage(0.001);

970 confidence = ::types::Percentage(0.99);
971 }
972 }

974 conditions = {

976 /∗ Availability condition ∗/
977 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—

ConditionClause[general]() {

979 reliabilityClauses = {

981 ::sla1::slang::PermanentFixedWindowFixedOccurrencesFixedPenalty—
MaximalServiceBehaviourRestrictionConditionClause[serious]

982 }

984 deadline = ::types::Duration(30, min)

986 usageMode = es::InformalUsageModeDefinition[anyUsage]

988 penalties = using ::sla1::slang {

990 SteppedPenalty() {

992 threshold = ::types::Duration(1, day)

994 penalty = ::combined::slang::FixedDeadlineFixedPoundsSterling—
PaymentPenaltyDefinition[day1]

995 },
996 SteppedPenalty() {

998 threshold = ::types::Duration(2, day)

1000 penalty = ::combined::slang::FixedDeadlineFixedPoundsSterling—
PaymentPenaltyDefinition[day2]

1001 },
1002 SteppedPenalty() {

1004 threshold = ::types::Duration(3, day)

1006 penalty = ::combined::slang::FixedDeadlineFixedPoundsSterling—
PaymentPenaltyDefinition[day3]

1007 },
1008 SteppedPenalty() {

1010 threshold = ::types::Duration(4, day)

1012 penalty = ::combined::slang::FixedDeadlineFixedPoundsSterling—
PaymentPenaltyDefinition[day4]

1013 },
1014 SteppedPenalty() {

313

1016 threshold = ::types::Duration(5, day)

1018 penalty = ::combined::slang::FixedDeadlineFixedPoundsSterling—
PaymentPenaltyDefinition[day5]

1019 },
1020 SteppedPenalty() {

1022 threshold = ::types::Duration(6, day)

1024 penalty = ::combined::slang::FixedDeadlineFixedPoundsSterling—
PaymentPenaltyDefinition[day6]

1025 }
1026 }
1027 },

1029 /∗ General input throughput condition ∗/
1030 ::combined::slang::PermanentFixedWindowFixedOccurrencesNoPenalty—

MaximalServiceBehaviourRestrictionConditionClause[throughput]() {

1032 restrictedBehaviours = {

1034 es::InformalUsageModeDefinition[anyUsage]
1035 }

1037 maxOccurrences = 20;

1039 window = ::types::Duration(10, S)
1040 },

1042 /∗ Serious reliability condition ∗/
1043 ::sla1::slang::PermanentFixedWindowFixedOccurrencesFixedPenaltyMaximal—

ServiceBehaviourRestrictionConditionClause[serious]() {

1045 restrictedBehaviours = using ::sla1::slang::es {

1047 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[anyHTTPError],

1048 FixedLatencyAvailabilityDependentViolationDependentFailureMode—
Definition[seriousDelay],

1049 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[static1],

1050 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[static2],

1051 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[static3],

1052 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[submit],

1053 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[invoke],

1054 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results],

1055 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results1],

1056 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results2],

314

1057 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results3],

1058 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results4],

1059 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results5],

1060 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results6],

1061 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results7],

1062 InformalAvailabilityDependentViolationDependentFailureMode—
Definition[results8]

1063 }

1065 maxOccurrences = 10;

1067 window = ::types::Duration(10, min)

1069 penalty = ::combined::slang::FixedDeadlineFixedPoundsSterlingPayment—
PenaltyDefinition[serious]

1070 },

1072 /∗ Nuisance delay condition ∗/
1073 ::sla1::slang::PermanentFixedWindowFixedOccurrencesSteppedPenalty—

MaximalServiceBehaviourRestrictionConditionClause[nuisance]() {

1075 restrictedBehaviours = using ::sla1::slang::es {

1077 FixedLatencyAvailabilityDependentViolationDependentFailureMode—
Definition[nuisanceDelay]

1078 }

1080 maxOccurrences = 10;

1082 window = ::types::Duration(10, min)

1084 penalties = using ::sla1::slang {

1086 SteppedPenalty() {

1088 threshold = ::types::Duration(1, day)

1090 penalty = ::combined::slang::FixedDeadlineFixedPoundsSterling—
PaymentPenaltyDefinition[day1]

1091 },
1092 SteppedPenalty() {

1094 threshold = ::types::Duration(2, day)

1096 penalty = ::combined::slang::FixedDeadlineFixedPoundsSterling—
PaymentPenaltyDefinition[day2]

1097 }
1098 }
1099 },

1101 /∗ Experiment reliability condition ∗/

315

1102 ::sla1::slang::PermanentFixedWindowFixedOccurrencesFixedPenaltyMaximal—
ServiceBehaviourRestrictionConditionClause[experiment]() {

1104 restrictedBehaviours = using ::sla1::slang::es {

1106 FixedLatencyFixedDeadlineDelegatedExecutionDependent—
AvailabilityDependentViolationDependentAsynchronousFailure—
ModeDefinition[resultsPageProduction]

1107 }

1109 maxOccurrences = 0;

1111 window = ::types::Duration(24, hr)

1113 penalty = ::combined::slang::FixedDeadlineFixedPoundsSterlingPayment—
PenaltyDefinition[experimentFailure]

1114 },

1116 /∗ Experiment throughput condition ∗/
1117 ::combined::slang::PermanentFixedWindowFixedOccurrencesNoPenalty—

MaximalServiceBehaviourRestrictionConditionClause[experiment—
Throughput]() {

1119 restrictedBehaviours = using ::combined::slang::es {

1121 InformalSuccessModeDefinition[invoke]
1122 }

1124 maxOccurrences = 1;

1126 window = ::types::Duration(24, hr)
1127 },

1129 /∗ Experiment charging condition ∗/
1130 ::combined::slang::PermanentFixedWindowFixedOccurrencesFixedPenalty—

MinimalServiceBehaviourRestrictionConditionClause[experiment—
Charging]() {

1132 restrictedBehaviours = using ::combined::slang::es {

1134 InformalSuccessModeDefinition[invoke]
1135 }

1137 maxOccurrences = 0;

1139 window = ::types::Duration(24, hr)

1141 penalty = ::combined::slang::FixedDeadlineFixedPoundsSterlingPayment—
PenaltyDefinition[perUseCharge]

1142 }
1143 }
1144 }

1146 ::combined::slang::es::FixedDeadlineTerminationByReportConsecutiveAvailability—
AwareReconciliationAdministrationClause[a2]() {

1148 administrationStart = ::types::TAIDate(1, 5, 2007)

316

1150 deadline = ::types::Duration(7, day)

1152 accuracyClauses = {

1154 es::PermanentFixedServiceUsageRecordAccuracyClause[a1],
1155 PermanentFixedReportRecordingAccuracyClause[a2]
1156 }

1158 conditions = {

1160 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailability—
ConditionClause[general],

1161 ::combined::slang::PermanentFixedWindowFixedOccurrencesNoPenalty—
MaximalServiceBehaviourRestrictionConditionClause[throughput],

1162 ::sla1::slang::PermanentFixedWindowFixedOccurrencesFixedPenaltyMaximal—
ServiceBehaviourRestrictionConditionClause[serious],

1163 ::sla1::slang::PermanentFixedWindowFixedOccurrencesSteppedPenalty—
MaximalServiceBehaviourRestrictionConditionClause[nuisance],

1164 ::sla1::slang::PermanentFixedWindowFixedOccurrencesFixedPenaltyMaximal—
ServiceBehaviourRestrictionConditionClause[experiment],

1165 ::combined::slang::PermanentFixedWindowFixedOccurrencesNoPenalty—
MaximalServiceBehaviourRestrictionConditionClause[experiment—
Throughput],

1166 ::combined::slang::PermanentFixedWindowFixedOccurrencesFixedPenalty—
MinimalServiceBehaviourRestrictionConditionClause[experiment—
Charging],

1168 ::combined::slang::FixedPenaltyTerminationByReportConditionClause[—
termination]() {

1170 fixedPenalty = ::combined::slang::FixedDeadlineFixedPoundsSterling—
PaymentPenaltyDefinition[termination]

1171 }
1172 }
1173 }
1174 }

1176 auxiliaryClauses = {

1178 es::ElectronicServiceInterfaceDefinition[polymorph],
1179 es::ElectronicServiceClientDefinition[csClient],
1180 ::sla1::slang::es::FixedDurationExecutableDefinition[molpak],
1181 ::sla1::slang::es::FixedDurationExecutableDefinition[dmarel]
1182 ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailabilityConditionClause[—

general],
1183 ::combined::slang::PermanentFixedWindowFixedOccurrencesNoPenaltyMaximal—

ServiceBehaviourRestrictionConditionClause[throughput],
1184 ::sla1::slang::PermanentFixedWindowFixedOccurrencesFixedPenaltyMaximalService—

BehaviourRestrictionConditionClause[serious],
1185 ::sla1::slang::PermanentFixedWindowFixedOccurrencesSteppedPenaltyMaximal—

ServiceBehaviourRestrictionConditionClause[nuisance],
1186 ::sla1::slang::PermanentFixedWindowFixedOccurrencesFixedPenaltyMaximalService—

BehaviourRestrictionConditionClause[experiment],
1187 ::combined::slang::PermanentFixedWindowFixedOccurrencesNoPenaltyMaximal—

ServiceBehaviourRestrictionConditionClause[experimentThroughput],

317

1188 ::combined::slang::PermanentFixedWindowFixedOccurrencesFixedPenaltyMinimal—
ServiceBehaviourRestrictionConditionClause[experimentCharging],

1189 ::combined::slang::FixedPenaltyTerminationByReportConditionClause[termination],
1190 es::PermanentFixedServiceUsageRecordAccuracyClause[a1],
1191 PermanentFixedReportRecordingAccuracyClause[a2]
1192 ::combined::slang::PeriodicInterval[fridays],
1193 ::sla1::slang::es::FixedDurationExecutableDefinition[molpak],
1194 ::sla1::slang::es::FixedDurationExecutableDefinition[dmarel]
1195 }

1197 }
1198 }

318

Appendix D

SLA 4: CS and ISP

1 /∗
2 This is an SLA written using the Human−Usable Textual Notation (HUTN) for
3 the language SLAng.

5 HUTN is a concrete−syntax standard of the OMG (available http://www.omg.org/)

7 The SLA is the only object with type ::slang::MutuallyMonitorableSLA.
8 ∗/

10 specification = ”http://slang.sourceforge.net/specifications/thesis−combined.emofxmi”

12 configuration = ”http://slang.sourceforge.net/specifications/thesis−combined.hutnxmi”

14 using ::slang {

16 MutuallyMonitorableSLA(”SLA between Computer Science and ISP”) {

18 parties = {

20 PartyDefinition[cs](
21 ”The Department of Computer Science, University College London”),

23 PartyDefinition[isp](
24 ”The ISP”)
25 }

27 services = {

29 es::ElectronicServiceDefinition[plotService](
30 ”The provision of the plotting webservice by the ISP to CS”) {

32 provider = PartyDefinition[isp]

34 client = PartyDefinition[cs]

36 interfaces = {

38 es::ElectronicServiceInterfaceDefinition[plotws](
39 ”The Plot service located at http://plotws.omii.ac.uk:18080/PlotWS/—

services/Graph?wsdl”) {

41 owner = PartyDefinition[isp]

43 operations = {

319

45 es::OperationDefinition[makePlot xyy](
46 ”Operation: makePlot xyy”) {

48 parameters = {

50 es::ParameterDefinition(”xi”, IN),
51 es::ParameterDefinition(”yi”, IN),
52 es::ParameterDefinition(”opt”, IN),
53 es::ParameterDefinition(”makePlotReturn”, OUT)
54 }
55 },
56 es::OperationDefinition[makePlot xy](
57 ”Operation: makePlot xy”) {

59 parameters = {

61 es::ParameterDefinition(”xi”, IN),
62 es::ParameterDefinition(”yi”, IN),
63 es::ParameterDefinition(”opt”, IN),
64 es::ParameterDefinition(”makePlotReturn”)
65 }
66 },
67 es::OperationDefinition[makePlot x](
68 ”Operation: makePlot x”) {

70 parameters = {

72 es::ParameterDefinition(”xi”, IN),
73 es::ParameterDefinition(”opt”, IN),
74 es::ParameterDefinition(”makePlotReturn”)
75 }
76 },
77 es::OperationDefinition[makePlot xxyy](
78 ”Operation: makePlot xxyy”) {

80 parameters = {

82 es::ParameterDefinition(”xi”, IN),
83 es::ParameterDefinition(”yi”, IN),
84 es::ParameterDefinition(”opt”, IN),
85 es::ParameterDefinition(”makePlotReturn”, OUT)
86 }
87 },
88 es::OperationDefinition[makePlot3D xyz](
89 ”Operation: makePlot3D xyz”) {

91 parameters = {

93 es::ParameterDefinition(”xi”, IN),
94 es::ParameterDefinition(”yi”, IN),
95 es::ParameterDefinition(”yi”, IN),
96 es::ParameterDefinition(”opt”, IN),
97 es::ParameterDefinition(”makePlotReturn”)
98 }
99 }

100 }

320

101 }
102 }

104 clients = {

106 es::ElectronicServiceClientDefinition[csClient](
107 ”Any computer with an IP address owned by CS”) {

109 owner = PartyDefinition[cs]
110 }
111 }

113 behaviours = {

115 es::InformalUsageModeDefinition[anyOperation](
116 ”Any operation of the service is used”) {

118 operations = {

120 es::OperationDefinition[makePlot xyy],
121 es::OperationDefinition[makePlot xy],
122 es::OperationDefinition[makePlot x],
123 es::OperationDefinition[makePlot xxyy],
124 es::OperationDefinition[makePlot3D xyz]
125 }
126 }

128 ::sla4::slang::es::ScheduledInformalAvailabilityDependentViolation—
DependentFailureModeDefinition[failure](

129 ”The service returns an error code, or the graph returned is inaccurate —
with respect to the parameter data or settings”) {

131 schedule = {

133 ::combined::slang::PeriodicInterval[operatingHours]() {

135 name = ”Not midnight until 1 am”;

137 startDate = ::types::TAIDate(1, 5, 2007) {

139 hour = 1
140 }

142 endDate = ::types::TAIDate(1, 5, 2008)

144 period = ::types::Duration(24, hr)

146 duration = ::types::Duration(23, hr)
147 }
148 }

150 operations = {

152 es::OperationDefinition[makePlot xyy],
153 es::OperationDefinition[makePlot xy],
154 es::OperationDefinition[makePlot x],
155 es::OperationDefinition[makePlot xxyy],

321

156 es::OperationDefinition[makePlot3D xyz]
157 }

159 usageModes = { es::InformalUsageModeDefinition[anyOperation] }

161 availabilityClauses = {

163 ::sla4::slang::es::ScheduledScalingPenaltyFixedDeadlineAvailability—
ConditionClause[general]

164 }

166 satisfyingConditions = {

168 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

169 }
170 },

172 ::sla4::slang::es::ScheduledFixedLatencyAvailabilityDependentViolation—
DependentFailureModeDefinition[delay](

173 ”An operation of the service takes longer than 10s to complete”) {

175 schedule = {

177 ::combined::slang::PeriodicInterval[operatingHours]
178 }

180 maxDuration = ::types::Duration(10, S)

182 operations = {

184 es::OperationDefinition[makePlot xyy],
185 es::OperationDefinition[makePlot xy],
186 es::OperationDefinition[makePlot x],
187 es::OperationDefinition[makePlot xxyy],
188 es::OperationDefinition[makePlot3D xyz]
189 }

191 usageModes = { es::InformalUsageModeDefinition[anyOperation] }

193 availabilityClauses = {

195 ::sla4::slang::es::ScheduledScalingPenaltyFixedDeadlineAvailability—
ConditionClause[general]

196 }

198 satisfyingConditions = {

200 ::combined::slang::PermanentFixedWindowFixedOccurrencesNo—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
throughput]

201 }
202 },

204 ::combined::slang::es::InformalSuccessModeDefinition[success](
205 ”Successful production of a graph.”) {

322

207 operations = {

209 es::OperationDefinition[makePlot xyy],
210 es::OperationDefinition[makePlot xy],
211 es::OperationDefinition[makePlot x],
212 es::OperationDefinition[makePlot xxyy],
213 es::OperationDefinition[makePlot3D xyz]
214 }

216 incompatibleFailureModes = {

218 ::sla4::slang::es::ScheduledInformalAvailabilityDependentViolation—
DependentFailureModeDefinition[failure],

219 ::sla4::slang::es::ScheduledFixedLatencyAvailabilityDependent—
ViolationDependentFailureModeDefinition[delay]

220 }

222 usageModes = { es::InformalUsageModeDefinition[anyOperation] }
223 }
224 }
225 }
226 }

228 penalties = {

230 ::sla4::slang::FixedDeadlineScalingPoundsSterlingPaymentPenaltyDefinition[failure](
231 ”Pay 1 pound per hour of failures or unavailability.”) {

233 amountPerHour = 1.0;

235 deadline = ::types::Duration(30, day)
236 },
237 ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition[—

termination](
238 ”Pay 100 pounds on termination.”) {

240 amount = 100.0;

242 deadline = ::types::Duration(30, day)
243 }
244 ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition[per—

UseCharge](
245 ”Pay 5 pence per plot.”) {

247 amount = 0.05;

249 deadline = ::types::Duration(30, day)
250 }

252 }

254 administrationClauses = {

256 ::combined::slang::es::ScheduledConsecutiveAvailabilityAwareReconciliation—
AdministrationClause[a1]() {

323

258 /∗ Agreement starts on this date ∗/
259 administrationStart = ::types::TAIDate(1, 5, 2007)

261 /∗ Agreement is administered every friday for three months ∗/
262 schedule = {

264 ::combined::slang::PeriodicInterval[fridays]() {

266 name = ”Every friday for the duration of the agreement”;

268 startDate = ::types::TAIDate(1, 5, 2007)

270 period = ::types::Duration(7, day)

272 duration = ::types::Duration(1, day)

274 endDate = ::types::TAIDate(1, 5, 2008)
275 }
276 }

278 accuracyClauses = {

280 es::PermanentFixedServiceUsageRecordAccuracyClause[a1]() {

282 dateErrorMargin = ::types::Duration(1, S)

284 durationErrorMargin = ::types::Duration(1, S)

286 typeIErrorRate = ::types::Percentage(0.001);

288 confidence = ::types::Percentage(0.99);
289 },

291 PermanentFixedReportRecordingAccuracyClause[a2]() {

293 errorMargin = ::types::Duration(1, min)

295 typeIErrorRate = ::types::Percentage(0.001);

297 confidence = ::types::Percentage(0.99);
298 }
299 }

301 conditions = {

303 /∗ Availability condition ∗/
304 ::sla4::slang::es::ScheduledScalingPenaltyFixedDeadlineAvailabilityCondition—

Clause[general]() {

306 schedule = {

308 ::combined::slang::PeriodicInterval[operatingHours]
309 }

311 reliabilityClauses = {

324

313 ::sla4::slang::PermanentFixedWindowFixedOccurrencesScaling—
PenaltyMaximalServiceBehaviourRestrictionConditionClause[—
failures]

314 }

316 deadline = ::types::Duration(30, min)

318 usageMode = es::InformalUsageModeDefinition[anyOperation]

320 penalty = ::sla4::slang::FixedDeadlineScalingPoundsSterlingPayment—
PenaltyDefinition[failure]

321 },

323 /∗ General input throughput condition ∗/
324 ::combined::slang::PermanentFixedWindowFixedOccurrencesNoPenalty—

MaximalServiceBehaviourRestrictionConditionClause[throughput]() {

326 restrictedBehaviours = {

328 es::InformalUsageModeDefinition[anyOperation]
329 }

331 maxOccurrences = 20;

333 window = ::types::Duration(10, S)
334 },

336 /∗ Delays and failures condition ∗/
337 ::sla4::slang::PermanentFixedWindowFixedOccurrencesScalingPenalty—

MaximalServiceBehaviourRestrictionConditionClause[failures]() {

339 restrictedBehaviours = using ::sla4::slang::es {

341 ScheduledInformalAvailabilityDependentViolationDependentFailure—
ModeDefinition[failure],

342 ScheduledFixedLatencyAvailabilityDependentViolationDependent—
FailureModeDefinition[delay]

343 }

345 maxOccurrences = 10;

347 window = ::types::Duration(10, min)

349 penalty = ::sla4::slang::FixedDeadlineScalingPoundsSterlingPayment—
PenaltyDefinition[failure]

350 }

352 /∗ Charging condition ∗/
353 ::combined::slang::PermanentFixedWindowFixedOccurrencesFixedPenalty—

MinimalServiceBehaviourRestrictionConditionClause[experiment—
Charging]() {

355 restrictedBehaviours = using ::sla4::slang::es {

357 ::combined::slang::es::InformalSuccessModeDefinition[success]
358 }

325

360 maxOccurrences = 0;

362 window = ::types::Duration(24, hr)

364 penalty = ::combined::slang::FixedDeadlineFixedPoundsSterlingPayment—
PenaltyDefinition[perUseCharge]

365 }

367 }
368 }

370 ::combined::slang::es::FixedDeadlineTerminationByReportConsecutiveAvailability—
AwareReconciliationAdministrationClause[a2]() {

372 administrationStart = ::types::TAIDate(1, 5, 2007)

374 deadline = ::types::Duration(7, day)

376 accuracyClauses = {

378 es::PermanentFixedServiceUsageRecordAccuracyClause[a1],
379 PermanentFixedReportRecordingAccuracyClause[a2]
380 }

382 conditions = {

384 ::sla4::slang::es::ScheduledScalingPenaltyFixedDeadlineAvailabilityCondition—
Clause[general],

385 ::combined::slang::PermanentFixedWindowFixedOccurrencesNoPenalty—
MaximalServiceBehaviourRestrictionConditionClause[throughput],

386 ::sla4::slang::PermanentFixedWindowFixedOccurrencesScalingPenalty—
MaximalServiceBehaviourRestrictionConditionClause[failures],

387 ::combined::slang::FixedPenaltyTerminationByReportConditionClause[—
termination]() {

389 fixedPenalty = ::combined::slang::FixedDeadlineFixedPoundsSterling—
PaymentPenaltyDefinition[termination]

390 }
391 }
392 }
393 }

395 auxiliaryClauses = {

397 es::ElectronicServiceInterfaceDefinition[plotws],
398 es::ElectronicServiceClientDefinition[csClient],
399 ::sla4::slang::es::ScheduledScalingPenaltyFixedDeadlineAvailabilityConditionClause[—

general],
400 ::combined::slang::PermanentFixedWindowFixedOccurrencesNoPenaltyMaximal—

ServiceBehaviourRestrictionConditionClause[throughput],
401 ::sla4::slang::PermanentFixedWindowFixedOccurrencesScalingPenaltyMaximal—

ServiceBehaviourRestrictionConditionClause[failures],
402 ::combined::slang::FixedPenaltyTerminationByReportConditionClause[termination],
403 ::combined::slang::PermanentFixedWindowFixedOccurrencesFixedPenaltyMinimal—

ServiceBehaviourRestrictionConditionClause[experimentCharging],
404 es::PermanentFixedServiceUsageRecordAccuracyClause[a1],
405 PermanentFixedReportRecordingAccuracyClause[a2] ,

326

406 ::combined::slang::PeriodicInterval[fridays],
407 ::combined::slang::PeriodicInterval[operatingHours]
408 }
409 }
410 }

327

Appendix E

Specification - Combined

E.1 Package - ::types
Informal: Contains types used in both the syntactic and semantic model.

E.1.1 Enumeration - ::types::TimeUnit
Definitive: An enumeration type used to indicate a unit of time associated with some quantity in the
model.

• S

Definitive: Seconds.

• mS

Definitive: Milli-seconds.

• nS

Definitive: Nano-seconds.

• min

Definitive: Minutes.

• hr

Definitive: Hours.

• day

Definitive: Days (24 hours).

E.1.2 Class - ::types::Percentage
Definitive: In the syntactic model, indicates a percentage written in an SLA. In the services model, this
is the type of features of an object that can be interpreted as a degree of completeness of some totality.
Properties:

• value : ::types::Real

Definitive: The percentage is this value multiplied by 100.

Operations:

• No operations.

Invariants:

• Wellformedness: Percentages are expressed as a value greater than 0.

value >= 0

E.1.3 Class - ::types::Duration
Definitive: In the syntactic model a duration is the specification of a length of time. In the services
model, a duration is either an actual length of time, or a record of a length of time.

E.1. Package - ::types 328

Properties:

• value : ::types::Real

Definitive: Interpreted as a number of units of the type specified in the unit property of the duration
object, the value is the length of the duration.

• unit : ::types::TimeUnit

Definitive: The time unit, by which the value of this duration may be interpreted as an actual
duration.

Operations:

• inMs() : ::types::Real

Informal: Converts this duration to a number of milliseconds.

Evaluates to:

if unit = TimeUnit.mS then value
else

if unit = TimeUnit.nS then value / 1000
else

if unit = TimeUnit.S then value * 1000
else

if unit = TimeUnit.min then value * 1000 * 60
else

if unit = TimeUnit.hr then value * 1000 * 60 * 60
else

value * 1000 * 60 * 60 * 24
endif

endif
endif

endif
endif

• eq(s : ::types::Duration) : ::types::Boolean

Informal: Defines non-object equality for duration objects.

Evaluates to:

inMs() = s.inMs()

Invariants:

• Wellformedness: Durations should never be negative.

not (value < 0)

E.1.4 Abstract class - ::types::Date
Definitive: In the syntactic model a date is the specification of an instant in time. In the services model,
a duration is either an actual instant time, or a record of an instant of time.
Properties:

• No properties.

Operations:

• inMs() : ::types::Real

Informal: (abstract) Converts this date to the number of milliseconds that the date is after 00:00
Jan 1, 2000, UTC+0.

• eq(d : ::types::Date) : ::types::Boolean

Informal: (abstract) Defines non-object equality for date objects.

E.1. Package - ::types 329

Invariants:

• No invariants.

E.1.5 Class - ::types::TAIDate
Extends: ::types::Date, pg. 328

Definitive: A date according to International Atomic Time. This does not accomodate leap seconds
(because we cannot predict what leap seconds will be needed in the future).
Properties:

• year : ::types::Integer

Definitive: The contemporary era year, 2000 or later, in which this date occurs.

• month : ::types::Integer

Definitive: The month, from 1 to 12, in which this date occurs.

• day : ::types::Integer

Definitive: The day of the month in which this date occurs.

• hour : ::types::Integer

Definitive: The hour within which this date occurs.

• minute : ::types::Integer

Definitive: The minute upon which this date occurs.

• second : ::types::Real

Definitive: The second and fractional seconds within the minute upon which this date occurs.

Operations:

• inMs() : ::types::Real

Informal: Returns the number of milliseconds to this date counting from 00:00:00.000, 1/1/2000.

Evaluates to:

let yearsSince = year - 2000
in
let leapYearsSince = priorLeapYears()
in
let nonLeapYearsSince = yearsSince - leapYearsSince
in
(leapYearsSince * 366 * 24 * 60 * 6e+4) +
(nonLeapYearsSince * 365 * 24 * 60 * 6e+4) +
(dayInYear() * 24 * 60 * 6e+4) +
(hour * 60 * 6e+4) +
(minute * 6e+4) +
(second * 1e+3)

• isLeapYear() : ::types::Boolean

Informal: Returns true if this date occurs within a leap year. Returns false otherwise.

Evaluates to:

year.mod(4) = 0
and
year.mod(400) <> 0

• priorLeapYears() : ::types::Real

Informal: Returns the number of leap-years occuring between the year in which this date occurs
and 2000.

Evaluates to:

E.1. Package - ::types 330

let yearsSince = (year - 1) - 2000
in
(yearsSince / 4).floor() -
(yearsSince / 400).floor()

• daysInMonth() : ::types::Integer[0, *] ordered

Informal: Returns a sequence listing the number of days in each month in the year within which
this date occurs.

Evaluates to:

Sequence(Integer) {
31,
if isLeapYear() then 29 else 28 endif,
31,
30,
31,
30,
31,
31,
30,
31,
30,
31

}

• dayInYear() : ::types::Integer

Informal: Returns the day (counted from the 1st of January) in the year upon which this date
occurs.

Evaluates to:

if(month = 1) then day
else

daysInMonth()->subSequence(1, month - 1)->sum() + day
endif

Invariants:

• Informal: We only deal with dates after 2000. All parameters of the date must be within normal
ranges.

year >= 2000
and
month >= 1
and
month <= 12
and
day >= 1
and
day <= daysInMonth()->at(month)
and
hour >= 0
and
hour <= 23
and
minute >= 0
and
minute <= 59

E.2. Package - ::slang 331

and
second >= 0
and
second < 60

E.1.6 Primitive type - ::types::Real
Definitive: In the syntactic model, indicates real numbers written into SLAs. In the service model, this
is the type for attributes of an object that can be interpreted as having a value within a continous range.

Equivalent to the OCL real type.

E.1.7 Primitive type - ::types::Boolean
Definitive: In the syntactic model, indicates a value of true or false written into SLAs. In the service
model, this is the type for attributes of an object that can be interpreted as being either true or false.

Equivalent to the OCL boolean type.

E.1.8 Primitive type - ::types::Integer
Definitive: In the syntactic model, indicates an whole number written into an SLA. In the service model,
this is the type for attributes of an object that can be interpreted as being a natural quantity.

Equivalent to the OCL integer type.

E.1.9 Primitive type - ::types::String
Definitive: In the syntactic model, indicates some text included in an SLA. In the service model, indicates
some information present in the domain.

Equivalent to the OCL string type.

E.2 Package - ::slang
Informal: The slang package contains type specifications for SLAs expressible in the SLAng language
and their component expressions. Subpackages contain types specific to particular kinds of SLA, for
example electronic service SLAs.

E.2.1 Abstract class - ::slang::AccuracyClause
Extends: ::slang::AuxiliaryClause, pg. 336

Definitive: Defines accuracy conditions over the evidence submitted to administration clauses.
This clause is abstract because rules for determining what evidence should be considered, and how

it should be determined to be acceptably accurate need to be specified.
Properties:

• administrationClauses : ::slang::AdministrationClause[1, *] unique

Opposite: ::slang::AdministrationClause.accuracyClauses : ::slang::AccuracyClause[0, *] unique

Definitive: Accuracy clauses are associated with administration clauses in order to require accu-
racy of the evidence submitted during administration.

• typeIErrorRate : ::types::Percentage

Definitive: The likelihood that a report gathered honestly according to accuracy constraints defined
for all uncertain parameters will contain an unacceptable number of errors.

Informal: This parameter effectively sets a limit on the number of errors that can included in an
report, either through dishonesty or by accident. See the invariant below for a fuller discussion of
the effect of this parameter.

A very small value should be chosen for this property of the SLA. A significant degree of cheating
in an account will rapidly make the account highly unlikely. However, the probability of seeing at
least one reasonably unlikely account in a set of accounts associated with an SLA rises with the
size of the set. This likelihood should therefore be kept low to avoid unnecessary disagreements
in the event of occasional unlikely accounts being submitted in good faith.

In the event that the invariant associated with this parameter is violated, the SLA is invalidated and
the parties will have to take whatever action they deem necessary.

• confidence : ::types::Percentage

Definitive: Confidence that any measured value falls within its expected error margins.

E.2. Package - ::slang 332

Operations:

• getMeasurementCount(evidence : ::services::Evidence[0, *] unique) : ::types::Integer

Informal: (abstract) Count the number of measurements covered by this clause for a given admin-
istration.

• getAccurateMeasurementCount(evidence : ::services::Evidence[0, *] unique) : ::types::Integer

Informal: (abstract) Count the number of accurate measurements covered by this clause for a given
administration.

Note that in real life this can never be evaluated with certainty. However the accuracy constraint
overall can be approximately monitored using a statistical hypothesis test.

• fact(n : ::types::Integer) : ::types::Integer

Informal: Calculates the factorial of a positive integer, or -1 otherwise.

Evaluates to:

if n = 0
then 1
else

if n < 0
then -1
else n * fact(n - 1)
endif

endif

• pick(n : ::types::Integer,
r : ::types::Integer) : ::types::Integer

Informal: Calculates the number of ways to chose r objects from n possibilities in a particular
order

Evaluates to:

if r > 1 then
(n - (r - 1)) * pick(n, r - 1)

else n
endif

• choose(n : ::types::Integer,
r : ::types::Integer) : ::types::Integer

Informal: Calculates the number of ways to choose r objects from n possibilities in no particular
order

Evaluates to:

pick(n, r) div fact(r)

• raise(value : ::types::Real,
power : ::types::Integer) : ::types::Real

Informal: Raise a value to an integer power

Evaluates to:

if power = 0 then 1.0
else

value * raise(value, power - 1)
endif

E.2. Package - ::slang 333

• errorCountProbability(n : ::types::Integer,
r : ::types::Integer) : ::types::Real

Informal: Calculate the probability of seeing r errors in n measurements.

Evaluates to:

choose(n, r) * raise(1 - confidence.value, r) *
raise(confidence.value, n - r)

• findD(sum : ::types::Real,
n : ::types::Integer,
d : ::types::Integer) : ::types::Integer

Informal: Determines the threshold number of violations that can be tolerated for a log of size n.
Recursive.

Evaluates to:

if d = 0 then 0
else

let p = errorCountProbability(n, d) in
if sum > typeIErrorRate.value
then -1
else

if sum + p > typeIErrorRate.value
then d
else findD(sum + p, n, d - 1)
endif

endif
endif

• getMaximumAcceptableErrors(measurementCount : ::types::Integer) : ::types::Integer

Informal: Calculates the maximum number of acceptable errors in an account of the specified
size, assuming the confidence in the measurements is as specified in the SLA, and given the target
typeIErrorRate.

Evaluates to:

findD(0.0, measurementCount, measurementCount)

• evidenceIsAccurate(evidence : ::services::Evidence[0, *] unique) : ::types::Boolean

Informal: Assesses whether some set of evidence is accurate according to this clause.

Evaluates to:

let n = getMeasurementCount(evidence)
in
n - getAccurateMeasurementCount(evidence) <=

getMaximumAcceptableErrors(n)

Invariants:

• No invariants.

E.2.2 Abstract class - ::slang::AdministrationClause
Definitive: An administrative clause defines the circumstances under which administration of the SLA
should occur.

This class is abstract because rules concerning when the SLA should be administered must be
specified (as invariants of subclasses, related to the events of the services underlying the.

E.2. Package - ::slang 334

Properties:

• accuracyClauses : ::slang::AccuracyClause[0, *] unique

Opposite: ::slang::AccuracyClause.administrationClauses : ::slang::AdministrationClause[1, *]
unique

Definitive: Administration clauses reference a set of accuracy clauses that determine the required
accuracy of evidence submitted during administration.

• conditions : ::slang::ConditionClause[1, *] unique

Opposite: ::slang::ConditionClause.administrationClauses : ::slang::AdministrationClause[1, *]
unique

Definitive: Administration clauses reference a set of condition clauses that calculate violations
based on the evidence agreed during administration.

• sLA : ::slang::SLA

Opposite: ::slang::SLA.administrationClauses : ::slang::AdministrationClause[0, *] unique or-
dered

Definitive: Administration clauses form part of an SLA.

• administrations : ::services::Administration[0, *] unique

Opposite: ::services::Administration.administrationClause : ::slang::AdministrationClause

Definitive: Administration clauses may trigger administrations.

Operations:

• eventRelevant(administration : ::services::Administration,
event : ::services::Event) : ::types::Boolean

Informal: (abstract) Determines whether some event is relevant to a particular administration.

• administered() : ::types::Boolean

Informal: (abstract) Checks whether a set of events includes the correct administration of this
clause.

• sLAEvents() : ::services::Event[0, *] unique

Informal: Administration clauses identify administrations and events pertinent to the conditions
that they define as being events pertinent to the SLA.

Evaluates to:

conditions.sLAEvents()->union(administrations)->asSet()

• services() : ::slang::ServiceDefinition[0, *] unique

Informal: Identifies the services relevant to this administration clause.

Evaluates to:

conditions->collect(
if service().oclIsUndefined()
then Set(::slang::ServiceDefinition) {}
else Set(::slang::ServiceDefinition) { service() }
endif

)->asSet()

E.2. Package - ::slang 335

Invariants:

• Wellformedness: The monitoring obligation: If an event is relevant to an administration asso-
ciated with this clause then adequate evidence to administer all conditions associated with the
clause must be provided by the participants collectively in the agreed account associated with the
administration.

let
events = sLA.events
in
administrations->forall(a : ::services::Administration |

events->forall(e : ::services::Event |

sLAEvents()->includes(e)
and
eventRelevant(a, e)
implies
conditions->forall(c : ConditionClause |

c.sLAEvents()->includes(e)
implies
c.evidenced(e, a)

)
)

)

• Wellformedness: All condition and accuracy clauses associated with this clause are in the same
SLA as this clause.

conditions->forall(c : ConditionClause |

c.sLA = sLA
)
and
accuracyClauses->forall(a : AccuracyClause |

a.sLA = sLA
)

• Wellformedness: The accuracy constraint: All accounts submitted in administrations of this clause
must be accurate according to all accuracy clauses associated with this clause.

accuracyClauses->forall(
aC : AccuracyClause |

administrations.submittedEvidence->forall(
a : ::services::Account |

aC.evidenceIsAccurate(a.evidence)
)

)

• Wellformedness: The penalty calculation obligation: Violations relating to evidence agreed in
administrations associated with this clause must be calculated according to the condition clauses
associated with this clause.

E.2. Package - ::slang 336

administrations->forall(a : ::services::Administration |

conditions->forall(violationsCalculated(a))
)

• Welformedness: Administrations should always be visible to both the client and provider of any
services administered.

administrations->forall(a : ::services::Administration |

a.witnesses->includesAll(services().provider.party)
and
a.witnesses->includesAll(services().client.party)

)

E.2.3 Abstract class - ::slang::AuxiliaryClause
Definitive: Auxiliary definitions are used to describe things significant to an SLA in addition to the
definitions of services, parties and penalties.
Properties:

• sLA : ::slang::SLA

Opposite: ::slang::SLA.auxiliaryClauses : ::slang::AuxiliaryClause[0, *] unique ordered

Definitive: Auxiliary definitions form part of an SLA.

Operations:

• No operations.

Invariants:

• No invariants.

E.2.4 Abstract class - ::slang::ConditionClause
Extends: ::slang::AuxiliaryClause, pg. 336

Definitive: A condition clause relates bad behaviour of the service to the payment of penalties, and
forms part of the conditions of an SLA. It may make reference to terms defined in the SLA.

This clause is abstract because the rules and parameters governing the calculation of violations must
be specified.
Properties:

• administrationClauses : ::slang::AdministrationClause[1, *] unique

Opposite: ::slang::AdministrationClause.conditions : ::slang::ConditionClause[1, *] unique

Definitive: Condition clauses apply to administration clauses and define the violations that should
be calculated in administrations associated with those administration clauses.

Operations:

• priorClauses() : ::slang::ConditionClause[0, *] unique ordered

Informal: Gets the ordered set of condition clauses preceding this condition clause in the SLA.
Can be used to enforce an evaluation order for clauses.

Evaluates to:

let conditions = sLA.auxiliaryClauses->select(
oclIsKindOf(ConditionClause))

in
conditions->subOrderedSet(1, conditions->indexOf(self))->collect(

oclAsType(ConditionClause))->asOrderedSet()

E.2. Package - ::slang 337

• sLAEvents() : ::services::Event[0, *] unique

Informal: (abstract) Condition clauses establish the relevance of certain events to the sLA that
contains them.

• service() : ::slang::ServiceDefinition[0, 1]

Informal: (abstract) The service over which this clause places conditions.

• evidenced(event : ::services::Event,
administration : ::services::Administration) : ::types::Boolean

Informal: (abstract) Determines whether adequate evidence exists for an event within the agreed
evidence presented in an administration, to determine violations of these conditions.

• violationsCalculated(administration : ::services::Administration) : ::types::Boolean

Informal: (abstract) Check that administrations have correctly calculated violations associated
with this clause.

Invariants:

• No invariants.

E.2.5 Abstract class - ::slang::Definition
Definitive: The terms of an SLA contain a number of definitions of various types of things in the real
world.
Properties:

• identifier : ::types::String[0, 1]

Definitive: Definitions may be given an identifying string to allow convenient reference to made
to them outside the context of the SLA. The form and content of the identifying string are uncon-
strained. The identifying string primarily identifies the definition, not the object described by the
definition. Therefore the definition should be construed based on the contents of the description
field only.

• description : ::types::String

Definitive: A description of the thing in the real world being defined. Things associated with this
definition must be compatible with the description given for them. The parties to any SLA should
ensure before entering the SLA that all terms are defined unambiguously and to their satisfaction.
At the agreement of the parties, descriptions included in the SLA may be unambiguous references
to descriptions of things maintained externally to the SLA. For example, if the SLA is embedded
in a document describing a larger service provision agreement, the SLA may refer to a definition
of the service in question contained in the larger document, external to the SLA.

Operations:

• No operations.

Invariants:

• No invariants.

E.2.6 Class - ::slang::MutuallyMonitorableSLA
Extends: ::slang::SLA, pg. 348

Definitive: Some types of SLA are administered, meaning that the client and provider consult on the
evidence upon which the determination of violations will be based. SLAs that are mutually monitorable,
but not arbitratable by a third party may need to be administered in order to maintain trust relationships
between the parties.
Properties:

• No properties.

Operations:

• No operations.

E.2. Package - ::slang 338

Invariants:

• Wellformedness: All service events of relevance to the SLA must be monitorable by both the client
and provider of the service.

administrationClauses->forall(a : AdministrationClause |

a.services()->forall(s : ServiceDefinition |

a.sLAEvents()->forall(

witnesses->includes(s.provider.party)
and
witnesses->includes(s.client.party)

)
)

)

E.2.7 Class - ::slang::PartyDefinition
Extends: ::slang::Definition, pg. 337

Definitive: A definition of some person or organisation with a role to play in the service provision
scenario.
Properties:

• sLA : ::slang::SLA

Opposite: ::slang::SLA.parties : ::slang::PartyDefinition[2, *] unique

Definitive: A party definition forms part an SLA.

• party : ::services::Party

Definitive: A party definition describes some real world party.

Operations:

• No operations.

Invariants:

• No invariants.

E.2.8 Class - ::slang::PenaltyDefinition
Extends: ::slang::Definition, pg. 337

Definitive: A penalty definition is a pre-agreed penalty that some party will have to pay if a violation
of a particular type occurs
Properties:

• violations : ::services::Violation[0, *]

Opposite: ::services::Violation.penalty : ::slang::PenaltyDefinition[0, 1]

Definitive: A penalty definition may be cited as being payable in the event of a violation being
discovered.

• sLA : ::slang::SLA

Opposite: ::slang::SLA.penalties : ::slang::PenaltyDefinition[0, *] unique

Definitive: A penalty definition is part of some SLA.

Operations:

• No operations.

Invariants:

• No invariants.

E.2. Package - ::slang 339

E.2.9 Class - ::slang::PermanentFixedReportRecordingAccuracyClause
Extends: ::slang::ReportRecordingAccuracyClause, pg. 340

Definitive: A termination report accuracy clause that always applies and specifies a minimum ac-
curacy for evidence relating to the exchange of termination reports.

Informal: If termination-by-report conditions are used, a clause of this kind must be included in an
SLA to ensure that evidence related to termination reports is accurate.
Properties:

• errorMargin : ::types::Duration

Definitive: This is the error margin that must be met when reporting the delivery time of a termi-
nation report with the specified confidence and type I error rate, according to this clause.

Operations:

• calculateErrorMargin(report : ::services::Report,
evidence : ::services::Evidence[0, *] unique) : ::types::Real

Informal: Get the error margin permitted for a termination report.

Evaluates to:

errorMargin.inMs()

Invariants:

• No invariants.

E.2.10 Abstract class - ::slang::ReconciliationAdministrationClause
Extends: ::slang::AdministrationClause, pg. 333

Definitive: An administration clause for a mutually monitorable SLA, obliging clients and providers
of relevant services to report on all events.
Properties:

• No properties.

Operations:

• No operations.

Invariants:

• Wellformedness: The client and provider participation obligation. Clients and providers of all
services over which the clause places conditions must participate in all administrations of this
clause.

administrations->forall(a : ::services::Administration |

a.participants->includesAll(conditions.service().client.party)
and
a.participants->includesAll(conditions.service().provider.party)

)

• Wellformedness: The reconciliation obligation: clients and providers of all services being admin-
istered must support all agreed evidence.

administrations->forall(a : ::services::Administration |

services()->forall(s : ServiceDefinition |

a.agreed->forall(e : ::services::Evidence |

E.2. Package - ::slang 340

e.supporters->includes(s.provider.party)
and
e.supporters->includes(s.client.party)

)
)

)

E.2.11 Abstract class - ::slang::ReportRecordingAccuracyClause
Extends: ::slang::AccuracyClause, pg. 331

Definitive: These clauses enforce accuracy constraints on the reporting of the date of termination
reports.

This clause is abstract because the error margin for delivery time must be specified.
Properties:

• No properties.

Operations:

• calculateErrorMargin(report : ::services::Report,
evidence : ::services::Evidence[0, *] unique) : ::types::Real

Informal: (abstract) Get the error margin permitted for a termination report.

• getMeasurementCount(evidence : ::services::Evidence[0, *] unique) : ::types::Integer

Informal: Count the number of measurements covered by this clause for a given administration.

Evaluates to:

if evidence->exists(e : ::services::Evidence |

e.oclIsKindOf(::services::ReportRecord)
and
e.oclAsType(::services::ReportRecord).report.oclIsKindOf(

::services::TerminationReport)
)
then 1
else 0
endif

• getAccurateMeasurementCount(evidence : ::services::Evidence[0, *] unique) : ::types::Integer

Informal: Count the number of accurate measurements covered by this clause for a given admin-
istration.

Note that in real life this can never be evaluated with certainty. However the accuracy constraint
overall can be approximately monitored using a statistical hypothesis test.

Evaluates to:

if evidence->exists(e : ::services::Evidence |

e.oclIsKindOf(::services::ReportRecord)
and
(

let record = e.oclAsType(::services::ReportRecord)
in
let report = record.report.oclAsType(

::services::Report)
in
report.date.inMs() <= record.date.inMs() +

calculateErrorMargin(report, evidence)

E.2. Package - ::slang 341

and
report.date.inMs() >= record.date.inMs() -

calculateErrorMargin(report, evidence)
)

)
then 1
else 0
endif

Invariants:

• No invariants.

E.2.12 Abstract class - ::slang::ServiceBehaviourDefinition
Extends: ::slang::Definition, pg. 337

Definitive: A description of a service behaviour, identifying the events that constitute an instance
of the behaviour and the party considered responsible for causing the behaviour to occur.
Properties:

• service : ::slang::ServiceDefinition

Opposite: ::slang::ServiceDefinition.behaviours : ::slang::ServiceBehaviourDefinition[0, *]
unique

Definitive: A service behaviour definition forms part of a service definition.

Operations:

• calculateResponsibleParty() : ::slang::PartyDefinition

Informal: (abstract) Get the party held responsible for all instances of this type of behaviour.

• sLAEvents() : ::services::Event[0, *] unique

Informal: (abstract) Behaviour definitions establish the relevance of certain events to the sLA that
contains them.

• evidenced(event : ::services::Event,
administration : ::services::Administration) : ::types::Boolean

Informal: (abstract) Determines whether adequate evidence exists for an event to determine
whether this behaviour has occurred.

• getFirstInstanceOf(evidence : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::services::Evidence[0, *] unique

Informal: (abstract) Given a set of events, find the first instance of the described behaviour (or the
empty set if the behaviour does not occur), in the specified set of evidence, a subset of the agreed
evidence of the specified administration.

• getNextInstanceAfter(prior : ::services::Evidence[0, *] unique,
evidence : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::services::Evidence[0, *] unique

Informal: (abstract) Given a set of events and a subset of these events representing a an instance of
the behaviour described, find another instance of the behaviour. Iteration across these behaviours
instances should cover all instances of the behaviour in the specified set of events.

• getBehaviourTime(behaviour : ::services::Evidence[0, *] unique) : ::types::Real

Informal: (abstract) Get the notional time that a behaviour is deemed to have occurred.

Invariants:

• No invariants.

E.2.13 Abstract class - ::slang::ServiceBehaviourRestrictionConditionClause
Extends: ::slang::ConditionClause, pg. 336

Definitive:

E.2. Package - ::slang 342

Properties:

• restrictedBehaviours : ::slang::ServiceBehaviourDefinition[1, *] unique

Definitive: The service behaviours associated with this clause.

Operations:

• calculateMaxOccurrences(date : ::types::Real,
administration : ::services::Administration) : ::types::Integer

Informal: (abstract) The maximum number of occurrences of the behaviour that may be observed
within the sliding window starting at the time specified (in mS).

• calculateWindow(date : ::types::Real,
administration : ::services::Administration) : ::types::Real

Informal: (abstract) The width of a notional sliding time window, starting at the time specified,
within which no more than maxOccurances of the restricted behaviours may occur.

• sLAEvents() : ::services::Event[0, *] unique

Informal: The events relevant to a service behaviour restriction clause are the events relevant to
the behaviours it restricts.

Evaluates to:

restrictedBehaviours.sLAEvents()->asSet()

• service() : ::slang::ServiceDefinition

Informal: The services over which this clause places conditions are the services over which the
behaviours are described.

Evaluates to:

restrictedBehaviours.service->any(true)

• evidenced(event : ::services::Event,
administration : ::services::Administration) : ::types::Boolean

Informal: An event is evidenced for a behaviour restriction if it is evidenced for all of the restricted
behaviours to which it is relevant.

Evaluates to:

restrictedBehaviours->forall(b : ServiceBehaviourDefinition |

b.sLAEvents()->includes(event)
implies
b.evidenced(event, administration)

)

• remainingBehaviourTimes(behaviour : ::slang::ServiceBehaviourDefinition,
evidence : ::services::Evidence[0, *] unique,
administration : ::services::Administration,
last : ::services::Evidence[0, *] unique) : ::types::Real[0, *]

Informal: Returns all times that the specified evidence indicates that the specified behaviour oc-
curred, after the specified last occurrence of the behaviour.

Evaluates to:

let
next = behaviour.getNextInstanceAfter(last, evidence, administration)
in
if next->size() = 0
then Set(::types::Real) {}
else Set(::types::Real) { behaviour.getBehaviourTime(next) }->union(

remainingBehaviourTimes(behaviour, evidence, administration, next))
endif

E.2. Package - ::slang 343

• behaviourTimes(evidence : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::types::Real[0, *] ordered

Informal: Returns the ordered set of times that any of the behaviours associated to with this clause
are indicated to have occurred by the specified set of evidence.

Evaluates to:

restrictedBehaviours->collect(b : ServiceBehaviourDefinition |

let
first = b.getFirstInstanceOf(evidence, administration)
in
if first->size() = 0
then Set(::types::Real) {}
else Set(::types::Real) {

b.getBehaviourTime(first) }->union(
remainingBehaviourTimes(b, evidence, administration, first))

endif
)->sortedBy(t : ::types::Real | t)

• remainingEvidenceForBehaviourBetween(behaviour : ::slang::ServiceBehaviourDefinition,
administration : ::services::Administration,
last : ::services::Evidence[0, *] unique,
start : ::types::Real,
end : ::types::Real) : ::services::Evidence[0, *] unique

Informal: Return the set of evidence indicating the specified behaviour between the start and end
dates given, following the last instance specified.

Evaluates to:

let
next = behaviour.getNextInstanceAfter(last, administration.agreed,

administration)
in
if next->size() > 0
then

let
time = behaviour.getBehaviourTime(next),
rest = remainingEvidenceForBehaviourBetween(behaviour,

administration, next, start, end)
in
if time >= start and time <= end
then next->union(rest)
else rest
endif

else
Set(::services::Evidence) {}
endif

• evidenceForBehavioursBetween(administration : ::services::Administration,
start : ::types::Real,
end : ::types::Real) : ::services::Evidence[0, *] unique

Informal: Return evidence contributing to behaviours deemed to have occurred between the spec-
ified start and end times, inclusive.

Evaluates to:

restrictedBehaviours->collect(b : ServiceBehaviourDefinition |

E.2. Package - ::slang 344

let
first = b.getFirstInstanceOf(administration.agreed, administration)
in
if first->size() > 0
then

let
time = b.getBehaviourTime(first),
rest = remainingEvidenceForBehaviourBetween(b, administration,

first, start, end)
in
if time >= start and time <= end
then first->union(rest)
else rest
endif

else Set(::services::Evidence) {}
endif

)->asSet()

• lastBehaviourTime(evidence : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::types::Real

Informal: Determine the time of the last behaviour evident in the set of evidence specified.

Evaluates to:

let times = behaviourTimes(evidence, administration)
in
times->iterate(t : ::types::Real; last : ::types::Real =

times->any(true) |

if t > last then t else last endif
)

• firstBehaviourTime(evidence : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::types::Real

Informal: Determine the time of the first behaviour evident in the set of evidence specified.

Evaluates to:

let times = behaviourTimes(evidence, administration)
in
times->iterate(t : ::types::Real; last : ::types::Real =

times->any(true) |

if t < last then t else last endif
)

• firstMinimalViolationIndexAfter(cutoff : ::types::Real,
times : ::types::Real[0, *] ordered,
administration : ::services::Administration) : ::types::Integer

Informal: Returns the index of the behaviour time (from the specified array of behaviour times)
beginning a violation after the specified cutoff time, or -1 if no such index exists.

Evaluates to:

let
indices = Set(::types::Integer) { 1..times->size() }
in
indices->iterate(i : ::types::Integer; first : ::types::Integer = -1 |

E.2. Package - ::slang 345

if first <> -1 then first
else

(
let time = times->at(i)
in
let window = calculateWindow(time, administration),
max = calculateMaxOccurrences(time, administration)
in
let outside = i + max
in
if outside > times->size() then first
else

let
outsideTime = times->at(outside)
in
if outsideTime <= time + window
then i
else first
endif

endif
)

endif
)

• firstMinimalViolationAfter(cutoff : ::types::Real,
evidence : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::services::Evidence[0, *] unique

Informal: Given a sequence of times when behaviours associated with this clause occurred, find
the first minimal subsequence causing a violation. A minimal sequence of times is the smallest
set such that the times occur within the window of each other (starting with the first) and exceed
maxOccurrences (calculated from the first) in number.

Evaluates to:

let times = behaviourTimes(evidence,
administration)->select(
t : ::types::Real | t > cutoff)

in
let first = firstMinimalViolationIndexAfter(cutoff, times,

administration)
in
if first = -1 then Set(::services::Evidence) {}
else

let
time = times->at(first)
in
let window = calculateWindow(time, administration),
max = calculateMaxOccurrences(time, administration)
in
let outside = first + max
in
let
outsideTime = times->at(outside)
in
evidenceForBehavioursBetween(administration, time, outsideTime)

endif

• firstMinimalViolation(evidence : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::services::Evidence[0, *] unique

E.2. Package - ::slang 346

Informal: Determine the subset of the specified evidence representing the first minimal violation
of this clause.

Evaluates to:

firstMinimalViolationAfter(-1.0, evidence, administration)

• nextMinimalViolation(prior : ::services::Evidence[0, *] unique,
evidence : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::services::Evidence[0, *] unique

Informal: Find the next violation subsequence given a prior subsequence and a set of times.

Evaluates to:

let last = lastBehaviourTime(prior, administration)
in
firstMinimalViolationAfter(last, evidence, administration)

• firstMaximalViolationAfter(cutoff : ::types::Real,
evidence : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::services::Evidence[0, *] unique

Informal: Given a sequence of times when behaviours associated with this clause occurred, find
the first minimal subsequence causing a violation.

Evaluates to:

let times = behaviourTimes(
evidence, administration)->select(
t : ::types::Real | t > cutoff)

in
let indices = Sequence(::types::Integer) { 1..times->size() }
in
let first = firstMinimalViolationIndexAfter(cutoff, times,

administration)
in
if first = -1 then Set(::services::Evidence) {}
else

let lastFirst =
indices->iterate(o : ::types::Integer;

last : ::types::Integer = first |

if o = last + 1 and firstMinimalViolationIndexAfter(
times->at(last), times, administration) = o

then o
else last
endif

)
in
let outside = lastFirst +

calculateMaxOccurrences(times->at(lastFirst),
administration)

in
evidenceForBehavioursBetween(administration, times->at(first),

times->at(outside))
endif

• firstMaximalViolation(evidence : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::services::Evidence[0, *] unique

Informal: Given a sequence of times when behaviours associated with this clause occurred, find
the first minimal subsequence causing a violation.

Evaluates to:

E.2. Package - ::slang 347

firstMaximalViolationAfter(-1.0, evidence, administration)

• nextMaximalViolation(prior : ::services::Evidence[0, *] unique,
evidence : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::services::Evidence[0, *] unique

Informal: Find the next violation subsequence given a prior subsequence and a set of times.

Evaluates to:

let last = lastBehaviourTime(prior, administration)
in
firstMaximalViolationAfter(last, evidence, administration)

• behaviourInterval(evidence : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::types::Real

Informal: Determine the duration of behaviours in the set given.

Evaluates to:

lastBehaviourTime(evidence, administration) -
firstBehaviourTime(evidence, administration)

Invariants:

• Wellformedness: All restricted behaviours must be defined in relation to the same service.

restrictedBehaviours->collect(service)->asSet()->size() = 1

E.2.14 Abstract class - ::slang::ServiceDefinition
Extends: ::slang::Definition, pg. 337

Definitive: A service definition identifies a service being constrained by an SLA. Services have a
client and a provider and service provision results in events in the real world.
Properties:

• provider : ::slang::PartyDefinition

Definitive: Service definitions identify the party designated as the provider of the service.

• client : ::slang::PartyDefinition

Definitive: Service definitions identify the party designated as the client of the service.

• behaviours : ::slang::ServiceBehaviourDefinition[0, *] unique

Opposite: ::slang::ServiceBehaviourDefinition.service : ::slang::ServiceDefinition

Definitive: A service may have defined behaviours.

• sLA : ::slang::SLA

Opposite: ::slang::SLA.services : ::slang::ServiceDefinition[1, *] unique

Definitive: A service definition is part of an SLA.

Operations:

• No operations.

Invariants:

• Wellformedness: Provider and client must be defined in the same SLA.

provider.sLA = sLA
and
client.sLA = sLA

E.2. Package - ::slang 348

E.2.15 Class - ::slang::SLA
Extends: ::slang::Definition, pg. 337

Definitive: SLAng is a language for expressing SLAs. Concrete SLAs otherwise conforming to this
type and its related SLAng syntactic types are instances of this class if and only if the parties described
in the concrete SLA also agree that the SLA is in force.

SLAng, in its current form, is an abstract, extensible language. Although this class is concrete,
it has mandatory components with abstract types, for which concrete subclasses do not exist in this
specification. Therefore, in order to specify full SLAs using SLAng, it is currently necessary to extend
this specification.

The sources for this specification are available under an open-source licence from http://uclslang.sourceforge.net/
The sources are specified in the input format accepted by the UCL MDA tools. More in-

formation concerning this language, which is based on the standard languages EMOF and OCL
(http://www.omg.org), is available online at http://uclmda.sourceforge.net/

By far the most comprehensive source of information regarding this language is James Skene’s PhD
thesis, a link to which will shortly be made available from http://www.cs.ucl.ac.uk/staff/j.skene
Properties:

• uRI : ::types::String

Definitive: SLAng SLAs contain a URI referencing the artifact considered to be definitive of the
SLA being described.

Informal: This is useful if the SLA exists in multiple formats. Otherwise the SLA just refers to
itself.

• parties : ::slang::PartyDefinition[2, *] unique

Opposite: ::slang::PartyDefinition.sLA : ::slang::SLA

Definitive: The parties referred to in the SLA. There must be at least two parties corresponding to
the provider and client of at least one service.

• services : ::slang::ServiceDefinition[1, *] unique

Opposite: ::slang::ServiceDefinition.sLA : ::slang::SLA

Definitive: SLA terms identify the services being constrained.

Informal: Note that when describing interactions between parties, it is sometimes necessary to
constrain several services in the same SLA.

• penalties : ::slang::PenaltyDefinition[0, *] unique

Opposite: ::slang::PenaltyDefinition.sLA : ::slang::SLA

Definitive: An SLA may define a number of pre-agreed penalties, to be levied against parties who
are responsible for violations, as described by this specification.

• administrationClauses : ::slang::AdministrationClause[0, *] unique ordered

Opposite: ::slang::AdministrationClause.sLA : ::slang::SLA

Definitive: An SLA includes a set of administration clauses stating under what circumstances
the SLA should be administered, and what is required for administration in terms of gathering
evidence, submitting evidence, and calculating violations.

• auxiliaryClauses : ::slang::AuxiliaryClause[0, *] unique ordered

Opposite: ::slang::AuxiliaryClause.sLA : ::slang::SLA

Definitive: Any SLA terms may contain a number of additional clauses providing additional in-
formation relevant to the SLA that is not captured in service or penalty definitions, or in the
conditions.

Informal: Some types of clauses may need to be referred to from several locations in the SLA.
These can be auxiliary definitions.

• events : ::services::Event[0, *] unique

Definitive: Any number of events may occur which a relevant to an SLA. In particular, adminis-
trations of an SLA are events relevant to the SLA. SLA events are defined in administration and
auxiliary clauses.

E.2. Package - ::slang 349

Operations:

• No operations.

Invariants:

• Wellformedness: The administration obligation: The SLA must be administered as governed by
the administration clauses (in relation to service events).

administrationClauses->forall(a : AdministrationClause |

a.administered()
)

• Wellformedness: SLA events are defined by the presence of particular types of administration
clauses.

events = administrationClauses.sLAEvents()->asSet()

E.2.16 Abstract class - ::slang::TerminatingConditionClause
Extends: ::slang::ConditionClause, pg. 336

Definitive: The violation of a terminating condition clause causes the termination of the SLA.
Informal: Terminating condition clauses are not structurally different from other condition clauses.

However, ordinary administration clauses should never require administrations occurring after an admin-
istration in which a violation of a terminating condition clause has been calculated.
Properties:

• No properties.

Operations:

• service() : ::slang::ServiceDefinition

Informal: Terminating conditions clauses don’t place conditions over any service.

Evaluates to:

Set(ServiceDefinition) {}->any(true)

Invariants:

• No invariants.

E.2.17 Abstract class - ::slang::TerminationByReportAdministrationClause
Extends: ::slang::AdministrationClause, pg. 333

Definitive: An administration clause triggered by the exchange of a termination report. This class
includes the obligation to monitor and report termination reports, with a specified accuracy, and option-
ally to administer a penalty.

This class is abstract because the calculation of any other violations at termination must be specified.
Properties:

• No properties.

Operations:

• calculateAdministrationDeadline() : ::types::Real

Informal: (abstract) A termination-by-report administrative clause defines a deadline for adminis-
tration. The SLA must have been administered according to this clause within this period of the
latest date recorded in evidence relating to the termination record being sent. The length of this
deadline is determined by the specific type of termination-by-report administrative clause.

E.2. Package - ::slang 350

• eventRelevant(administration : ::services::Administration,
event : ::services::Event) : ::types::Boolean

Informal: At least termination reports are relevant. Override to consider additional types of event.

Evaluates to:

event.oclIsKindOf(::services::TerminationReport)

• administered() : ::types::Boolean

Informal: (abstract) Checks whether the service has been administered correctly according to this
clause.

Evaluates to:

sLA.events->forall(e : ::services::Event |

e.oclIsKindOf(::services::TerminationReport)
implies
(

let records = e.evidence->select(oclIsKindOf(
::services::ReportRecord))->collect(
oclAsType(::services::ReportRecord))

in
(

let
start = records->iterate(r : ::services::ReportRecord;

date : ::types::Real = records->any(true).date.inMs() |

if r.date.inMs() > date
then r.date.inMs()
else date
endif

)
in
(

administrations->exists(
a : ::services::Administration |

let date = a.date.inMs()
in
(

date >= start
and
date <= start +

calculateAdministrationDeadline()
)

)
)

)
)

)

Invariants:

• No invariants.

E.2.18 Abstract class - ::slang::TerminationByReportConditionClause
Extends: ::slang::TerminatingConditionClause, pg. 349

Definitive: A condition clause that awards a penalty to a party based on its peer in a service provi-
sioning relationship submitting a termination report.

The class is abstract because the calculation of the penalty must be specified.

E.2. Package - ::slang 351

Properties:

• terminationReport : ::services::TerminationReport[0, 1]

Definitive: A termination report may or may not be submitted for the SLA of which this clause
forms a part.

Operations:

• sLAEvents() : ::services::Event[0, *] unique

Informal: The inclusion of a termination report condition rules the exchange of a termination
report in as a relevant event for an SLA.

Evaluates to:

if not terminationReport.oclIsUndefined() then
Set(::services::Event) { terminationReport }

else Set(::services::Event) {}
endif

• evidenced(event : ::services::Event,
administration : ::services::Administration) : ::types::Boolean

Informal: A termination report is adequately evidenced if a report record exists referring to it.

Evaluates to:

let r = event.oclAsType(::services::TerminationReport)
in
administration.agreed->exists(e : ::services::Evidence |

e.oclIsKindOf(::services::ReportRecord)
and
e.oclAsType(::services::ReportRecord).report = r

)

• violationsCalculated(administration : ::services::Administration) : ::types::Boolean

Informal: (abstract) Check that administrations have correctly calculated violations associated
with this clause.

Evaluates to:

let
agreed = administration.agreed,
violations = administration.violations
in
agreed->select(

oclIsKindOf(::services::ReportRecord)
and
oclAsType(::services::ReportRecord).report.oclIsKindOf(

::services::TerminationReport)
)->forall(e : ::services::Evidence |

violations->exists(v : ::services::Violation |

v.violator =
sLA.parties->any(

party = oclAsType(::services::ReportRecord
).report.dispatcher)

and
v.violatedClause = self

E.3. Package - ::slang::es 352

and
v.evidence = Set(::services::Evidence) { e }
and
v.penalty = calculatePenalty(

e.oclAsType(::services::ReportRecord), agreed)
)

)

• calculatePenalty(terminationReportRecord : ::services::ReportRecord,
agreed : ::services::Evidence[0, *] unique) : ::slang::PenaltyDefinition

Informal: (abstract) Calculate a penalty for termination.

Invariants:

• Wellformedness: If a termination report is issued it is relevant to the sLA of which this clause
forms a part.

(not terminationReport.oclIsUndefined())
implies
terminationReport.sLA = sLA

• Wellformedness: If an termination-by-report condition clause is associated with an administration
then a termination report accuracy clause is also required.

administrationClauses->forall(a : AdministrationClause |

a.accuracyClauses->exists(
oclIsKindOf(PermanentFixedReportRecordingAccuracyClause))

)

E.3 Package - ::slang::es
Informal: The es package defines all types of objects that are used only in the syntax of SLAng electronic
service SLAs. At present electronic service SLAs are the only well defined type of SLA in SLAng.
However, in the future there may be more types, possibly including ISP and hosting SLAs.

E.3.1 Enumeration - ::slang::es::ParameterKind
Definitive: An enumeration type for describing the directionality of parameters.

• IN

Definitive: In parameters are used to pass information to an electronic service.

• OUT

Definitive: Out parameters are used to return information from an electronic service.

• IN OUT

Definitive: In/out parameters are used to pass and return information to and from an electronic
service.

E.3.2 Abstract class - ::slang::es::AvailabilityConditionClause
Extends: ::slang::ConditionClause, pg. 336

Definitive: An availability clause assigns a penalty to a period of service unavailability defined as
the interval between a bug report being exchanged between the parties in a electronic-service provision-
ing relationship defined in an SLA, and the exchange of a corresponding bug-fix report. These reports
must cite a usage mode defined as part of the definition of the electronic-service included in the SLA.

Availability clauses are abstract because more information is required to determine violations. This
information includes:

- When the availability clause applies.
- Variation of penalties according to some scheme.

E.3. Package - ::slang::es 353

Properties:

• usageMode : ::slang::es::UsageModeDefinition

Definitive: An availability clause identifies a single usage-mode that may be reported unavailable,
either by the service provider, or by the client in response to the violation of a reliability clause.

• reliabilityClauses : ::slang::ServiceBehaviourRestrictionConditionClause[0, *] unique

Definitive: violations of these reliability clauses within the calculated deadline allow the submis-
sion of a bug report by the client of the service.

Operations:

• calculateReportingDeadline(violation : ::services::Violation) : ::types::Real

Informal: (abstract) calculate the deadline for reporting unavailability based on a violation of one
of the reliability clauses.

• considerLoneBugReports() : ::types::Boolean

Informal: (abstract) are lone bug reports considered when calculating violations?

• calculatePenaltyForBugReport(administration : ::services::Administration,
bugReport : ::services::ReportRecord) : ::slang::PenaltyDefinition

Informal: (abstract) calculate penalty for a lone bug-report.

• calculatePenaltyForUnavailability(administration : ::services::Administration,
bugReport : ::services::ReportRecord,
bugFixReport : ::services::ReportRecord) : ::slang::PenaltyDefinition

Informal: (abstract) calculate penalty for a pair of bug and bug-fix reports.

• sLAEvents() : ::services::Event[0, *] unique

Informal: The usage of availability clauses renders the exchange of bug and bug-fix reports rele-
vant to the SLA.

Evaluates to:

(Set(::services::Event) {}->union(usageMode.bugReports)
)->union(usageMode.bugFixReports)->asSet()

• service() : ::slang::ServiceDefinition

Informal: The services over which this clause places conditions are the services over which the
associated usage modes apply.

Evaluates to:

usageMode.service

• evidenced(event : ::services::Event,
administration : ::services::Administration) : ::types::Boolean

Informal: (abstract) Determines whether adequate evidence exists for an event (within some set of
evidence) to determine violations of these conditions.

Evaluates to:

event.oclIsKindOf(::services::Report)
implies
administration.agreed->exists(e : ::services::Evidence |

e.oclIsKindOf(::services::ReportRecord)
and
e.oclAsType(::services::ReportRecord).report =

event.oclAsType(::services::Report)
)

E.3. Package - ::slang::es 354

• bugReports(agreed : ::services::Evidence[0, *] unique) : ::services::ReportRecord[0, *] unique

Informal: Evaluates to the set of bug reports detailed by an account of service behaviour.

Evaluates to:

agreed->select(e : ::services::Evidence |

e.oclIsKindOf(::services::ReportRecord)
)->collect(e : ::services::Evidence |

e.oclAsType(::services::ReportRecord)
)->asSet()->select(r : ::services::ReportRecord |

r.report.oclIsKindOf(::services::es::BugReport)
and
r.report.oclAsType(::services::es::BugReport).usageMode = usageMode

)

• findRecordOfBugFix(evidence : ::services::Evidence[0, *] unique,
bugReport : ::services::es::BugReport) : ::services::ReportRecord

Informal: Evaluates to the set of bug reports detailed by an account of service behaviour.

Evaluates to:

evidence->any(e : ::services::Evidence |

e.oclIsKindOf(::services::ReportRecord)
and
(

let
reportRecord = e.oclAsType(::services::ReportRecord)
in
reportRecord.report.oclIsKindOf(

::services::es::BugFixReport)
and
reportRecord.report.oclAsType(

::services::es::BugFixReport).bugReport = bugReport
)

).oclAsType(::services::ReportRecord)

• violationsCalculated(administration : ::services::Administration) : ::types::Boolean

Informal: Violations have been calculated for an administration clause if a violation exists for each
pair of bug and bug-fix report, with the relevant

Evaluates to:

let
evidence = administration.agreed,
violations = administration.violations
in
bugReports(evidence)->forAll(b : ::services::ReportRecord |

let f = findRecordOfBugFix(evidence,
b.report.oclAsType(::services::es::BugReport))

in
(not f.oclIsUndefined())
implies
violations->exists(v : ::services::Violation |

E.3. Package - ::slang::es 355

v.evidence = Set(::services::Evidence) { b, f }
and
v.violator = usageMode.service.provider
and
v.penalty = calculatePenaltyForUnavailability(

administration, b, f)
)

)
and
(

considerLoneBugReports()
implies
bugReports(evidence)->forAll(b : ::services::ReportRecord |

let f = findRecordOfBugFix(evidence,
b.report.oclAsType(::services::es::BugReport))

in
f.oclIsUndefined()
implies
violations->exists(v : ::services::Violation |

v.evidence = Set(::services::Evidence) { b }
and
v.violator = usageMode.service.provider
and
v.penalty = calculatePenaltyForBugReport(

administration, b)
)

)
)

• endOfLastUsage(evidence : ::services::Evidence[0, *] unique) : ::types::Real

Informal: Calculates the moment that the end of the last usage indicated by a set of evidence
occurred.

Evaluates to:

let firstUsage =
evidence->any(oclIsKindOf(

::services::es::ServiceUsageRecord)).oclAsType(
::services::es::ServiceUsageRecord)

in
let
firstEnd = firstUsage.date.inMs() +

(if firstUsage.duration.oclIsUndefined() then 0.0
else firstUsage.duration.inMs() endif)

in
evidence->select(oclIsKindOf(::services::es::ServiceUsageRecord)

)->iterate(e : ::services::Evidence; latest = firstEnd |

let nextUsage = e.oclAsType(
::services::es::ServiceUsageRecord)

in
let nextEnd = nextUsage.date.inMs() +

(if nextUsage.duration.oclIsUndefined() then 0.0
else nextUsage.duration.inMs() endif)

in
if nextEnd > latest
then nextEnd

E.3. Package - ::slang::es 356

else latest
endif

)

Invariants:

• Wellformedness: client-issued bug reports, records of which are included as evidence in adminis-
trations, the governing clauses of which refer to this availability clause, must be delivered within
the reporting deadline of a violation of one of the referenced reliability clause.

administrationClauses.administrations->forall(
a : ::services::Administration |

a.evidence->forall(e : ::services::Evidence |

e.oclIsKindOf(::services::ReportRecord)
and
(

let record = e.oclAsType(::services::ReportRecord)
in
record.report.oclIsKindOf(::services::es::BugReport)
and
(

let report =
record.report.oclAsType(::services::es::BugReport)

in
report.usageMode = usageMode
implies
a.violations->exists(v : ::services::Violation |

reliabilityClauses->includes(v.violatedClause)
and
record.date.inMs() >= endOfLastUsage(v.evidence)
and
record.date.inMs() < endOfLastUsage(v.evidence) +

calculateReportingDeadline(v)
)

)
)

)
)

• Wellformedness: the behaviours restricted by the reliability clauses must all be failure modes that
only exist in the usage mode referenced by this clause.

reliabilityClauses.restrictedBehaviours->forAll(
b : ::slang::ServiceBehaviourDefinition |

b.oclIsKindOf(FailureModeDefinition)
and
b.oclAsType(FailureModeDefinition).usageModes->asSet() =

Set(UsageModeDefinition) { usageMode }
)

• Wellformedness: If an availability condition clause is associated with an administration then a
report accuracy clause is also required.

administrationClauses->forall(a : ::slang::AdministrationClause |

E.3. Package - ::slang::es 357

a.accuracyClauses->exists(
oclIsKindOf(

::slang::PermanentFixedReportRecordingAccuracyClause))
)

E.3.3 Abstract class - ::slang::es::AvailabilityDependentElectronicService-
UsageBehaviourDefinition

Extends: ::slang::es::ElectronicServiceUsageBehaviourDefinition, pg. 360
Informal: An available electronic-service usage behaviour is a behaviour that occurs when the

service is available, according to some availability clauses.
Properties:

• availabilityClauses : ::slang::es::AvailabilityConditionClause[0, *] unique

Definitive: An available-behaviour mode takes its definition of service availability from some
availability clauses.

Operations:

• isUnavailable(usage : ::services::es::ServiceUsageRecord) : ::types::Boolean

Informal: Calculates whether this usage is made in a mode that is currently unavailable according
to a given SLA.

Evaluates to:

usage.behaviours->exists(
b : ElectronicServiceUsageBehaviourDefinition |

b.oclIsKindOf(::slang::es::UsageModeDefinition)
and
(

let usageMode = b.oclAsType(::slang::es::UsageModeDefinition)
in
availabilityClauses.usageMode->includes(usageMode)
and
usageMode.bugReports->exists(b : ::services::es::BugReport |

b.date.inMs() <= usage.date.inMs()
and
not usageMode.bugFixReports->exists(

f : ::services::es::BugFixReport |

f.bugReport = b
and
f.date.inMs() <= usage.date.inMs()

)
)

)
)

• excluded(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: A service usage is excluded from an available-behaviour mode if the service is unavail-
able at the time it occurred.

Evaluates to:

isUnavailable(usage)

E.3. Package - ::slang::es 358

Invariants:

• No invariants.

E.3.4 Class - ::slang::es::ElectronicServiceClientDefinition
Extends: ::slang::Definition, pg. 337,
::slang::AuxiliaryClause, pg. 336

Definitive: Electronic-service SLAs include the definition of electronic-service clients which are
physical devices or specific processes capable of accessing the interface of an electronic-service directly.
Properties:

• owner : ::slang::PartyDefinition

Definitive: Electronic-service clients are controlled by a single party identified in the SLA.

• electronicServiceClient : ::services::es::ElectronicServiceClient

Opposite: ::services::es::ElectronicServiceClient.definitions : ::slang::es::ElectronicService-
ClientDefinition[0, *] unique

Definitive: An electronic-service client definition identifies an electronic-service client in the real
world.

Operations:

• No operations.

Invariants:

• No invariants.

E.3.5 Class - ::slang::es::ElectronicServiceDefinition
Extends: ::slang::ServiceDefinition, pg. 347

Definitive: An electronic service definition unambiguously identifies the service being provided
in the service provision scenario that is being governed by a SLAng ES SLA. If reliability constraints
are included in the SLA, the electronic service definition should include or refer to a description of the
service from which it is possible to determine the correct functional behaviour of the operations of the
service.

Informal: The degree of ambiguity in any referenced description of the service will affect the pre-
cision of the SLA with regards to reliability properties. The description should hence be as precise as is
practically possible.
Properties:

• interfaces : ::slang::es::ElectronicServiceInterfaceDefinition[1, *] unique

Definitive: These electronic service interfaces can be utilised by the electronic service clients
referenced by this definition.

• clients : ::slang::es::ElectronicServiceClientDefinition[1, *] unique

Definitive: The electronic service interfaces referenced by this definition may be accessed by these
service clients.

Operations:

• No operations.

Invariants:

• Wellformedness : All electronic service clients must be controlled by the client of this service.

clients->forall(
c : ElectronicServiceClientDefinition |

c.owner.party = client.party
)

E.3. Package - ::slang::es 359

• Wellformedness: All electronic service interfaces must be controlled by the provider of this ser-
vice.

interfaces->forall(
i : ElectronicServiceInterfaceDefinition |

i.owner.party = provider.party
)

• Wellformedness: All interfaces and ES clients must be defined in the same SLA terms as the
service definition.

interfaces->forall(
i : ElectronicServiceInterfaceDefinition |

i.sLA = sLA
)
and
clients->forall(

c : ElectronicServiceClientDefinition |

c.sLA = sLA
)

E.3.6 Class - ::slang::es::ElectronicServiceInterfaceDefinition
Extends: ::slang::Definition, pg. 337,
::slang::AuxiliaryClause, pg. 336

Definitive: An electronic-service SLA includes definitions identifying electronic-service interfaces
in the real world.

Properties:

• owner : ::slang::PartyDefinition

Definitive: Electronic-service interfaces are controlled by a single party identified in the SLA.

• operations : ::slang::es::OperationDefinition[1, *] unique

Opposite: ::slang::es::OperationDefinition.interface : ::slang::es::ElectronicServiceInterface-
Definition

Definitive: Electronic-service interfaces expose a set of operations defined in the SLA.

• electronicServiceInterface : ::services::es::ElectronicServiceInterface

Opposite: ::services::es::ElectronicServiceInterface.definitions : ::slang::es::ElectronicService-
InterfaceDefinition[0, *] unique

Definitive: An electronic-service interface definition identifies an electronic-service interface in
the real world.

Operations:

• No operations.

Invariants:

• Wellformedness: The owner of the electronic service in the real world should be the same party as
defined by the clause identifying the owner of the interface in the SLA.

owner.party = electronicServiceInterface.owner

E.3. Package - ::slang::es 360

E.3.7 Abstract class - ::slang::es::ElectronicServiceUsageBehaviourDefinition
Extends: ::slang::ServiceBehaviourDefinition, pg. 341

Definitive: Defines a class of failure. This can be failed or overdue responses from operations, the
service as a whole, or an operation that fails repeatedly with a particular combination of parameters. It
can also be failure to access up-to-date information.

Informal: Failure modes define the type of failure that reliability clauses constrain. They may relate
to the functional behaviour or protocols that the interface should implement.
Properties:

• operations : ::slang::es::OperationDefinition[1, *] unique

Definitive: The operations of the service that may cause this usage.

Operations:

• included(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: (abstract) A service usage should reference an electronic service behaviour if it is in-
cluded in the behaviour (according to some administration), and not also excluded.

• excluded(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: (abstract) A service usage should reference an electronic service behaviour if it is in-
cluded in the behaviour (according to some administration), and not also excluded.

• sLAEvents() : ::services::Event[0, *] unique

Informal: All events associated with the service are relevant to the determination of failures.

Evaluates to:

let
electronicService = service.oclAsType(ElectronicServiceDefinition)
in
let requests =

electronicService.interfaces.electronicServiceInterface.operations.
requests

in
(Set(::services::Event) {}->union(requests))->union(

requests->select(not response.oclIsUndefined()).response
)->asSet()

• evidenced(event : ::services::Event,
administration : ::services::Administration) : ::types::Boolean

Informal: A service request is adequately evidenced if there exists a corresponding service usage
record. A service response is evidenced if its corresponding request is evidenced. The service
usage record should also reference this service behaviour if it is included, and not excluded, ac-
cording to the definitions of this behaviour.

Note that by this definition the inclusion of an electronic-service usage behaviour definition in a
service behaviour restriction conditions implies that all usages must be recorded and reported at
administration.

Evaluates to:

event.oclIsKindOf(::services::es::ServiceRequest)
or
event.oclIsKindOf(::services::es::ServiceResponse)
implies
(

let r =
if event.oclIsKindOf(::services::es::ServiceRequest) then

E.3. Package - ::slang::es 361

event.oclAsType(::services::es::ServiceRequest)
else event.oclAsType(::services::es::ServiceResponse).request
endif

in
administration.agreed->exists(e : ::services::Evidence |

e.oclIsKindOf(::services::es::ServiceUsageRecord)
and
(

let record = e.oclAsType(::services::es::ServiceUsageRecord)
in
record.request = r

)
and
(

included(e.oclAsType(::services::es::ServiceUsageRecord),
administration)

and
(not excluded(e.oclAsType(

::services::es::ServiceUsageRecord), administration))
implies e.oclAsType(::services::es::ServiceUsageRecord

).behaviours->includes(self)
)

)
)

• serviceUsageRecords(evidence : ::services::Evidence[0, *] unique) : ::services::es::ServiceUsage-
Record[0, *] unique

Informal: Find the service usage records evidencing this behaviour in a set of evidence.

Evaluates to:

evidence->select(oclIsKindOf(::services::es::ServiceUsageRecord)
)->collect(oclAsType(::services::es::ServiceUsageRecord))->
select(record : ::services::es::ServiceUsageRecord |

record.behaviours->includes(self)
)->asSet()

• getFirstInstanceOf(evidence : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::services::Evidence[0, *] unique

Informal: The service usage record with the earliest date in the presented evidence.

Evaluates to:

let
records = serviceUsageRecords(evidence)
in
if records->size() = 0 then Set(::services::Evidence) {}
else

let first = records->iterate(e : ::services::es::ServiceUsageRecord;
first : ::services::es::ServiceUsageRecord =

records->any(true) |

if e.date.inMs() < first.date.inMs()
then e
else first
endif

)

E.3. Package - ::slang::es 362

in
Set(::services::Evidence) { first }

endif

• getNextInstanceAfter(prior : ::services::Evidence[0, *] unique,
evidence : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::services::Evidence[0, *] unique

Informal: The service usage record with the earliest date after the prior occurrence.

Evaluates to:

let
records = serviceUsageRecords(evidence)
in
let last = prior->any(true).oclAsType(

::services::es::ServiceUsageRecord)
in
if records->size() = 0 then Set(::services::Evidence) {}
else

let next = records->iterate(e : ::services::es::ServiceUsageRecord;
first : ::services::es::ServiceUsageRecord = records->any(true) |

if first.date.inMs() < last.date.inMs() or first = last
then e
else

if
e.date.inMs() < first.date.inMs() and
e.date.inMs() > last.date.inMs()

then e
else first
endif

endif
)
in
if

(not (next.date.inMs() < last.date.inMs()))
and
(not (next = last))

then Set(::services::Evidence) { next }
else Set(::services::Evidence) {}
endif

endif

• getBehaviourTime(behaviour : ::services::Evidence[0, *] unique) : ::types::Real

Informal: The time that the failure occurred is deemed to be the time recorded for the request on
the corresponding service-usage record (behaviours in this case should only be represented by a
single piece of evidence).

Evaluates to:

behaviour->any(true).oclAsType(
::services::es::ServiceUsageRecord).date.inMs()

Invariants:

• No invariants.

E.3. Package - ::slang::es 363

E.3.8 Abstract class - ::slang::es::FailureModeDefinition
Extends: ::slang::es::ElectronicServiceUsageBehaviourDefinition, pg. 360

Definitive: Defines a class of failure. This can be failed or overdue responses from operations, the
service as a whole, or an operation that fails repeatedly with a particular combination of parameters. It
can also be failure to access up-to-date information.

Informal: Failure modes define the type of failure that reliability clauses constrain. They may relate
to the functional behaviour or protocols that the interface should implement.

Properties:

• usageModes : ::slang::es::UsageModeDefinition[1, *] unique

Opposite: ::slang::es::UsageModeDefinition.failureModes : ::slang::es::FailureModeDefinition[0,
*] unique

Definitive: Failure mode definitions must identify usage modes in which they can occur.

Operations:

• calculateResponsibleParty() : ::slang::PartyDefinition

Informal: The provider of the electronic service is always responsible for any failures.

Evaluates to:

service.provider

Invariants:

• Wellformedness: If a service usage references this failure mode, then it also references a usage
mode in which this failure mode may occur.

operations.usageRecords->forAll(u : ::services::es::ServiceUsageRecord |

u.behaviours->includes(self)
implies
u.behaviours->exists(b : ElectronicServiceUsageBehaviourDefinition |

usageModes->includes(b)
)

)

E.3.9 Class - ::slang::es::InformalFailureModeDefinition
Extends: ::slang::es::FailureModeDefinition, pg. 363

Definitive: Provides a concrete but informal means to define failure modes. Here we state defini-
tively that for a failure to be regarded as included in this mode, it must conform to a fair interpretation
of the textual definition of the mode given in the SLA. Hence the service usage records representing in-
stances of the failure (or culminations of the failure should the failure manifest itself over several usages)
should refer to the failure mode definition.

Informal: This definitive description of informal failure modes is binding, but unfortunately can’t
be formalised as the particular description of the failure is not known until the SLA is written. Formal
extensions of the core language, e.g. by extending the class ::slang::es::FailureModeDefinition should
be preferred to the use of this class.

Properties:

• No properties.

E.3. Package - ::slang::es 364

Operations:

• included(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: A service usage should reference an informal failure mode if it matches the description
of the mode.

Evaluates to:

usage.behaviours->includes(self)

• excluded(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: A service usage should reference an informal failure mode if it matches the description
of the mode.

Evaluates to:

not usage.behaviours->includes(self)

Invariants:

• No invariants.

E.3.10 Class - ::slang::es::InformalUsageModeDefinition
Extends: ::slang::es::UsageModeDefinition, pg. 369

Definitive: Provides a concrete but informal means to define usage modes. Here we state definitively
that for a usage to be regarded as included in this mode, it must conform to a fair interpretation of the
textual definition of the mode given in the SLA. Hence the service usage records representing instances
of the usage (or culminations of the usage should the usage manifest itself over several invocations)
should refer to the usage mode definition.

Informal: This definitive description of informal usage modes is binding, but unfortunately can’t
be formalised as the particular description of the usage is not known until the SLA is written. Formal
extensions of the core language, e.g. by extending the class ::slang::es::UsageModeDefinition should be
preferred to the use of this class.
Properties:

• No properties.

Operations:

• included(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: A service usage should reference an informal usage mode if it matches the description
of the mode.

Evaluates to:

usage.behaviours->includes(self)

• excluded(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: A service usage should reference an informal usage mode if it matches the description
of the mode.

Evaluates to:

not usage.behaviours->includes(self)

Invariants:

• No invariants.

E.3. Package - ::slang::es 365

E.3.11 Abstract class - ::slang::es::LatencyFailureModeDefinition
Extends: ::slang::es::FailureModeDefinition, pg. 363

Definitive: A failure mode including all operations that fail to respond within some time limit.
Properties:

• No properties.

Operations:

• calculateMaxDuration(date : ::types::Date) : ::types::Real

Informal: (abstract) calculate the maximum latency of operations associated with this definition.

• included(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: A service usage should be included in this mode if it’s duration is greater than the
calculated maximum duration (and it is not otherwise excluded).

Evaluates to:

not usage.duration.oclIsUndefined()
and
usage.duration.inMs() > calculateMaxDuration(usage.date)

Invariants:

• No invariants.

E.3.12 Class - ::slang::es::OperationDefinition
Extends: ::slang::Definition, pg. 337

Definitive: An operation definition unambiguously identifies an operation of the electronic service
being provided in the service provision scenario that is being governed by a SLAng ES SLA. If a func-
tional description of the service is provided or referenced in the service description provided in the same
ES SLA, then all operation definitions should reference or reproduce parts of that description pertaining
to the operation being identified. This is in order that reliability clauses associated with the operation
definition can be identified with a specification of their functional behaviour.

Operation definitions also define a timeout for the operation. Requests for which responses are not
received within the timeout period are regarded as failures, and should have no effect on the behaviour
of the service.

Informal: An operation is a part of the interface between the client and provider of the service. The
client may submit requests to the operation, and in due course expect to receive a response.
Properties:

• parameters : ::slang::es::ParameterDefinition[0, *] unique

Opposite: ::slang::es::ParameterDefinition.operation : ::slang::es::OperationDefinition

Definitive: Operation definitions define a set of anticipated parameters.

• interface : ::slang::es::ElectronicServiceInterfaceDefinition

Opposite: ::slang::es::ElectronicServiceInterfaceDefinition.operations : ::slang::es::Operation-
Definition[1, *] unique

Definitive: Operation definitions are a part of the definition of an electronic-service interface.

• operation : ::services::es::Operation

Opposite: ::services::es::Operation.definitions : ::slang::es::OperationDefinition[0, *] unique

Definitive: An operation definition describes an operation in the real world.

• usageRecords : ::services::es::ServiceUsageRecord[0, *] unique

Opposite: ::services::es::ServiceUsageRecord.operation : ::slang::es::OperationDefinition

Definitive: An operation definition may be associated with several usage records.

E.3. Package - ::slang::es 366

Operations:

• No operations.

Invariants:

• No invariants.

E.3.13 Class - ::slang::es::ParameterDefinition
Extends: ::slang::Definition, pg. 337

Definitive: Defines an expected parameter of an operation.
Properties:

• parameterKind : ::slang::es::ParameterKind

Definitive: Operation parameters may be input, output or input/output.

• parameter : ::services::es::Parameter

Opposite: ::services::es::Parameter.definitions : ::slang::es::ParameterDefinition[0, *] unique

Definitive: Parameter definitions identify parameters for operations of electronic services in the
real world.

• parameterRecords : ::services::es::ParameterRecord[0, *]

Opposite: ::services::es::ParameterRecord.type : ::slang::es::ParameterDefinition

Definitive: During service usage, evidence concerning the value of parameters passed or returned
from operations will accumulate, associated with this definition.

• operation : ::slang::es::OperationDefinition

Opposite: ::slang::es::OperationDefinition.parameters : ::slang::es::ParameterDefinition[0, *]
unique

Definitive: A parameter definition is part of an operation definition.

Operations:

• isValid(value : ::types::String) : ::types::Boolean

Informal: (abstract) Determine whether a string represents a valid encoding of a value for this
parameter.

Evaluates to:

true

Invariants:

• Wellformedness: If the parameter kind is IN, then parameter records for this definition must all be
recorded as the input in a service usage record.

parameterKind = ParameterKind."IN"
implies
parameterRecords->forall(p : ::services::es::ParameterRecord |

not p.serviceUsageAsInput.oclIsUndefined()
)

• Wellformedness: If the parameter kind is OUT, then parameter records for this definition must all
be recorded as the output in a service usage record.

parameterKind = ParameterKind.OUT
implies
parameterRecords->forall(p : ::services::es::ParameterRecord |

not p.serviceUsageAsOutput.oclIsUndefined()
)

E.3. Package - ::slang::es 367

E.3.14 Class - ::slang::es::PermanentFixedServiceUsageRecordAccuracyClause
Extends: ::slang::es::ServiceUsageRecordAccuracyClause, pg. 367

Definitive: A service-usage accuracy clause that applies continuously and requires a fixed minimum
accuracy for date and duration measurements.

Informal: The presence of a clause of this kind is mandatory if throughput or reliability clauses are
used in an electronic-service SLA, to ensure a minimum level of accuracy in the reporting of service-
usages.
Properties:

• dateErrorMargin : ::types::Duration

Definitive: Service-usage records measured in accordance with this clause must report the date
correctly to within this margin, with the specified confidence and type I error rate (over date and
duration measurements taken together).

• durationErrorMargin : ::types::Duration

Definitive: Service-usage records measured in accordance with this clause must report the duration
of service usage correctly to within this margin, with the specified confidence and type I error rate
(over date and duration measurements taken together).

Operations:

• calculateDateErrorMargin(record : ::services::es::ServiceUsageRecord,
agreed : ::services::Evidence[0, *] unique) : ::types::Real

Informal: the error margin for the date measurement is the fixed value specified.

Evaluates to:

dateErrorMargin.inMs()

• calculateDurationErrorMargin(record : ::services::es::ServiceUsageRecord,
agreed : ::services::Evidence[0, *] unique) : ::types::Real

Informal: the error margin for the duration measurement is the fixed value specified.

Evaluates to:

durationErrorMargin.inMs()

Invariants:

• No invariants.

E.3.15 Abstract class - ::slang::es::ServiceUsageRecordAccuracyClause
Extends: ::slang::AccuracyClause, pg. 331

Definitive:
This clause is abstract because the following information must be specified.
- How the values of the error-margin parameters vary over time.

Properties:

• No properties.

Operations:

• calculateDateErrorMargin(record : ::services::es::ServiceUsageRecord,
agreed : ::services::Evidence[0, *] unique) : ::types::Real

Informal: (abstract) determine the accuracy required by the parameter sLA for the date measure-
ment.

• calculateDurationErrorMargin(record : ::services::es::ServiceUsageRecord,
agreed : ::services::Evidence[0, *] unique) : ::types::Real

Informal: (abstract) determine the accuracy required by the parameter sLA for the duration mea-
surement.

E.3. Package - ::slang::es 368

• isDateAccurate(record : ::services::es::ServiceUsageRecord,
agreed : ::services::Evidence[0, *] unique) : ::types::Boolean

Informal: Assesses whether the date measurement is accurate according to the parameter sLA.

Evaluates to:

record.date.inMs() >= record.request.date.inMs() -
calculateDateErrorMargin(record, agreed)

and
record.date.inMs() <= record.request.date.inMs() +

calculateDateErrorMargin(record, agreed)

• isDurationAccurate(record : ::services::es::ServiceUsageRecord,
agreed : ::services::Evidence[0, *] unique) : ::types::Boolean

Informal: Assesses whether the duration measurement is accurate according to the parameter sLA.

Evaluates to:

if not record.response.oclIsUndefined()
then

let trueDuration = record.response.date.inMs() -
record.request.date.inMs()

in
record.duration.inMs() >=

trueDuration - calculateDurationErrorMargin(record, agreed)
and
record.duration.inMs() <=

trueDuration + calculateDurationErrorMargin(record, agreed)
else

true
endif

• getMeasurementCount(evidence : ::services::Evidence[0, *] unique) : ::types::Integer

Informal: Count the number of measurements covered by this clause for a given administration.

Evaluates to:

if evidence->size() = 0 then 0
else

evidence->collect(e : ::services::Evidence |

if
e.oclIsKindOf(::services::es::ServiceUsageRecord)
then 2
else 0
endif

)->sum()
endif

• getAccurateMeasurementCount(evidence : ::services::Evidence[0, *] unique) : ::types::Integer

Informal: Count the number of accurate measurements covered by this clause for a given admin-
istration.

Note that in real life this can never be evaluated with certainty. However the accuracy constraint
overall can be approximately monitored using a statistical hypothesis test.

Evaluates to:

if evidence->size() = 0 then 0
else

E.3. Package - ::slang::es 369

evidence->collect(e : ::services::Evidence |

if
e.oclIsKindOf(::services::es::ServiceUsageRecord)
then

let record = e.oclAsType(::services::es::ServiceUsageRecord)
in
Sequence(::types::Integer) {

if isDateAccurate(record, evidence)
then 1
else 0
endif,
if isDurationAccurate(record, evidence)
then 1
else 0
endif

}->sum()
else 0
endif

)->sum()
endif

Invariants:

• No invariants.

E.3.16 Abstract class - ::slang::es::UsageModeDefinition
Extends: ::slang::es::ElectronicServiceUsageBehaviourDefinition, pg. 360

Definitive: Defines a way in which an electronic service can be used. This can be any subset of all
possible service requests, hence the class is abstract.

Properties:

• bugReports : ::services::es::BugReport[0, *] unique

Opposite: ::services::es::BugReport.usageMode : ::slang::es::UsageModeDefinition

Definitive: A usage mode may be referenced by bug reports.

• bugFixReports : ::services::es::BugFixReport[0, *] unique

Opposite: ::services::es::BugFixReport.usageMode : ::slang::es::UsageModeDefinition

Definitive: A usage mode may be referenced by a bug-fix report.

• failureModes : ::slang::es::FailureModeDefinition[0, *] unique

Opposite: ::slang::es::FailureModeDefinition.usageModes : ::slang::es::UsageModeDefinition[1,
*] unique

Definitive: A usage mode definition may identify failure modes that service usages in the usage
mode can manifest.

Operations:

• calculateResponsibleParty() : ::slang::PartyDefinition

Informal: The party responsible for a usage is always the service client.

Evaluates to:

service.client

E.4. Package - ::services 370

Invariants:

• Wellformedness: Pairs of bug reports and bug-fix reports related to a usage mode should be con-
secutive, and not overlapping.

bugFixReports->forAll(f : ::services::es::BugFixReport |

(
not bugReports->exists(b : ::services::es::BugReport |

b <> f.bugReport
and
b.date.inMs() < f.date.inMs()
and
b.date.inMs() >= f.bugReport.date.inMs()

)
)
and
(

not bugFixReports->exists(f2 : ::services::es::BugFixReport |

f2 <> f
and
f2.date.inMs() <= f.date.inMs()
and
f2.date.inMs() > f.bugReport.date.inMs()

)
)

)

E.4 Package - ::services
Informal: This package contains types definitions for all of the types of things that SLAng SLAs describe
and constrain.

E.4.1 Class - ::services::Account
Definitive: An account is a collection of evidence submitted by a party to an administration.

Properties:

• party : ::services::Party

Definitive: An account is submitted by a party.

• evidence : ::services::Evidence[0, *] unique

Definitive: An account consists of a set of evidence.

Operations:

• No operations.

Invariants:

• Wellformedness: All evidence in an account is supported by the party that submits the account.

evidence->forall(e : Evidence |

e.supporters->includes(party)
)

E.4. Package - ::services 371

E.4.2 Class - ::services::Administration
Extends: ::services::Event, pg. 372

Definitive: An administration is an event indicating the culmination of the activity of the parties
performing a reconciliation of their accounts of the service provision scenario for the administration
period prior to the administration, and then calculating violations based on the reconciled account.

Informal: See the corresponding obligations in ::slang::AdministrationClause.
Properties:

• participants : ::services::Party[1, *]

Definitive: A number of parties participate in administration by submitting evidence.

• submittedEvidence : ::services::Account[1, *] unique

Definitive: participant parties are obliged to submit evidence in accounts that they support during
the process of administration.

• administrationClause : ::slang::AdministrationClause

Opposite: ::slang::AdministrationClause.administrations : ::services::Administration[0, *] unique

Definitive: The administration clause triggering this administration.

• agreed : ::services::Evidence[0, *] unique

Definitive: A single set of evidence is agreed on by the parties as the basis for the calculation of
violations in the administration.

Informal: The procedure by which this account is agreed depends on the concrete type of admin-
istration, which in turn depends on the type of SLA.

• violations : ::services::Violation[0, *] unique

Opposite: ::services::Violation.administration : ::services::Administration

Definitive: The semantics of SLAng define a set of violations calculated on the basis of the agreed
account.

Operations:

• No operations.

Invariants:

• Wellformedness: All accounts are submitted by a participant.

submittedEvidence->forall(a : Account |

participants->includes(a.party)
)

• Wellformedness: All evidence included in the agreed account is correlated to some evidence sub-
mitted by a participant.

agreed->forall(e : Evidence |

submittedEvidence.evidence->exists(correlated(e))
)

• Wellformedness: All violations associated with the administration are violations of conditions
associated with the administration clause associated with the administration.

administrationClause.conditions->includesAll(
violations.violatedClause)

• Wellformedness: All participants support all evidence in the agreed account.

E.4. Package - ::services 372

agreed->forall(e : Evidence |

e.supporters->includesAll(participants)
)

• Wellformedness: No participant submits multiple accounts.

participants->forall(p : Party |

submittedEvidence->exists(a : Account |

a.party = p
)
implies
submittedEvidence->one(a : Account |

a.party = p
)

)

E.4.3 Abstract class - ::services::Compensation
Extends: ::services::Event, pg. 372

Definitive: Compensation is some event mitigating the harm caused to a party by a violation of an
SLA clause.
Properties:
• compensated : ::services::Party

Definitive: Compensation is rendered to some party.

• compensating : ::services::Party
Definitive: Compensation is rendered by some party.

• violation : ::services::Violation
Opposite: ::services::Violation.compensation : ::services::Compensation[0, 1]
Definitive: Compensation is rendered in respect of some violation.

Operations:
• No operations.

Invariants:
• No invariants.

E.4.4 Abstract class - ::services::Event
Definitive: An event is the completion of some activity at a specific instant of time. Events may have
characteristics or attributes, some, but not necessarily all of which may be made explicit in more refined
types of event described in this specification. As a result of a fair valuation of these attributes, events
may conform to any number of types of events described in SLAs.

Events may be witnessed by any number of parties and generate evidence of various kinds for those
parties to use in the administration of SLAs.
Properties:
• date : ::types::Date

Definitive: The instant the event occurred.

• witnesses : ::services::Party[0, *]
Definitive: An event may be witnessed by any number of parties.

• evidence : ::services::Evidence[0, *] unique
Opposite: ::services::Evidence.events : ::services::Event[1, *] unique
Definitive: Events may be instrumental in the generation of pieces of evidence of various kinds.

E.4. Package - ::services 373

Operations:

• No operations.

Invariants:

• No invariants.

E.4.5 Abstract class - ::services::Evidence
Definitive: Evidence is any kind of information presented by a party for the purpose of determining
whether an SLA has been violated.

Properties:

• supporters : ::services::Party[1, *]

Opposite: ::services::Party.evidence : ::services::Evidence[0, *] unique

Definitive: Evidence may be endorsed by a single party or may be the result of agreement between
several parties.

• events : ::services::Event[1, *] unique

Opposite: ::services::Event.evidence : ::services::Evidence[0, *] unique

Definitive: Evidence is considered to become available in reaction to the occurrance of events.

Operations:

• correlated(other : ::services::Evidence) : ::types::Boolean

Informal: This operation determines whether another piece of evidence makes reference to the
same event, or sequence of events.

Note that constraints based on this operation are only monitorable if correlation can be determined
based on the attributes of the evidence alone.

Evaluates to:

other.events = events

Invariants:

• No invariants.

E.4.6 Class - ::services::Party
Definitive: Parties are people, groups or organisations who can perform some role in a service provision
scenario, for example being either the client or provider of a service.

Properties:

• evidence : ::services::Evidence[0, *] unique

Opposite: ::services::Evidence.supporters : ::services::Party[1, *]

Definitive: Parties endorse evidence relating to events occurring in a service provision scenario,
pertinent to determining violations of SLAng SLAs.

Operations:

• No operations.

Invariants:

• No invariants.

E.4. Package - ::services 374

E.4.7 Abstract class - ::services::Report
Extends: ::services::Event, pg. 372

Definitive: Reports are communications between parties that are not a technical part of the delivery
or use of a service. The receipt of a report is regarded as an event.

Informal: It is sometimes necessary for parties to communicate in a manner that does not use
the service being constrained by the SLA. For example, if the service is broken, the client may not
communicate with the server, but will wish to notify the server that an error condition needs to be
rectified. Also, In the electronic service scenarios covered by our ES SLAs, there is also no way for the
service provider to initiate communications with the client using the service, he must wait until the client
submits a request. However, the service provider needs to communicate some information to the client
when an error condition has been rectified. Reports are an abstraction of these communications, and
may in fact be emails, telephone calls, carrier pigeon, or any other appropriate form of communication
between the parties.
Properties:

• dispatcher : ::services::Party

Definitive: Reports are dispatched by one party to another.

• recipient : ::services::Party

Definitive: Reports are received by one party from another.

Operations:

• No operations.

Invariants:

• Wellformedness: Dispatcher and recipient are witnesses to the exchange of a report.

witnesses->includes(dispatcher)
and
witnesses->includes(recipient)

E.4.8 Class - ::services::ReportRecord
Extends: ::services::Evidence, pg. 373

Definitive: Evidence that a report was delivered.
Properties:

• date : ::types::Date

Definitive: A report record records the date at which the report was delivered.

• report : ::services::Report

Definitive: Report record evidence is produced as a result of a report being exchanged.

Operations:

• No operations.

Invariants:

• Wellformedness: The event causing this evidence to be produced is the delivery of an report.

events->exists(e : Event |

e.oclIsKindOf(Report)
)

E.4.9 Class - ::services::TerminationReport
Extends: ::services::Report, pg. 374

Definitive: A termination notice indicates a parties decision to terminate an SLA, following final
administration.

E.4. Package - ::services 375

Properties:

• sLA : ::slang::SLA

Definitive: A termination report references the SLA being terminated.

Operations:

• No operations.

Invariants:

• No invariants.

E.4.10 Class - ::services::Violation
Definitive: Violations are determined to have occurred when the behaviour of a system or a party associ-
ated with an SLA is inconsistent with the conditions established in a SLAng SLA. Violations are always
the fault of a specific party, and may result in penalties being levied against that party, depending on
what has been agreed in the SLA.
Properties:

• violator : ::slang::PartyDefinition

Definitive: Violations are the fault of a specific party.

• evidence : ::services::Evidence[0, *] unique

Definitive: Violations are supported by a set of evidence that has been agreed on by the parties as
being a sound basis for assessing violations, and which are the minimal sufficent set of evidence
required to determine that the violation has occurred.

• violatedClause : ::slang::ConditionClause

Definitive: Violations identify the clause in the SLA that they violated.

• penalty : ::slang::PenaltyDefinition[0, 1]

Opposite: ::slang::PenaltyDefinition.violations : ::services::Violation[0, *]

Definitive: Violations identify the definition of the penalty to be applied to the violator in the SLA
that they violated, if any applies.

• administration : ::services::Administration

Opposite: ::services::Administration.violations : ::services::Violation[0, *] unique

Definitive: Violations are calculated as part of an administration.

• compensation : ::services::Compensation[0, 1]

Opposite: ::services::Compensation.violation : ::services::Violation

Definitive: A violation may eventually be compensated.

Operations:

• eq(v : ::services::Violation) : ::types::Boolean

Informal: Defines a non-object equality for violations. Violations are equal if they are supported
by the same or correlated evidence, and indicate the same violator and violated clause.

Evaluates to:

violator = v.violator
and
correlated(v.evidence)
and
violatedClause = v.violatedClause

E.5. Package - ::services::es 376

• correlated(other : ::services::Evidence[1, *] unique) : ::types::Boolean

Informal: Calculates whether the evidence supporting this violation is corrolated with the set pro-
vided. Condition clauses should use this operation to determine whether a violation has previously
been detected relating to a set of evidence supporting the conclusion that a violation has occurred.

Evaluates to:

evidence->forall(e : Evidence |

other->exists(o : Evidence | o.correlated(e))
)
and
other->forall(o : Evidence |

evidence->exists(e : Evidence | e.correlated(o))
)

Invariants:

• Wellformedness: Violations should be unique according to the non-object equality defined by the
eq() function for the class.

Informal: This implies that violations are only ever levelled against a party once for any particular
set of evidence. Therefore the same violation cannot be associated with multiple administrations,
and in practice violations are associated with the earliest administration in which they could be
detected.

administration.administrationClause.sLA.administrationClauses.
administrations.violations->forAll(
v : Violation |

v.eq(self)
implies
v = self

)

E.5 Package - ::services::es
Informal: The ES package contains types specific to the description of an electronic service provision
scenario.

E.5.1 Class - ::services::es::BugFixReport
Extends: ::services::Report, pg. 374

Definitive: A bug-fix report is submitted by the service provider to the client to indicate that a bug
that was causing some kind of service unavailability has been fixed.
Properties:

• bugReport : ::services::es::BugReport

Opposite: ::services::es::BugReport.bugFixReport : ::services::es::BugFixReport[0, 1]

Definitive: A bug-fix report should always identify the bug-report the fault of which is being
mended.

• usageMode : ::slang::es::UsageModeDefinition

Opposite: ::slang::es::UsageModeDefinition.bugFixReports : ::services::es::BugFixReport[0, *]
unique

Definitive: The kinds of bug believed to be being fixed.

Operations:

• No operations.

E.5. Package - ::services::es 377

Invariants:

• Wellformedness: The usage mode being fixed should be the same usage mode reported as being
problematic in the bugReport.

usageMode = bugReport.usageMode

E.5.2 Class - ::services::es::BugReport
Extends: ::services::Report, pg. 374

Definitive: A bug report is a report submitted by either the client to the service provider or vice
versa, indicating that a bug is making the service unavailable to some extent.
Properties:

• usageMode : ::slang::es::UsageModeDefinition

Opposite: ::slang::es::UsageModeDefinition.bugReports : ::services::es::BugReport[0, *] unique

Definitive: The kinds of bug believed to be being reported.

• bugFixReport : ::services::es::BugFixReport[0, 1]

Opposite: ::services::es::BugFixReport.bugReport : ::services::es::BugReport

Definitive: Bug reports may be subsequently matched by a bug-fix report.

Operations:

• No operations.

Invariants:

• No invariants.

E.5.3 Class - ::services::es::ElectronicServiceClient
Definitive: A service client is a piece of software capable of making use of an electronic service, via an
electronic-service interface.
Properties:

• owner : ::services::Party

Definitive: A service client will be under the control of some party.

• definitions : ::slang::es::ElectronicServiceClientDefinition[0, *] unique

Opposite: ::slang::es::ElectronicServiceClientDefinition.electronicServiceClient : ::services::es::Electronic-
ServiceClient

Definitive: A client may be described in any number of SLAs.

Operations:

• No operations.

Invariants:

• No invariants.

E.5.4 Class - ::services::es::ElectronicServiceInterface
Definitive: An electronic service interface is a point of access to a computing service delivered by
one party, the provider, to another, the client, using only electronic communication under the normal
operation of the service, and not requiring the client to devote their own resources to the completion of
the service. For the purposes of this specification, electronic services are accessed by the client by the
submission of requests to operations, which may result in responses. The only constraints on when the
client may submit requests are those specified in an SLAng SLA associated with the service to which
the client is party.

E.5. Package - ::services::es 378

Properties:

• owner : ::services::Party

Definitive: A service interface will be under the control of some party.

• operations : ::services::es::Operation[1, *] unique

Opposite: ::services::es::Operation.interface : ::services::es::ElectronicServiceInterface

Definitive: Electronic services expose a number of operations that may be accessed by the client.

• definitions : ::slang::es::ElectronicServiceInterfaceDefinition[0, *] unique

Opposite: ::slang::es::ElectronicServiceInterfaceDefinition.electronicServiceInterface : ::services::es::Electronic-
ServiceInterface

Definitive: An interface may be described in any number of SLAs.

Operations:

• No operations.

Invariants:

• No invariants.

E.5.5 Class - ::services::es::Operation
Definitive: An operation is part of the interface to an electronic service. Requests may be submitted
to operations by a client program and in due course a response expected (although if the service is not
functioning correctly a response may not be produced).
Properties:

• interface : ::services::es::ElectronicServiceInterface

Opposite: ::services::es::ElectronicServiceInterface.operations : ::services::es::Operation[1, *]
unique

Definitive: Operations are part of electronic services.

• parameters : ::services::es::Parameter[0, *] unique

Opposite: ::services::es::Parameter.operation : ::services::es::Operation

Definitive: An operation can process or return a set of parameters. Not all parameters need be
used by each usage of the operation.

• requests : ::services::es::ServiceRequest[0, *] unique

Opposite: ::services::es::ServiceRequest.operation : ::services::es::Operation

Definitive: Requests may be made to an operation.

• definitions : ::slang::es::OperationDefinition[0, *] unique

Opposite: ::slang::es::OperationDefinition.operation : ::services::es::Operation

Definitive: An operation may be described in any number of SLAs.

Operations:

• No operations.

Invariants:

• No invariants.

E.5.6 Class - ::services::es::Parameter
Definitive: Operations expect to process or return certain parameters.

E.5. Package - ::services::es 379

Properties:

• operation : ::services::es::Operation

Opposite: ::services::es::Operation.parameters : ::services::es::Parameter[0, *] unique

Definitive: A parameter is defined on an operation.

• definitions : ::slang::es::ParameterDefinition[0, *] unique

Opposite: ::slang::es::ParameterDefinition.parameter : ::services::es::Parameter

Definitive: A parameter may be described in any number of SLAs.

Operations:

• No operations.

Invariants:

• No invariants.

E.5.7 Class - ::services::es::ParameterValue
Definitive: Parameter values are components of requests to electronic services that allow the client to
pass data to the service. A parameter value is also a component of a response that allows the service to
pass data back to the client.

Properties:

• parameter : ::services::es::Parameter

Definitive: A parameter value is specified for a known parameter of an operation.

• value : ::types::String

Definitive: A parameter has some value. Values are represented in this metamodel as strings
because they will be passed as an electronic signal over the network. From the point of view of
the service, they may have any type.

• request : ::services::es::ServiceRequest[0, 1]

Opposite: ::services::es::ServiceRequest.parameters : ::services::es::ParameterValue[0, *] unique

Definitive: A parameter may be a component of a request.

• response : ::services::es::ServiceResponse[0, 1]

Opposite: ::services::es::ServiceResponse.results : ::services::es::ParameterValue[0, *]

Definitive: A parameter may be a component of a response.

Operations:

• No operations.

Invariants:

• No invariants.

E.5.8 Class - ::services::es::ParameterRecord
Definitive: Parameter records are records of the value of a service request or response parameter, and
form part of a service usage record.

E.5. Package - ::services::es 380

Properties:

• parameterValue : ::services::es::ParameterValue

Definitive: The parameter record is the record of a value passed as a parameter to the operation.

• type : ::slang::es::ParameterDefinition

Definitive: Parameter records record the value of a parameter in a manner compatible with the
description of that parameter in an SLA.

• value : ::types::String

Definitive: The parameter value rendered as a string.

• serviceUsageAsInput : ::services::es::ServiceUsageRecord[0, 1]

Opposite: ::services::es::ServiceUsageRecord.inputs : ::services::es::ParameterRecord[0, *]
unique

Definitive: A parameter record may be associated with a service-usage record as an input.

• serviceUsageAsOutput : ::services::es::ServiceUsageRecord[0, 1]

Opposite: ::services::es::ServiceUsageRecord.outputs : ::services::es::ParameterRecord[0, *]
unique

Definitive: A parameter record may be associated with a service-usage record as an output.

Operations:

• No operations.

Invariants:

• Wellformedness: The parameter defined by the type referenced by this record must be the same
parameter for which the value is submitted.

type.parameter = parameterValue.parameter

• Wellformedness: Parameter records are always either an input or an output in a record of a service
usage.

(
serviceUsageAsInput.oclIsUndefined()
or
serviceUsageAsOutput.oclIsUndefined()

)
and not
(

serviceUsageAsInput.oclIsUndefined()
and
serviceUsageAsOutput.oclIsUndefined()

)

• Wellformedness: The encoding of the parameter value as a string must be valid according to the
SLA.

type.isValid(value)

E.5.9 Class - ::services::es::ServiceRequest
Extends: ::services::Event, pg. 372

Definitive: A service request is an event in which a service client submits a request to the service
across the service interface.

Informal: This is a real-world event, described in this specification for the purpose of explicat-
ing the responsibilities of the parties for service monitoring. The wellformedness invariants in ::ser-
vices::es::ServiceUsageRecord describe the relationship that reported monitoring data should bear to
service requests.

E.5. Package - ::services::es 381

Properties:

• client : ::services::es::ElectronicServiceClient

Definitive: A service client program submits the request.

• response : ::services::es::ServiceResponse[0, 1]

Opposite: ::services::es::ServiceResponse.request : ::services::es::ServiceRequest

Definitive: A request may result in a response being returned by the service.

• parameters : ::services::es::ParameterValue[0, *] unique

Opposite: ::services::es::ParameterValue.request : ::services::es::ServiceRequest[0, 1]

Definitive: A component of a request is a set of parameters that allow the client to pass data to the
service.

• operation : ::services::es::Operation

Opposite: ::services::es::Operation.requests : ::services::es::ServiceRequest[0, *] unique

Definitive: A request is submitted to a specific operation on an electronic service interface.

Operations:

• No operations.

Invariants:

• Wellformedness: Witnesses to this event include the owner of the service client and the owner of
the service interface bearing the operation being requested.

witnesses->includes(client.owner)
and
witnesses->includes(operation.interface.owner)

E.5.10 Class - ::services::es::ServiceResponse
Extends: ::services::Event, pg. 372

Definitive: A response is a message sent to the client following some processing, which in turn will
have been initiated by a request submitted by the client. If the service completed successfully then the
service response may return some data to the client in the form of a parameter. However, responses may
also indicate an error condition.

Informal: This is a real-world event, described in this specification for the purpose of explicat-
ing the responsibilities of the parties for service monitoring. The wellformedness invariants in ::ser-
vices::es::ServiceUsageRecord describe the relationship that reported monitoring data should bear to
service responses.
Properties:

• request : ::services::es::ServiceRequest

Opposite: ::services::es::ServiceRequest.response : ::services::es::ServiceResponse[0, 1]

Definitive: Service responses occur in response to service requests.

• results : ::services::es::ParameterValue[0, *]

Opposite: ::services::es::ParameterValue.response : ::services::es::ServiceResponse[0, 1]

Definitive: A service response may return some data to the client.

Operations:

• No operations.

E.5. Package - ::services::es 382

Invariants:
• Wellformedness: Witnesses to this event include the owner of the service client and the owner of

the service interface bearing the operation being requested.

witnesses->includes(request.client.owner)
and
witnesses->includes(request.operation.interface.owner)

E.5.11 Class - ::services::es::ServiceUsageRecord
Extends: ::services::Evidence, pg. 373

Definitive: A service usage record is a piece of evidence concerning the use of a service. An
episode of service usage incorporates a request, possibly some processing, and possibly a response. A
service usage record records when the request was submitted (subject to the error characteristics of the
monitor responsible for creating the record), records a possibly subjective outcome for the episode, and
if a response is returned, a duration for the episode, from the request being issued to the response being
returned, again subject to error.

Informal: As a piece of evidence, a service usage record is ultimately related to a particular SLA.
The subjective judgements made concerning the outcome of the usage are related to the definitions
included in that SLA.
Properties:
• date : ::types::Date

Definitive: Records the time that the request is deemed to have bee submitted.

• duration : ::types::Duration[0, 1]
Definitive: Records the amount of time between the request and the response.

• operation : ::slang::es::OperationDefinition
Opposite: ::slang::es::OperationDefinition.usageRecords : ::services::es::ServiceUsageRecord[0,
*] unique
Definitive: Identifies the operation that was invoked in this usage.

• inputs : ::services::es::ParameterRecord[0, *] unique
Opposite: ::services::es::ParameterRecord.serviceUsageAsInput : ::services::es::ServiceUsage-
Record[0, 1]
Definitive: Service usage records record the parameters that were passed in the request.

• outputs : ::services::es::ParameterRecord[0, *] unique
Opposite: ::services::es::ParameterRecord.serviceUsageAsOutput : ::services::es::ServiceUsage-
Record[0, 1]
Definitive: If a result is returned by the service response it is recorded as part of the service usage
record.
Informal: No violation calculation relies on having a record of the response. However, it can be
useful during reconciliation to identify failures relative to the expected behaviour of the service.

• behaviours : ::slang::es::ElectronicServiceUsageBehaviourDefinition[0, *] unique
Definitive: Service usages may be components of a number of different types of service behaviour.
The behaviours with which they are associated should be recorded in a service usage record to
assist in the administration of the SLA.
Informal: This is particularly important for administering SLAs that contain informal descriptions
of behaviour, as usages constituting this behaviour must be identified at administration time.

• request : ::services::es::ServiceRequest
Definitive: Service usage records are the result of recording a usage of the service, which starts
with a request.

• response : ::services::es::ServiceResponse[0, 1]
Definitive: Service usage records are the result of recording a usage of the service, which may
include a response.

E.6. Package - ::combined 383

Operations:

• No operations.

Invariants:

• Wellformedness: The operation definition referenced should define the operation upon which the
request was made.

operation.operation = request.operation

• Wellformedness: If a response occurs, it should be associated with this evidence, with the recorded
request, and a duration should be recorded.

let r = events->any(oclIsKindOf(ServiceRequest)).oclAsType(
ServiceRequest).response

in
(not r.oclIsUndefined())
implies
(

response = r
and
(not duration.oclIsUndefined())

)

• Wellformedness: The event causing this evidence to be produced is a service request.

events->exists(oclIsKindOf(ServiceRequest))

E.6 Package - ::combined
Informal: The package combined contains all classes required to extend SLAng or its domain model in
support of the definition of SLA 1 from the eMaterials case-study.

E.7 Package - ::combined::slang
Informal: The slang package in sla1 contains domain-independent syntactic extensions to the slang
language.

E.7.1 Abstract class - ::combined::slang::ConsecutiveAdministrationClause
Extends: ::slang::AdministrationClause, pg. 333

Definitive: An interval administration clause finds relevant all events that it contributes to the SLA,
within an interval, the administrative period.

Informal: Such administrative clauses are useful when conditions calculate sliding penalties based
on events occurring in different administrative periods.

Properties:

• administrationStart : ::types::Date

Definitive: This clause defines an earliest date, following which events are administered.

Operations:

• administrationsBetween(startDate : ::types::Real,
endDate : ::types::Real) : ::services::Administration[0, *] unique

Informal: Calculates the administrations of the SLA occurring between two dates.

Evaluates to:

E.7. Package - ::combined::slang 384

sLA.events->select(e : ::services::Event |

e.oclIsKindOf(::services::Administration)
and
e.date.inMs() >= startDate
and
e.date.inMs() < endDate

).oclAsType(::services::Administration)->asSet()

• priorAdministration(date : ::types::Real) : ::services::Administration

Informal: Returns the latest prior administration.

Evaluates to:

let priors = administrationsBetween(-1.0, date)
in
priors->iterate(

a : ::services::Administration;
latest : ::services::Administration = priors->any(true) |

if a.date.inMs() > latest.date.inMs()
then a
else latest
endif

)

• intervalStartDate(administration : ::services::Administration) : ::types::Real

Informal: (abstract) calculate the beginning of the administrative period for an administration.

Evaluates to:

let prior = priorAdministration(administration.date.inMs())
in
if prior.oclIsUndefined() then administrationStart.inMs()
else prior.date.inMs()
endif

• intervalEndDate(administration : ::services::Administration) : ::types::Real

Informal: (abstract) calculate the end of the administrative period for an administration.

Evaluates to:

administration.date.inMs()

• eventRelevant(administration : ::services::Administration,
event : ::services::Event) : ::types::Boolean

Informal: Determines whether some event is potentially relevant to a particular administration.

Evaluates to:

sLAEvents()->includes(event)
and
event.date.inMs() <= intervalEndDate(administration)
and
event.date.inMs() > intervalStartDate(administration)

Invariants:

• No invariants.

E.7. Package - ::combined::slang 385

E.7.2 Class - ::combined::slang::FixedDeadlineFixedPoundsSterlingPayment-
PenaltyDefinition

Extends: ::combined::slang::PaymentPenaltyDefinition, pg. 392
Definitive: A penalty of a fixed quantity of pounds-sterling, that must be paid within a fixed dead-

line.
Properties:

• amount : ::types::Real

Definitive: This type of clause defines a fixed amount of Pounds Sterling to be paid as a penalty.

• deadline : ::types::Duration

Definitive: This type of clause defines a fixed deadline for payments, in relation to the time of
completion of the SLA administration resulting in the penalty being levied.

Operations:

• calculatePoundsSterlingPayment(violation : ::services::Violation) : ::types::Real

Informal: Calculate the magnitude of the penalty, given the violation.

Evaluates to:

amount

• calculatePaymentDeadline(violation : ::services::Violation) : ::types::Real

Informal: Calculate the payment deadline, given the violation.

Evaluates to:

deadline.inMs()

Invariants:

• No invariants.

E.7.3 Class - ::combined::slang::FixedPenaltyTerminationByReportCondition-
Clause

Extends: ::slang::TerminationByReportConditionClause, pg. 350
Definitive: A condition clause that applies a fixed penalty to any party terminating the SLA by

issuing a termination report.
Properties:

• fixedPenalty : ::slang::PenaltyDefinition

Definitive: This is the fixed penalty that applies to the party issuing the termination report.

Operations:

• calculatePenalty(terminationReportRecord : ::services::ReportRecord,
agreed : ::services::Evidence[0, *] unique) : ::slang::PenaltyDefinition

Informal: The penalty for termination is always the fixed penalty.

Evaluates to:

fixedPenalty

Invariants:

• No invariants.

E.7. Package - ::combined::slang 386

E.7.4 Class - ::combined::slang::PeriodicInterval
Extends: ::combined::slang::PeriodicProcess, pg. 387

Definitive: Schedules are part of the specification of when conditions in an SLA apply. The condi-
tions specified in an SLA need not all apply at the same time. Moreover, the specification of when the
conditions apply may need to be complex. Therefore all condition clauses must be associated with one
or more schedules.

Informal: The effect of schedules on the determination of violations is defined by the OCL defini-
tions contributing to the definition of violation invariants.

Each schedule expresses a number of cycles of a specified period. Within these periods, associated
condition clauses first apply for a particular duration, then do not apply for the remainder of the duration.
These cycles begin at a specified start date and then cease at a specified end date, which need not be a
whole number of cycles later. Any clause may be associated with several schedules, and the clause
applies whenever any of its schedules apply. By combining schedules in this way, complicated patterns
of application can be associated with clauses.

Using schedules, it is possible to specify that several conditions clauses of the same kind apply
simultaneously. Depending on the definition of violation behaviour for the clause this may result in
several penalties being applied, or only the penalty from the clause that in some sense applies the most
restrictive constraint.
Properties:

• duration : ::types::Duration

Definitive: Schedules specify a duration.

Informal: The duration of the schedule. Any clauses associated with the schedule will apply for
this amount of time at the beginning of each cycle, or until the end date, whichever is sooner.

Operations:

• eq(s : ::combined::slang::PeriodicInterval) : ::types::Boolean

Informal: Defines non-object equality for schedules. Schedules must be alike in all respects to be
considered equal.

Evaluates to:

duration.eq(s.duration) and
period.eq(s.period) and
startDate.eq(s.startDate) and
endDate.eq(s.endDate)

• applies(t : ::types::Real) : ::types::Boolean

Informal: Evaluates to true if the schedule applies at time t, false otherwise. t is expressed in
milliseconds from 00:00 1 Jan 2000 UTC+0.

Evaluates to:

t >= startDate.inMs()
and
t < endDate.inMs()
and
((t - startDate.inMs()).round().mod(period.inMs().round()) <

duration.inMs())

• nextDurationEndDate(t : ::types::Real) : ::types::Real

Informal: Evaluates to the date when the next duration would end after t, if t is less than the end
date of this schedule. This amounts to evaluating when the next interval of non-application of the
schedule begins, assuming the duration is less than the period. t and the result are expressed in
milliseconds from 00:00 1 Jan 2000 UTC+0.

Evaluates to:

E.7. Package - ::combined::slang 387

validateDate(

if t < startDate.inMs() then startDate.inMs() + duration.inMs()
else

if applies(t)
then

startDate.inMs() + (cycleNumber(t) * period.inMs()) +
duration.inMs()

else
nextCycleStartDate(t) + duration.inMs()

endif
endif

)

• nextEndDate(t : ::types::Real) : ::types::Real

Informal: Returns the next date that this schedule will cease to apply after t, or -1 if it will never
cease again.

Evaluates to:

if duration.inMs() = period.inMs()
then

if t < endDate.inMs()
then

endDate.inMs()
else

-1.0
endif

else
nextDurationEndDate(t)

endif

• nextStartDate(t : ::types::Real) : ::types::Real

Informal: Returns the next date that this schedule will start to apply after t, or -1 if it will never
start again.

Evaluates to:

if duration = period
then

if t < startDate.inMs()
then

startDate.inMs()
else

-1.0
endif

else
nextCycleStartDate(t)

endif

Invariants:

• No invariants.

E.7.5 Class - ::combined::slang::PeriodicProcess
Extends: ::slang::AuxiliaryClause, pg. 336

Definitive: Schedules are part of the specification of when conditions in an SLA apply. The condi-
tions specified in an SLA need not all apply at the same time. Moreover, the specification of when the
conditions apply may need to be complex. Therefore all condition clauses must be associated with one
or more schedules.

E.7. Package - ::combined::slang 388

Informal: The effect of schedules on the determination of violations is defined by the OCL defini-
tions contributing to the definition of violation invariants.

Each schedule expresses a number of cycles of a specified period. Within these periods, associated
condition clauses first apply for a particular duration, then do not apply for the remainder of the duration.
These cycles begin at a specified start date and then cease at a specified end date, which need not be a
whole number of cycles later. Any clause may be associated with several schedules, and the clause
applies whenever any of its schedules apply. By combining schedules in this way, complicated patterns
of application can be associated with clauses.

Using schedules, it is possible to specify that several conditions clauses of the same kind apply
simultaneously. Depending on the definition of violation behaviour for the clause this may result in
several penalties being applied, or only the penalty from the clause that in some sense applies the most
restrictive constraint.
Properties:

• name : ::types::String

Definitive: Schedules have names that assist in referring to them from an external context, and
may provide a reminder as to the intent of the schedule.

Informal: For example ’Every wednesday’

• startDate : ::types::Date

Definitive: Schedules have a start date.

Informal: Any clauses associated with the schedule will apply for the duration immediately fol-
lowing this date, or until the end date, whichever is sooner. The schedule will then apply again for
the duration at the beginning of any subsequent cycle, or until the end date, whichever is sooner.

• period : ::types::Duration

Definitive: Schedules specify a period.

Informal: The period of cycles in this schedule. Any clauses associated with the schedule will
apply for the duration at the beginning of each cycle, or until the end date, whichever is sooner,
and then not again until this amount of time has elapsed since the beginning of the last cycle,
unless associated with a different schedule that applies.

• endDate : ::types::Date

Definitive: Schedules have an end date.

Informal: The end date. No condition clause associated with this schedule will apply after this
date, unless it is associated with a different schedule that applies.

Operations:

• eq(s : ::combined::slang::PeriodicProcess) : ::types::Boolean

Informal: Defines non-object equality for schedules. Schedules must be alike in all respects to be
considered equal.

Evaluates to:

period.eq(s.period) and
startDate.eq(s.startDate) and
endDate.eq(s.endDate)

• cycleNumber(t : ::types::Real) : ::types::Real

Informal: Evaluates to the number of the cycle that would apply at time t, if t is after the start date
and before the end date, and the cycle number is the count of cycles that have applied, starting
with 0. t is expressed in milliseconds from 00:00 1 Jan 2000 UTC+0.

Evaluates to:

((t - startDate.inMs()) / period.inMs()).floor()

E.7. Package - ::combined::slang 389

• validateDate(t : ::types::Real) : ::types::Real

Informal: Filters dates expressed in milliseconds from 00:00 1 Jan 2000 UTC+0. Dates outside of
the start and end dates of the schedule are converted to -1, other dates remain as they are.

Evaluates to:

if t < startDate.inMs() or t > endDate.inMs() then -1.0
else t
endif

• nextCycleStartDate(t : ::types::Real) : ::types::Real

Informal: Evaluates to the start date of the next cycle of this schedule that would begin after t, if t
is less than the end date of this schedule. t and the result are expressed in milliseconds from 00:00
1 Jan 2000 UTC+0.

Evaluates to:

validateDate(

if(t < startDate.inMs()) then startDate.inMs()
else

startDate.inMs() +
((cycleNumber(t) + 1) * period.inMs())

endif
)

Invariants:

• No invariants.

E.7.6 Class - ::combined::slang::PermanentFixedWindowFixedOccurrences-
FixedPenaltyMinimalServiceBehaviourRestrictionConditionClause

Extends: ::slang::ServiceBehaviourRestrictionConditionClause, pg. 341
Definitive: A service behaviour restriction clause with a fixed window size, allowing a fixed number

of occurrences of the behaviour within that window.
Properties:

• maxOccurrences : ::types::Integer

Definitive: Clauses of this type define a fixed maximum number of occurrences of the behaviours
that they restrict.

• window : ::types::Duration

Definitive: Clauses of this type define a fixed window of time within which up to the specified
fixed maximum number of occurrences of the restricted behaviour may occur.

• penalty : ::slang::PenaltyDefinition

Definitive: Clauses of this type assign a fixed penalty for minimal violations.

Operations:

• calculateMaxOccurrences(date : ::types::Real,
administration : ::services::Administration) : ::types::Integer

Informal: The maximum number of occurrences of the behaviour that may be observed within the
sliding window starting at the time specified (in mS) is the fixed value specified in this clause.

Evaluates to:

maxOccurrences

E.7. Package - ::combined::slang 390

• calculateWindow(date : ::types::Real,
administration : ::services::Administration) : ::types::Real

Informal: The width of a notional sliding time window, starting at the time specified, within which
no more than maxOccurances of the restricted behaviours may occur, is the fixed value specified
in this clause.

Evaluates to:

window.inMs()

• violationExistsFor(maximal : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::types::Boolean

Informal: Check that a violation exists corresponding to a particular maximal violation, with
appropriate penalty.

Evaluates to:

administration.violations->exists(v : ::services::Violation |

v.evidence = maximal
and
v.violator = service().client
and
v.penalty = penalty

)

• allLaterViolationsCalculated(prior : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::types::Boolean

Informal: Check that an administration has correctly calculated violations for all violations after
some prior violation.

Evaluates to:

let next = nextMinimalViolation(prior, administration.agreed,
administration)

in
next->size() = 0
or
(

violationExistsFor(next, administration)
and
allLaterViolationsCalculated(next, administration)

)

• violationsCalculated(administration : ::services::Administration) : ::types::Boolean

Informal: Check that an administration have correctly calculated violations associated with this
clause.

Evaluates to:

let first = firstMinimalViolation(administration.agreed, administration)
in
first->size() = 0
or
(

violationExistsFor(first, administration)
and
allLaterViolationsCalculated(first, administration)

)

E.7. Package - ::combined::slang 391

Invariants:

• No invariants.

E.7.7 Abstract class - ::combined::slang::PermanentFixedWindowFixedOccurrences-
MaximalServiceBehaviourRestrictionConditionClause

Extends: ::slang::ServiceBehaviourRestrictionConditionClause, pg. 341
Definitive: A service behaviour restriction clause with a fixed window size, allowing a fixed number

of occurrences of the behaviour within that window.
Properties:

• maxOccurrences : ::types::Integer

Definitive: Clauses of this type define a fixed maximum number of occurrences of the behaviours
that they restrict.

• window : ::types::Duration

Definitive: Clauses of this type define a fixed window of time within which up to the specified
fixed maximum number of occurrences of the restricted behaviour may occur.

Operations:

• calculateMaxOccurrences(date : ::types::Real,
administration : ::services::Administration) : ::types::Integer

Informal: The maximum number of occurrences of the behaviour that may be observed within the
sliding window starting at the time specified (in mS) is the fixed value specified in this clause.

Evaluates to:

maxOccurrences

• calculateWindow(date : ::types::Real,
administration : ::services::Administration) : ::types::Real

Informal: The width of a notional sliding time window, starting at the time specified, within which
no more than maxOccurances of the restricted behaviours may occur, is the fixed value specified
in this clause.

Evaluates to:

window.inMs()

• violationExistsFor(maximal : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::types::Boolean

Informal: (abstract) Check that a violation exists corresponding to a particular maximal violation,
with appropriate penalty.

• allLaterViolationsCalculated(prior : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::types::Boolean

Informal: Check that an administration has correctly calculated violations for all violations after
some prior violation.

Evaluates to:

let next = nextMaximalViolation(prior, administration.agreed,
administration)

in
next->size() = 0
or
(

violationExistsFor(next, administration)
and
allLaterViolationsCalculated(next, administration)

)

E.7. Package - ::combined::slang 392

• violationsCalculated(administration : ::services::Administration) : ::types::Boolean

Informal: Check that an administration have correctly calculated violations associated with this
clause.

Evaluates to:

let first = firstMaximalViolation(administration.agreed, administration)
in
first->size() = 0
or
(

violationExistsFor(first, administration)
and
allLaterViolationsCalculated(first, administration)

)

Invariants:

• No invariants.

E.7.8 Class - ::combined::slang::PermanentFixedWindowFixedOccurrencesNo-
PenaltyMaximalServiceBehaviourRestrictionConditionClause

Extends: ::combined::slang::PermanentFixedWindowFixedOccurrencesMaximalServiceBehaviour-
RestrictionConditionClause, pg. 391

Definitive: A behaviour-restriction clause with no penalty for violations.
Properties:

• No properties.

Operations:

• violationExistsFor(maximal : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::types::Boolean

Informal: Check that a violation exists corresponding to a particular maximal violation, with
appropriate penalty.

Evaluates to:

administration.violations->exists(v : ::services::Violation |

v.evidence = maximal
and
v.violator = service().client
and
v.penalty.oclIsUndefined()

)

Invariants:

• No invariants.

E.7.9 Abstract class - ::combined::slang::PaymentPenaltyDefinition
Extends: ::slang::PenaltyDefinition, pg. 338

Definitive: A pounds-sterling payment penalty definition defines a penalty requiring a compensation
payment in pounds sterling, by the violator to the injured party, within some deadline.
Properties:

• No properties.

E.7. Package - ::combined::slang 393

Operations:

• calculatePoundsSterlingPayment(violation : ::services::Violation) : ::types::Real

Informal: Calculate the magnitude of the penalty, given the violation.

• calculatePaymentDeadline(violation : ::services::Violation) : ::types::Real

Informal: Calculate the payment deadline, given the violation.

Invariants:

• Definitive: The compensation associated with all violations to which this penalty is defined must
be a pounds sterling payment, by the violator to the other party, in the amount calculated, occuring
within the payment deadline

violations->forall(v : ::services::Violation |

v.compensation.oclIsKindOf(
::combined::services::PoundsSterlingPenaltyPayment)

and
(

let payment = v.compensation.oclAsType(
::combined::services::PoundsSterlingPenaltyPayment)

in
payment.date.inMs() >= v.administration.date.inMs()
and
payment.date.inMs() <= v.administration.date.inMs() +

calculatePaymentDeadline(v)
and
payment.amount = calculatePoundsSterlingPayment(v)
and
payment.compensating = v.violator.party
and
payment.compensated =

Set(::services::Party) {
v.violatedClause.service().provider.party,
v.violatedClause.service().client.party }->excluding(

v.violator.party)->any(true)
)

)

E.7.10 Class - ::combined::slang::ScheduledAdministrationClause
Extends: ::combined::slang::ScheduledClause, pg. 394,
::slang::AdministrationClause, pg. 333

Definitive: A scheduled consecutive administration clause must be administered at least once in
each interval of a periodic interval. Evidence submitted must be all evidence pertinent to events occur-
ing since the last administration, or, if this is the first event, all pertinent events occurring prior to the
administration.

Properties:

• No properties.

Operations:

• priorAdministrations(date : ::types::Real) : ::services::Administration[0, *] unique

Informal: Determine the set of administrations occurring prior to some date.

Evaluates to:

E.7. Package - ::combined::slang 394

sLA.events->select(e : ::services::Event |

e.oclIsKindOf(::services::Administration)
and
e.date.inMs() < date

).oclAsType(::services::Administration)->asSet()

• administered() : ::types::Boolean

Informal: Checks whether a set of events includes the correct administration of this clause.

Evaluates to:

startDates()->forall(startDate : ::types::Real |

priorAdministrations(startDate)->
exists(violations->exists(violatedClause.oclIsKindOf(

::slang::TerminatingConditionClause)))
or
(

let endDate = endDate(startDate)
in
let
administrations = priorAdministrations(endDate)
in
administrations->one(a : ::services::Administration |

a.date.inMs() >= startDate
and
a.administrationClause = self

)
)

)

Invariants:

• No invariants.

E.7.11 Abstract class - ::combined::slang::ScheduledClause
Definitive: A mixin class for clauses with a schedule influencing when penalties are assigned or admin-
istrations occur.
Properties:

• schedule : ::combined::slang::PeriodicInterval[1, *] unique ordered

Operations:

• applies(t : ::types::Real) : ::types::Boolean

Informal: Evaluates to true if this clause applies at time t. t is expressed in milliseconds from
00:00 1 Jan 2000 UTC+0

Evaluates to:

schedule->exists(i : PeriodicInterval | i.applies(t))

• nextStartDate(t : ::types::Real) : ::types::Real

Informal: Returns the date (from 00:00 1 Jan 2000 TAI+0 in mS) that this clause will next start to
apply after time t.

Evaluates to:

E.7. Package - ::combined::slang 395

schedule->iterate(i : PeriodicInterval ;
next : PeriodicInterval = schedule->any(true) |

if next.nextStartDate(t) = -1
then i
else

if i.nextStartDate(t) = -1 then next
else

if i.nextStartDate(t) < next.nextStartDate(t) then i
else next
endif

endif
endif

).nextStartDate(t)

• endDate(t : ::types::Real) : ::types::Real

Informal: Returns the next time that this clause will cease to apply after t.

Evaluates to:

schedule->iterate(i : PeriodicInterval ;
next : PeriodicInterval = schedule->any(true) |

if next.nextEndDate(t) = -1
then i
else

if i.nextEndDate(t) = -1 then next
else

if i.nextEndDate(t) > next.nextEndDate(t) then i
else next
endif

endif
endif

).nextEndDate(t)

• startDatesAfter(t : ::types::Real) : ::types::Real[0, *] unique ordered

Informal: Evaluates to a list of all of the dates that this clause starts to apply after t.

Evaluates to:

if nextStartDate(t) < 0
then OrderedSet(::types::Real) {}
else

OrderedSet(::types::Real) { nextStartDate(t) }->union(

startDatesAfter(nextStartDate(t))
)

endif

• startDates() : ::types::Real[0, *] unique ordered

Informal: Evaluates to a list of all of the dates that this clause starts to apply.

Evaluates to:

startDatesAfter(-1.0)

Invariants:

• No invariants.

E.8. Package - ::combined::slang::es 396

E.8 Package - ::combined::slang::es
Informal: The package ::combined::slang::es contains syntactic extensions to the slang language specific
to the domain of electronic services.

E.8.1 Class - ::combined::slang::es::ConsecutiveAvailabilityAwareAdministration-
Clause

Extends: ::combined::slang::ConsecutiveAdministrationClause, pg. 383
Definitive: A consecutive, administration aware administration clause includes events occurring

within its consecutive interval, plus any events related to overlapping periods of unavailability.
Properties:

• No properties.

Operations:

• eventRelevant(administration : ::services::Administration,
event : ::services::Event) : ::types::Boolean

Informal: Determines whether some event is potentially relevant to a particular administration.

Evaluates to:

sLAEvents()->includes(event)
and
(

event.date.inMs() <= intervalEndDate(administration)
and
event.date.inMs() > intervalStartDate(administration)

)
or
(

event.oclIsKindOf(::services::ReportRecord)
and
event.oclAsType(::services::ReportRecord).report.oclIsKindOf(

::services::es::BugReport)
and
event.date.inMs() <= intervalEndDate(administration)
and
event.oclAsType(::services::ReportRecord).report.oclAsType(

::services::es::BugReport).bugFixReport.date.inMs() >
intervalEndDate(administration)

)

Invariants:

• No invariants.

E.8.2 Class - ::combined::slang::es::FixedDeadlineTerminationByReportConsecutive-
AvailabilityAwareReconciliationAdministrationClause

Extends: ::combined::slang::es::ConsecutiveAvailabilityAwareAdministrationClause, pg. 396,
::slang::TerminationByReportAdministrationClause, pg. 349,
::slang::ReconciliationAdministrationClause, pg. 339

Definitive: A termination administration clause with a fixed deadline, which is sensitive to the need
to gather evidence in relation to administrations.
Properties:

• deadline : ::types::Duration

Definitive: Clauses of this type define a fixed amount of time following the exchange of a termi-
nation report within which the SLA must be finally administered.

E.8. Package - ::combined::slang::es 397

Operations:

• calculateAdministrationDeadline() : ::types::Real

Informal: Clauses of this type must be administered within a fixed deadline of a termination report
being exchanged between the parties to the SLA.

Evaluates to:

deadline.inMs()

Invariants:

• No invariants.

E.8.3 Class - ::combined::slang::es::InformalSuccessModeDefinition
Extends: ::combined::slang::es::SuccessModeDefinition, pg. 398

Definitive: A success mode, membership of which is determined by the natural-language descrip-
tion given in its definition.
Properties:

• No properties.

Operations:

• included(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: A service usage should reference an informal success mode if it matches the description
of the mode.

Evaluates to:

usage.behaviours->includes(self)

• excluded(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: A service usage should reference an informal success mode if it matches the description
of the mode.

Evaluates to:

not usage.behaviours->includes(self)

Invariants:

• No invariants.

E.8.4 Class - ::combined::slang::es::ScheduledConsecutiveAvailabilityAware-
ReconciliationAdministrationClause

Extends: ::combined::slang::ScheduledAdministrationClause, pg. 393,
::combined::slang::es::ConsecutiveAvailabilityAwareAdministrationClause, pg. 396,
::slang::ReconciliationAdministrationClause, pg. 339

Definitive: A scheduled, consecutive reconciliation administration clause that also requires the in-
clusion of any evidence relating to periods of unavailability overlapping the administrative period.
Properties:

• No properties.

Operations:

• No operations.

Invariants:

• No invariants.

E.8. Package - ::combined::slang::es 398

E.8.5 Abstract class - ::combined::slang::es::SuccessModeDefinition
Extends: ::slang::es::ElectronicServiceUsageBehaviourDefinition, pg. 360

Definitive: A success mode is an electronic-service usage behaviour corresponding to the successful
completion of a service-usage.
Properties:

• incompatibleFailureModes : ::slang::es::FailureModeDefinition[0, *] unique

Definitive: A success mode may defines a set of failure modes with which it is incompatible.

• usageModes : ::slang::es::UsageModeDefinition[1, *] unique

Definitive: Success mode definitions must identify usage modes in which they can occur.

Operations:

• calculateResponsibleParty() : ::slang::PartyDefinition

Informal: The provider of the electronic service is always responsible for any successes.

Evaluates to:

service.provider

Invariants:

• Wellformedness: If a service usage references this success mode, then it also references a usage
mode in which this success mode may occur.

operations.usageRecords->forAll(u : ::services::es::ServiceUsageRecord |

u.behaviours->includes(self)
implies
u.behaviours->exists(b :

::slang::es::ElectronicServiceUsageBehaviourDefinition |

usageModes->includes(b)
)

)

• Wellformedness: To be in a success mode, a usage must not be in any incompatible failure mode.

operations.usageRecords->forall(u : ::services::es::ServiceUsageRecord |

u.behaviours->includes(self)
implies
not u.behaviours->exists(

b : ::slang::es::ElectronicServiceUsageBehaviourDefinition |

b.oclIsKindOf(::slang::es::FailureModeDefinition)
and
not incompatibleFailureModes->includes(b)

)
)

E.8.6 Abstract class - ::combined::slang::es::ViolationDependentElectronic-
ServiceUsageBehaviourDefinition

Extends: ::slang::es::ElectronicServiceUsageBehaviourDefinition, pg. 360
Definitive: A violation-dependent electronic-service usage behaviour definition may not be exhib-

ited if it contributes to a violation of some other condition.

E.9. Package - ::combined::services 399

Properties:

• satisfyingConditions : ::slang::ConditionClause[0, *] unique

Definitive: The service usage may not be contributary evidence for violations of these conditions.

Operations:

• violating(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: Determines whether a usage contributes to a violation of one of the specified clauses.

Evaluates to:

administration.violations->exists(v : ::services::Violation |

satisfyingConditions->includes(v.violatedClause)
and
v.evidence->includes(usage)

)

• excluded(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: Requests may be excluded from this mode if the service was unavailable when they
were made, or the same conditions as defined by a delegated-execution dependent failure mode
apply.

Evaluates to:

violating(usage, administration)

Invariants:

• No invariants.

E.9 Package - ::combined::services
Informal: The services package in combined contains domain-independent extension to the slang domain
model.

E.9.1 Class - ::combined::services::PoundsSterlingPenaltyPayment
Extends: ::services::Compensation, pg. 372

Definitive: A penalty payment made in Pounds-Sterling.
Properties:

• amount : ::types::Real

Definitive: In a Pounds-Sterling penalty payment, the violator pays the other SLA party an amount
of money in Pounds-Sterling.

Operations:

• No operations.

Invariants:

• No invariants.

E.10 Package - ::sla1
Informal: The package sla1 contains all classes required to extend SLAng or its domain model in support
of the definition of SLA 1 from the eMaterials case-study.

E.11 Package - ::sla1::slang
Informal: The slang package in sla1 contains domain-independent syntactic extensions to the slang
language.

E.11. Package - ::sla1::slang 400

E.11.1 Class - ::sla1::slang::PermanentFixedWindowFixedOccurrencesFixed-
PenaltyMaximalServiceBehaviourRestrictionConditionClause

Extends: ::combined::slang::PermanentFixedWindowFixedOccurrencesMaximalServiceBehaviour-
RestrictionConditionClause, pg. 391

Definitive: A permanent, fixed window, fixed occurrences, fixed penalty, maximal service-
behaviour restriction condition clause.
Properties:

• penalty : ::slang::PenaltyDefinition

Definitive: Clauses of this kind related a fixed penalty to maximal violations.

Operations:

• violationExistsFor(maximal : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::types::Boolean

Informal: Check that a violation exists corresponding to a particular maximal violation, with
appropriate penalty.

Evaluates to:

administration.violations->exists(v : ::services::Violation |

v.evidence = maximal
and
v.violator = service().provider
and
v.penalty = penalty

)

Invariants:

• No invariants.

E.11.2 Class - ::sla1::slang::PermanentFixedWindowFixedOccurrencesStepped-
PenaltyMaximalServiceBehaviourRestrictionConditionClause

Extends: ::combined::slang::PermanentFixedWindowFixedOccurrencesMaximalServiceBehaviour-
RestrictionConditionClause, pg. 391,
::sla1::slang::SteppedPenaltyClause, pg. 401

Definitive:
Properties:

• No properties.

Operations:

• calculatePenaltyForMaximalViolation(maximal : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::slang::PenaltyDefinition

Informal: The penalty that should apply to some maximal violation is the penalty calculated on
the sliding scale.

Evaluates to:

getSteppedPenalty(behaviourInterval(maximal, administration))

Invariants:

• No invariants.

E.11.3 Class - ::sla1::slang::SteppedPenalty
Definitive: A clause that identifies a penalty based on the duration of a violation being longer than some
threshold.

E.12. Package - ::sla1::slang::es 401

Properties:

• threshold : ::types::Duration

Definitive: The violation must last longer than this threshold, and no longer than any higher thresh-
old for the penalty to apply.

• penalty : ::slang::PenaltyDefinition

Definitive: This penalty applies if a violation lasts longer than the threshold, but no longer than
any higher threshold.

Operations:

• No operations.

Invariants:

• No invariants.

E.11.4 Abstract class - ::sla1::slang::SteppedPenaltyClause
Definitive: A clause that associates penalties with violation on a stepped scale based on the duration of
the violation.
Properties:

• penalties : ::sla1::slang::SteppedPenalty[1, *] unique ordered

Operations:

• getSteppedPenalty(violationDuration : ::types::Real) : ::slang::PenaltyDefinition

Evaluates to:

let
indices = Sequence(::types::Integer) { 1..penalties->size() }
in
let
highest = indices->iterate(i : ::types::Integer;

highest : ::types::Integer = -1 |

if penalties->at(i).threshold.inMs() < violationDuration then i
else highest
endif

)
in
penalties->at(highest).penalty

Invariants:

• Wellformedness: Penalties should be ordered by increasing duration.

let
indices = Sequence(::types::Integer) { 1..penalties->size() }
in
indices->forall(i : ::types::Integer |

i < penalties->size()
implies
penalties->at(i).threshold.inMs() <

penalties->at(i + 1).threshold.inMs()
)

E.12 Package - ::sla1::slang::es
Informal: The package ::sla1::slang::es contains syntactic extensions to the slang language specific to
the domain of electronic services.

E.12. Package - ::sla1::slang::es 402

E.12.1 Abstract class - ::sla1::slang::es::AsynchronousFailureModeDefinition
Extends: ::slang::es::FailureModeDefinition, pg. 363

Definitive: A service usage is in an asynchronous latency failure mode if it is a request for results to
be produced asynchronously, and is followed, after a specified maximumLatency period, by unreliability
in the retrieval operations, or unavailablity in a mode in which the retrieval operations belong.
Properties:

• asynchronousReliabilityClauses : ::slang::ServiceBehaviourRestrictionConditionClause[0, *]
unique

Definitive: If one of these reliability clauses is violated, resulting in a maximal violation ending
after the maximum latency period, and before the results are retrieved, then the request should be
in this failure mode.

• asynchronousAvailabilityClauses : ::slang::es::AvailabilityConditionClause[0, *] unique

Definitive: If a period of unavailability in one of these clauses occurs, before the results are re-
trieved and extending beyond the maximum latency period, then the request should be in this
failure mode.

• requestOperation : ::sla1::slang::es::AsynchronousOperationDefinition

Definitive: Failure-mode definitions of this type identify a request operation, triggering the asyn-
chronous production of results

• resultsOperations : ::sla1::slang::es::AsynchronousOperationDefinition[0, *] unique

Definitive: Failure-mode definitions of this type identify a set of results operations, each of which
must be called once to fully retrieve the results.

Operations:

• calculateLatency(request : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Real

Informal: (abstract) Calculates a latency for the production of results. Results may be available
before this time, but must be available afterwards.

• calculateRetrievalDeadline(request : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Real

Informal: (abstract) It does not matter if requests for results are subject to unreliability of unavail-
ability if they occur after this retrieval deadline.

• resultsId(usage : ::services::es::ServiceUsageRecord) : ::services::es::ParameterRecord

Informal: Retrieve the results ID parameter record from a results retrieval usage.

Evaluates to:

let definition = resultsOperations->any(
operation = usage.operation)

in
usage.inputs->union(usage.outputs)->any(

type = definition.iDParameter)

• requestId(usage : ::services::es::ServiceUsageRecord) : ::services::es::ParameterRecord

Informal: Retrieve the results ID parameter record from a request usage.

Evaluates to:

usage.inputs->union(usage.outputs)->any(
p : ::services::es::ParameterRecord |
p.type = requestOperation.iDParameter)

E.12. Package - ::sla1::slang::es 403

• earliestUniqueRetrievals(request : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::services::es::ServiceUsageRecord[0, *] unique

Informal: Find the set of earliest, unique results retrievals corresponding to a request.

Evaluates to:

let
id = requestId(request),
records =

administration.agreed->select(
oclIsKindOf(::services::es::ServiceUsageRecord)
)->collect(oclAsType(::services::es::ServiceUsageRecord)
)->asSet(),

resultsOps = resultsOperations.operation->asSet()
in
let allRetrievals =

records->select(usage : ::services::es::ServiceUsageRecord |

usage.date.inMs() > request.date.inMs()
and
resultsOps->includes(usage.operation)
and
resultsId(usage).value = id.value
and
(

let definition = resultsOperations->any(
operation = usage.operation)

in
usage.behaviours->includes(definition.successMode)

)
)

in
allRetrievals->reject(u1 : ::services::es::ServiceUsageRecord |

allRetrievals->exists(u2 : ::services::es::ServiceUsageRecord |

u1.operation = u2.operation
and
u1.date.inMs() > u2.date.inMs()

)
)->asSet()

• latestEvidenceTime(usages : ::services::Evidence[0, *] unique) : ::types::Real

Informal: Determine the time that the last usage in a set concluded.

Evaluates to:

usages->iterate(e : ::services::Evidence;
latest = -1.0 |

let time =
if e.oclIsKindOf(::services::es::ServiceUsageRecord)
then

e.oclAsType(::services::es::ServiceUsageRecord
).date.inMs() +

(
if not e.oclAsType(::services::es::ServiceUsageRecord

).duration.oclIsUndefined()
then e.oclAsType(::services::es::ServiceUsageRecord

E.12. Package - ::sla1::slang::es 404

).duration.inMs()
else 0.0
endif
)

else
if e.oclIsKindOf(::services::ReportRecord)
then e.oclAsType(::services::ReportRecord).date.inMs()
else latest
endif

endif
in
if time > latest then time else latest endif

)

• included(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: A usage is in this mode if it successfully triggered the production of results, but then a
violation of a reliability or unavailability condition hindered the retrieval of the results by occuring
after the prescribed latency (at which point results should be available) and before results could
either be retrieved, or the guarantee lapses with the end of the retrieval deadline.

Evaluates to:

usage.operation = requestOperation.operation
and
usage.behaviours->includes(requestOperation.successMode)
and
(

let earliest = earliestUniqueRetrievals(usage, administration)
in
earliest->size() = resultsOperations->size()
and
(

let cutoff = usage.date.inMs() +
calculateRetrievalDeadline(usage, administration),
responseTime = latestEvidenceTime(earliest)

in
let response =

if responseTime < cutoff then responseTime
else cutoff
endif

in
administration.violations->exists(v : ::services::Violation |

Set(::slang::ConditionClause) {}->union(
asynchronousReliabilityClauses)->union(
asynchronousAvailabilityClauses)->includes(

v.violatedClause)
and
(

let violationEnd = latestEvidenceTime(v.evidence)
in
violationEnd < response
and
violationEnd > usage.date.inMs() +

calculateLatency(usage, administration)
)

)
)

E.12. Package - ::sla1::slang::es 405

)

Invariants:

• Wellformedness: The only operation that may belong to this failure mode is the request operation.

operations = Set(::slang::es::OperationDefinition)
{ requestOperation.operation }

E.12.2 Class - ::sla1::slang::es::AsynchronousOperationDefinition
Extends: ::slang::Definition, pg. 337

Definitive: An asynchronous operation definition identifies an operation that may form part of a
process to asynchronously produce results. Such an operation will have a parameter identifying the
batch of results being produced.
Properties:

• operation : ::slang::es::OperationDefinition

Definitive: An asynchronous operation definition references an operation defined in some interface
of a service.

• iDParameter : ::slang::es::ParameterDefinition

Definitive: An synchronous operation definition identifies the parameter of the operation serving
to identify the results being either requested or retrieved.

• successMode : ::combined::slang::es::SuccessModeDefinition

Definitive: Requests to the operation must be in this success mode to be a correct part of the
asynchronous protocol - for requests, a successful usage triggers the production of results. For
result retrieval operations a successful usage retrieves the results produced asynchronously.

Operations:

• No operations.

Invariants:

• No invariants.

E.12.3 Abstract class - ::sla1::slang::es::DelegatedExecutionDependentFailure-
ModeDefinition

Extends: ::slang::es::FailureModeDefinition, pg. 363
Definitive: A delegated execution failure mode does not include any requests for which slow exe-

cution reports have been issued.
Properties:

• No properties.

Operations:

• slowExecution(serviceUsage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: Has a slow execution report been issued for a given service usage in an administration.

Evaluates to:

administration.agreed->exists(e : ::services::Evidence |

e.oclIsKindOf(::services::ReportRecord)
and
(

let report = e.oclAsType(::services::ReportRecord).report
in

E.12. Package - ::sla1::slang::es 406

report.oclIsKindOf(::sla1::services::es::SlowExecutionReport)
and
report.oclAsType(::sla1::services::es::SlowExecutionReport).

requestRecord = serviceUsage
)

)

• sLAEvents() : ::services::Event[0, *] unique

Informal: Events relevant to this failure mode include the exchange of slow-execution report
records.

Evaluates to:

let
electronicService = service.oclAsType(

::slang::es::ElectronicServiceDefinition),
executables = operations.oclAsType(

DelegatedExecutionOperationDefinition).executables
in
let requests =

electronicService.interfaces.electronicServiceInterface.operations.
requests

in
(Set(::services::Event) {}->union(requests))->union(

requests->select(not response.oclIsUndefined()).response
)->union(executables.slowExecutionReports)->asSet()

• evidenced(event : ::services::Event,
administration : ::services::Administration) : ::types::Boolean

Informal: For this failure to be evidenced, any slow execution reports related to executables related
to this mode must be reported. Also, service-usage records related to usages of the operations of
this mode must be produced.

Evaluates to:

(
event.oclIsKindOf(::sla1::services::es::SlowExecutionReport)
implies
administration.agreed->exists(e : ::services::Evidence |

e.oclIsKindOf(::services::ReportRecord)
and
e.oclAsType(::services::ReportRecord).report =

event.oclAsType(::services::Report)
)

)
and
(

event.oclIsKindOf(::services::es::ServiceRequest)
or
event.oclIsKindOf(::services::es::ServiceResponse)
implies
(

let r =
if event.oclIsKindOf(::services::es::ServiceRequest) then

event.oclAsType(::services::es::ServiceRequest)
else event.oclAsType(::services::es::ServiceResponse).request
endif

in

E.12. Package - ::sla1::slang::es 407

administration.agreed->exists(e : ::services::Evidence |

e.oclIsKindOf(::services::es::ServiceUsageRecord)
and
(

let record = e.oclAsType(::services::es::ServiceUsageRecord)
in
record.request = r

)
and
(

included(e.oclAsType(::services::es::ServiceUsageRecord),
administration)

and
(not excluded(e.oclAsType(

::services::es::ServiceUsageRecord), administration))
implies e.oclAsType(::services::es::ServiceUsageRecord

).behaviours->includes(self)
)

)
)

)

• excluded(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: A service usage should reference an informal success mode if it matches the description
of the mode.

Evaluates to:

slowExecution(usage, administration)

Invariants:

• Wellformedness: All operations associated with this failure mode must be delegated-execution
operations.

operations->forall(oclIsKindOf(DelegatedExecutionOperationDefinition))

E.12.4 Class - ::sla1::slang::es::DelegatedExecutionOperationDefinition
Extends: ::slang::es::OperationDefinition, pg. 365

Definitive: A delegated-execution operation results in the execution of some executable maintained
by a party other than the service provider. The definition identifies those executables that may potentially
be executed.
Properties:

• executables : ::sla1::slang::es::ExecutableDefinition[1, *] unique

Definitive: A clause of this kind references definitions of the executables that may be executed as
a result of a call to this operation.

Operations:

• No operations.

Invariants:

• Wellformedness: The executables must be maintained by a party other than the provider of the
service.

not executables.maintainer->includes(interface.owner)

E.12. Package - ::sla1::slang::es 408

E.12.5 Abstract class - ::sla1::slang::es::ExecutableDefinition
Extends: ::slang::Definition, pg. 337,
::slang::AuxiliaryClause, pg. 336

Definitive: An executable definition identifies an executable to be executed in a delegated execution
service. A maintaining party is identified. The definition also represents a guarantee that the executable
will always complete in under a given duration (that may be calculated based on input value representa-
tions), on a reference node of a stated speed.
Properties:

• referenceNodeSpeed : ::types::Real

Definitive: A scalar quantity representing the speed of the reference node on which the executable
is presumed to complete in the calculated duration.

• maintainer : ::slang::PartyDefinition

Definitive: The party responsible for maintaining the executable, hence guaranteeing its timeli-
ness.

• slowExecutionReports : ::sla1::services::es::SlowExecutionReport[0, *] unique

Opposite: ::sla1::services::es::SlowExecutionReport.executableDefinition : ::sla1::slang::es::Executable-
Definition

Definitive: An executable definition may be referenced by slow execution reports.

• executable : ::sla1::services::es::Executable

Definitive: An executable definition identifies some executable in the real world.

Operations:

• calculateMaxDuration(inputs : ::types::String[0, *] ordered) : ::types::Real

Informal: (abstract) Calculate maximum amount of time to complete with specified input param-
eters.

Invariants:

• No invariants.

E.12.6 Class - ::sla1::slang::es::FixedDurationExecutableDefinition
Extends: ::sla1::slang::es::ExecutableDefinition, pg. 408

Definitive: An executable definition guaranteeing a fixed maximum execution time (on a node of
the reference speed).
Properties:

• maxDuration : ::types::Duration

Definitive: Clauses of this type define a fixed maximum duration for executions of the defined
executable on a node of the specified reference speed.

Operations:

• calculateMaxDuration(inputs : ::types::String[0, *] ordered) : ::types::Real

Informal: The maximum amount of time to complete with any input parameters is the specified
maximum duration.

Evaluates to:

maxDuration.inMs()

Invariants:

• No invariants.

E.12. Package - ::sla1::slang::es 409

E.12.7 Class - ::sla1::slang::es::FixedLatencyAvailabilityDependentViolation-
DependentFailureModeDefinition

Extends: ::slang::es::LatencyFailureModeDefinition, pg. 365,
::slang::es::AvailabilityDependentElectronicServiceUsageBehaviourDefinition, pg. 357,
::combined::slang::es::ViolationDependentElectronicServiceUsageBehaviourDefinition, pg. 398

Definitive: A failure mode defining a fixed maximum duration that service usages must not exceed.
Properties:

• maxDuration : ::types::Duration

Definitive: A failure-mode of this kind defines a fixed maximum duration that service usages must
not exceed.

Operations:

• calculateMaxDuration(date : ::types::Date) : ::types::Real

Informal: the maximum latency of operations associated with this definition is the fixed duration
specified.

Evaluates to:

maxDuration.inMs()

• excluded(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: Requests may be excluded from this mode if the service was unavailable when they
were made, or the same conditions as defined by a delegated-execution dependent failure mode
apply.

Evaluates to:

isUnavailable(usage)
or
violating(usage, administration)

Invariants:

• No invariants.

E.12.8 Class - ::sla1::slang::es::FixedLatencyFixedDeadlineDelegatedExecution-
DependentAvailabilityDependentViolationDependentAsynchronousFailure-
ModeDefinition

Extends: ::sla1::slang::es::DelegatedExecutionDependentFailureModeDefinition, pg. 405,
::sla1::slang::es::AsynchronousFailureModeDefinition, pg. 402,
::slang::es::AvailabilityDependentElectronicServiceUsageBehaviourDefinition, pg. 357,
::combined::slang::es::ViolationDependentElectronicServiceUsageBehaviourDefinition, pg. 398

Definitive: A failure mode that is dependent on delegated execution, applies to asynchronous oper-
ations, but only when the service was in an available state when the request was made.
Properties:

• latency : ::types::Duration

Definitive: Clauses of this type define a fixed latency, after which asynchronously calculated re-
sults must be available.

• deadline : ::types::Duration

Definitive: Clauses of this type define a fixed deadline, within which period following the latency
period, results may be retrieved once, as soon as possible, or a penalty may be levied.

E.12. Package - ::sla1::slang::es 410

Operations:

• calculateLatency(request : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Real

Informal: (abstract) Calculates a latency for the production of results. Results may be available
before this time, but must be available afterwards.

Evaluates to:

latency.inMs()

• calculateRetrievalDeadline(request : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Real

Informal: (abstract) It does not matter if requests for results are subject to unreliability of unavail-
ability if they occur after this retrieval deadline.

Evaluates to:

deadline.inMs()

• excluded(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: Requests may be excluded from this mode if the service was unavailable when they
were made, or the same conditions as defined by a delegated-execution dependent failure mode
apply.

Evaluates to:

slowExecution(usage, administration)
or
isUnavailable(usage)
or
violating(usage, administration)

Invariants:

• No invariants.

E.12.9 Class - ::sla1::slang::es::InformalAvailabilityDependentViolationDependent-
FailureModeDefinition

Extends: ::slang::es::FailureModeDefinition, pg. 363,
::slang::es::AvailabilityDependentElectronicServiceUsageBehaviourDefinition, pg. 357,
::combined::slang::es::ViolationDependentElectronicServiceUsageBehaviourDefinition, pg. 398

Definitive:
Properties:

• No properties.

Operations:

• included(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: A service usage should reference an informal failure mode if it matches the description
of the mode.

Evaluates to:

usage.behaviours->includes(self)

E.12. Package - ::sla1::slang::es 411

• excluded(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: A service usage should reference an informal failure mode if it matches the description
of the mode.

Evaluates to:

isUnavailable(usage)
or
violating(usage, administration)
or
not usage.behaviours->includes(self)

Invariants:

• No invariants.

E.12.10 Class - ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadline-
AvailabilityConditionClause

Extends: ::slang::es::AvailabilityConditionClause, pg. 352,
::sla1::slang::SteppedPenaltyClause, pg. 401

Definitive:
Properties:

• deadline : ::types::Duration

Definitive: Clauses of this type define a fixed deadline in which the client may report unavailability
following unreliability (according to one of the referenced conditions).

Operations:

• calculateReportingDeadline(violation : ::services::Violation) : ::types::Real

Informal: (abstract) calculate the deadline for reporting unavailability based on a violation of one
of the reliability clauses.

Evaluates to:

deadline.inMs()

• considerLoneBugReports() : ::types::Boolean

Informal: (abstract) are lone bug reports considered when calculating violations?

Evaluates to:

true

• calculatePenaltyForBugReport(administration : ::services::Administration,
bugReport : ::services::ReportRecord) : ::slang::PenaltyDefinition

Informal: The penalty for any period of unavailability during an administrative period, is the fixed
penalty.

Evaluates to:

let consecutive = administration.administrationClause.
oclAsType(::combined::slang::ConsecutiveAdministrationClause)

in
let administrationStart = consecutive.intervalStartDate(

administration),
administrationEnd = administration.date.inMs()

in
let violationStart =

if administrationStart > bugReport.date.inMs()

E.13. Package - ::sla1::services 412

then administrationStart
else bugReport.date.inMs()
endif,
violationEnd = administrationEnd

in
getSteppedPenalty(violationEnd - violationStart)

• calculatePenaltyForUnavailability(administration : ::services::Administration,
bugReport : ::services::ReportRecord,
bugFixReport : ::services::ReportRecord) : ::slang::PenaltyDefinition

Informal: (abstract) calculate penalty for a pair of bug and bug-fix reports.

Evaluates to:

let consecutive = administration.administrationClause.
oclAsType(

::combined::slang::ConsecutiveAdministrationClause)
in
let administrationStart = consecutive.intervalStartDate(administration),

administrationEnd = administration.date.inMs()
in
let violationStart =

if administrationStart > bugReport.date.inMs()
then administrationStart
else bugReport.date.inMs()
endif,

violationEnd =
if administrationStart < bugFixReport.date.inMs()
then administrationEnd
else bugFixReport.date.inMs()
endif

in
getSteppedPenalty(violationEnd - violationStart)

Invariants:

• Wellformedness: This condition may only be associated with consecutive, availability-aware ad-
ministrative clauses, because of the way it calculates penalties.

administrationClauses->forall(
oclIsKindOf(

::combined::slang::es::
ConsecutiveAvailabilityAwareAdministrationClause))

E.13 Package - ::sla1::services
Informal: The services package in sla1 contains domain-independent extension to the slang domain
model.

E.14 Package - ::sla1::services::es
Informal: The package ::sla1::services::es contains extension to the slang domain model specific to the
domain of electronic services.

E.14.1 Class - ::sla1::services::es::DelegatedExecution
Extends: ::services::Event, pg. 372

Definitive: A delegated execution is the execution of an executable by a service provider where
responsibility for the execution time of the executable is held by another party.

E.14. Package - ::sla1::services::es 413

Properties:

• node : ::sla1::services::es::Node

Definitive: An execution takes place on a processing node.

• serviceRequest : ::services::es::ServiceRequest

Definitive: An execution takes place as a consequence of a service request.

• inputs : ::sla1::services::es::ExecutionParameterValue[0, *] unique ordered

Definitive: An execution takes a number of input parameters.

• outputs : ::sla1::services::es::ExecutionParameterValue[0, *] unique

Definitive: An execution may produce various results.

• executable : ::sla1::services::es::Executable

Definitive: An execution is of an executable.

• duration : ::types::Duration

Definitive: An executation takes a certain amount of time to complete.

Operations:

• No operations.

Invariants:

• No invariants.

E.14.2 Class - ::sla1::services::es::Executable
Definitive: An executable is a package of program code appropriate for execution on some processing
nodes.
Properties:

• No properties.

Operations:

• No operations.

Invariants:

• No invariants.

E.14.3 Class - ::sla1::services::es::ExecutionParameterRecord
Definitive: An execution parameter record records the value of an input to, or output from an execution.
Properties:

• value : ::types::String

Definitive: A string representation of the execution parameter value.

• executionParameterValue : ::sla1::services::es::ExecutionParameterValue

Definitive : An execution parameter record records the value of some execution parameter.

Operations:

• No operations.

Invariants:

• Wellformedness: The parameter record should capture the parameter value identically.

value = executionParameterValue.value

E.14. Package - ::sla1::services::es 414

E.14.4 Class - ::sla1::services::es::ExecutionParameterValue
Definitive: An execution parameter is some data taken as an input by an executable, or produced during
an execution.
Properties:

• value : ::types::String

Definitive: An execution parameter value is assumed to have a string representation.

Operations:

• No operations.

Invariants:

• No invariants.

E.14.5 Class - ::sla1::services::es::Node
Definitive: A node is a processing platform. Nodes may be of various architectural types.
Properties:

• speed : ::types::Real

Definitive: It is assumed that within the architectural type of a node, some scalar value represents
its absolute speed, such that the ratio of two values of speed for two nodes of the same architec-
tural type will be a good estimate of the ratio of execution times for two executions of the same
executable (appropriate to the architecture) on the two nodes.

Operations:

• No operations.

Invariants:

• No invariants.

E.14.6 Class - ::sla1::services::es::SlowExecutionReport
Extends: ::services::Report, pg. 374

Definitive: A slow execution report represents a complaint by a service provider to the maintainer
of an executable that normalised execution time for an execution has taken longer than guaranteed by
the maintainer.
Properties:

• duration : ::types::Duration

Definitive: A slow-execution report contains a record of the normalised duration of the execution

• requestRecord : ::services::es::ServiceUsageRecord

Definitive: A slow-execution report includes a record of the particulars of the service request
that led to the execution taking place. This allows the maintainer to establish that the execution
parameters chosen were legitimate.

• inputs : ::sla1::services::es::ExecutionParameterRecord[0, *] unique ordered

Definitive: A slow-execution report includes a record of the values of any inputs to the executable.

• executableDefinition : ::sla1::slang::es::ExecutableDefinition

Opposite: ::sla1::slang::es::ExecutableDefinition.slowExecutionReports : ::sla1::services::es::Slow-
ExecutionReport[0, *] unique

Definitive: A slow-execution report refers to an executable identified in an SLA.

• delegatedExecution : ::sla1::services::es::DelegatedExecution

Definitive: A slow-execution report is a result of observing a delegated execution.

E.15. Package - ::sla4 415

Operations:

• trueNormalisedDuration() : ::types::Real

Informal: Calculates the true normalised duration.

Evaluates to:

delegatedExecution.duration.inMs() *
(executableDefinition.referenceNodeSpeed /

delegatedExecution.node.speed)

Invariants:

• Wellformedness: The executable definition referred to by the report must identify the executable
used in the execution.

delegatedExecution.executable = executableDefinition.executable

• Wellformedness: The service request referenced by the report mus refer to a delegated execution
definition referencing the executable that ran too slowly.

requestRecord.operation.oclIsKindOf(
::sla1::slang::es::DelegatedExecutionOperationDefinition)

and
requestRecord.operation.oclAsType(

::sla1::slang::es::DelegatedExecutionOperationDefinition).
executables->includes(executableDefinition)

• Wellformedness: The values measured by the input parameter records must be the input values to
the execution.

Sequence(::types::Integer) { 1..delegatedExecution.inputs->size() }->
forall(i : ::types::Integer |

inputs->at(i).executionParameterValue =
delegatedExecution.inputs->at(i)

)

E.15 Package - ::sla4
Informal: The package sla1 contains all classes required to extend SLAng or its domain model in support
of the definition of SLA 1 from the eMaterials case-study.

E.16 Package - ::sla4::slang
Informal: The slang package in sla1 contains domain-independent syntactic extensions to the slang
language.

E.16.1 Class - ::sla4::slang::FixedDeadlineScalingPoundsSterlingPayment-
PenaltyDefinition

Extends: ::combined::slang::PaymentPenaltyDefinition, pg. 392
Definitive:

Properties:

• amountPerHour : ::types::Real

Definitive: This type of clause defines a fixed amount of Pounds Sterling to be paid per hour of
the violation.

• deadline : ::types::Duration

Definitive: This type of clause defines a fixed deadline for payments, in relation to the time of
completion of the SLA administration resulting in the penalty being levied.

E.16. Package - ::sla4::slang 416

Operations:

• calculatePoundsSterlingPayment(violation : ::services::Violation) : ::types::Real

Informal: Calculate the magnitude of the penalty, given the violation.

Evaluates to:

amountPerHour * (violation.violatedClause.oclAsType(
ScalingPenaltyConditionClause).calculateViolationDuration(

violation) / 3600000.0)

• calculatePaymentDeadline(violation : ::services::Violation) : ::types::Real

Informal: Calculate the payment deadline, given the violation.

Evaluates to:

deadline.inMs()

Invariants:

• No invariants.

E.16.2 Class - ::sla4::slang::PermanentFixedWindowFixedOccurrencesScaling-
PenaltyMaximalServiceBehaviourRestrictionConditionClause

Extends: ::combined::slang::PermanentFixedWindowFixedOccurrencesMaximalServiceBehaviour-
RestrictionConditionClause, pg. 391,
::sla4::slang::ScalingPenaltyConditionClause, pg. 417

Definitive:
Properties:

• No properties.

Operations:

• calculateViolationDuration(violation : ::services::Violation) : ::types::Real

Informal: Scaling penalties need to be able to calculate the duration of a violation given the evi-
dence that constitutes it.

Evaluates to:

behaviourInterval(violation.evidence,
violation.administration)

• violationExistsFor(maximal : ::services::Evidence[0, *] unique,
administration : ::services::Administration) : ::types::Boolean

Informal: Check that a violation exists corresponding to a particular maximal violation, with
appropriate penalty.

Evaluates to:

administration.violations->exists(v : ::services::Violation |

v.evidence = maximal
and
v.violator = service().provider
and
v.penalty = penalty

)

Invariants:

• No invariants.

E.17. Package - ::sla4::slang::es 417

E.16.3 Abstract class - ::sla4::slang::ScalingPenaltyConditionClause
Extends: ::slang::ConditionClause, pg. 336

Definitive: A scaling-penalty condition clause assigns a penalty that varies with the duration of a
violation.
Properties:

• penalty : ::slang::PenaltyDefinition

Definitive: Clauses of this type associate a fixed penalty, that may be scaling, with violations.

Operations:

• calculateViolationDuration(violation : ::services::Violation) : ::types::Real

Informal: (abstract) Scaling penalties need to be able to calculate the duration of a violation given
the evidence that constitutes it.

Invariants:

• No invariants.

E.17 Package - ::sla4::slang::es
Informal: The package ::sla4::slang::es contains syntactic extensions to the slang language specific to
the domain of electronic services.

E.17.1 Class - ::sla4::slang::es::ScheduledFixedLatencyAvailabilityDependent-
ViolationDependentFailureModeDefinition

Extends: ::slang::es::LatencyFailureModeDefinition, pg. 365,
::slang::es::AvailabilityDependentElectronicServiceUsageBehaviourDefinition, pg. 357,
::combined::slang::es::ViolationDependentElectronicServiceUsageBehaviourDefinition, pg. 398,
::combined::slang::ScheduledClause, pg. 394

Definitive: A failure mode defining a fixed maximum duration that service usages must not exceed.
Properties:

• maxDuration : ::types::Duration

Definitive: A failure-mode of this kind defines a fixed maximum duration that service usages must
not exceed.

Operations:

• calculateMaxDuration(date : ::types::Date) : ::types::Real

Informal: the maximum latency of operations associated with this definition is the fixed duration
specified.

Evaluates to:

maxDuration.inMs()

• excluded(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: Requests may be excluded from this mode if the service was unavailable when they
were made, or the same conditions as defined by a delegated-execution dependent failure mode
apply.

Evaluates to:

isUnavailable(usage)
or
violating(usage, administration)
or
(not applies(usage.date.inMs()))

E.17. Package - ::sla4::slang::es 418

Invariants:

• No invariants.

E.17.2 Class - ::sla4::slang::es::ScheduledInformalAvailabilityDependent-
ViolationDependentFailureModeDefinition

Extends: ::slang::es::FailureModeDefinition, pg. 363,
::slang::es::AvailabilityDependentElectronicServiceUsageBehaviourDefinition, pg. 357,
::combined::slang::es::ViolationDependentElectronicServiceUsageBehaviourDefinition, pg. 398,
::combined::slang::ScheduledClause, pg. 394

Definitive: An informal, availability-dependent, violation-dependent scheduled failure mode. Us-
ages should be identified as being in this mode if they match the informal description of this mode given,
and the service is not unavailable according to some clause, the usage is not part of a violation of some
other clause(s), and this clause applies according to some schedule.
Properties:

• No properties.

Operations:

• included(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: A service usage should reference an informal failure mode if it matches the description
of the mode.

Evaluates to:

usage.behaviours->includes(self)

• excluded(usage : ::services::es::ServiceUsageRecord,
administration : ::services::Administration) : ::types::Boolean

Informal: A service usage should reference an informal failure mode if it matches the description
of the mode.

Evaluates to:

isUnavailable(usage)
or
violating(usage, administration)
or
(not applies(usage.date.inMs()))
or
not usage.behaviours->includes(self)

Invariants:

• No invariants.

E.17.3 Class - ::sla4::slang::es::ScheduledScalingPenaltyFixedDeadlineAvailability-
ConditionClause

Extends: ::slang::es::AvailabilityConditionClause, pg. 352,
::sla4::slang::ScalingPenaltyConditionClause, pg. 417,
::combined::slang::ScheduledClause, pg. 394

Definitive:
Properties:

• deadline : ::types::Duration

Definitive: Clauses of this type define a fixed deadline in which the client may report unavailability
following unreliability (according to one of the referenced conditions).

E.17. Package - ::sla4::slang::es 419

Operations:

• calculateReportingDeadline(violation : ::services::Violation) : ::types::Real

Informal: (abstract) calculate the deadline for reporting unavailability based on a violation of one
of the reliability clauses.

Evaluates to:

deadline.inMs()

• considerLoneBugReports() : ::types::Boolean

Informal: (abstract) are lone bug reports considered when calculating violations?

Evaluates to:

true

• calculatePenaltyForBugReport(administration : ::services::Administration,
bugReport : ::services::ReportRecord) : ::slang::PenaltyDefinition

Informal: The penalty for any period of unavailability during an administrative period, is the fixed
penalty.

Evaluates to:

penalty

• calculatePenaltyForUnavailability(administration : ::services::Administration,
bugReport : ::services::ReportRecord,
bugFixReport : ::services::ReportRecord) : ::slang::PenaltyDefinition

Informal: (abstract) calculate penalty for a pair of bug and bug-fix reports.

Evaluates to:

penalty

• latestStartBefore(date : ::types::Real) : ::types::Real

Informal: Determine the latest start date of this clause prior to some date.

Evaluates to:

let allStartDates = startDates()
in
allStartDates->iterate(s : ::types::Real;

latest = allStartDates->any(self <= date) |

if latest.oclIsUndefined()
then latest
else

if s > latest and s <= date
then s
else latest
endif

endif
)

• applicationTimeBetween(start : ::types::Real,
end : ::types::Real) : ::types::Real

Informal: Calculated for how many milliseconds this clause applies between the specified start
and end dates.

Evaluates to:

E.17. Package - ::sla4::slang::es 420

if latestStartBefore(start).oclIsUndefined()
then

let earliestStart = nextStartDate(start)
in
applicationTimeBetween(earliestStart, end)

else
let earliestEnd = endDate(latestStartBefore(start))
in
if earliestEnd < start
then

let earliestStart = nextStartDate(start)
in
applicationTimeBetween(earliestStart, end)

else
if earliestEnd < end
then

(earliestEnd - start) +
applicationTimeBetween(earliestEnd, end)

else end - start
endif

endif
endif

• calculateViolationDuration(violation : ::services::Violation) : ::types::Real

Informal: Scaling penalties need to be able to calculate the duration of a violation given the evi-
dence that constitutes it.

Evaluates to:

let consecutive = violation.administration.administrationClause.
oclAsType(

::combined::slang::ConsecutiveAdministrationClause),
bugReport = violation.evidence->any(

oclIsKindOf(::services::ReportRecord)
and
oclAsType(::services::ReportRecord).report.oclIsKindOf(

::services::es::BugReport)).oclAsType(
::services::ReportRecord),

bugFixReport = violation.evidence->any(
oclIsKindOf(::services::ReportRecord)
and
oclAsType(::services::ReportRecord).report.oclIsKindOf(

::services::es::BugFixReport)).oclAsType(
::services::ReportRecord)

in
let administrationStart = consecutive.intervalStartDate(

violation.administration),
administrationEnd = violation.administration.date.inMs()

in
let violationStart =

if bugReport.oclIsUndefined()
then administrationStart
else

if administrationStart > bugReport.date.inMs()
then administrationStart
else bugReport.date.inMs()
endif

endif,
violationEnd =

E.17. Package - ::sla4::slang::es 421

if bugFixReport.oclIsUndefined()
then administrationEnd
else

if administrationStart < bugFixReport.date.inMs()
then administrationEnd
else bugFixReport.date.inMs()
endif

endif
in
applicationTimeBetween(violationStart, violationEnd)

Invariants:

• Wellformedness: This condition may only be associated with consecutive, availability-aware ad-
ministrative clauses, because of the way it calculates penalties.

administrationClauses->forall(
oclIsKindOf(

::combined::slang::es::
ConsecutiveAvailabilityAwareAdministrationClause))

422

Appendix F

Bibliography

[1] The ActiveBPEL open source engine project. http://www.active-endpoints.com/

active-bpel-engine-overview.htm.

[2] AndroMDA code generation tool. http://www.andromda.org/.

[3] S. Ansaloni, A. Sztajnberg, R. C. Cerqueira, and O. Loques. Deploying QoS contracts in the archi-

tectural level. In Workshop on Architecture Description Languages (WADL04) - IFIP WCC’2004,

pages 11–20, August 2004.

[4] The Apache HTTP Server project. http://httpd.apache.org/.

[5] The Apache Jakarta Project. Apache Jakarta Tomcat servlet container. http://jakarta.

apache.org/tomcat/.

[6] The Apache Jakarta Project. Apache JMeter. http://jakarta.apache.org/jmeter/.

[7] The Apache Axis Platform. http://ws.apache.org/axis/.

[8] A. Baroni and F. Abreu. Formalizing object-oriented design metrics upon the UML meta-model.

In 16th Brazilian Symposium on Software Engineering, Gramado, Brazil, 2002.

[9] H. Bauerdick, M. Gogolla, and F. Gutsche. Detecting OCL traps in the UML 2.0 superstructure:

An experience report. In UML 2004, number 3273 in Lecture Notes in Computer Science (LNCS),

pages 188–196. Springer-Verlag, 2004.

[10] C. Becker and K. Geihs. Generic QoS-support for CORBA. In Fifth IEEE Symposium on Com-

puters and Communications (ISCC 2000), page 60. IEEE Press, July 2000.

[11] C. Bettini. Obligation monitoring in policy management. In Third International Workshop on

Policies for Distributed Systems and Networks (POLICY’02). IEEE Computer Society, 2002.

[12] J.G. Cederquist, R. Corin, M.A.C Dekker, S. Etalle, and J.I. den Hartog. An audit logic for

accountabilty. In Sixth IEEE International Workshop on Policies for Distributed Systems and

Networks (POLICY’05). IEEE Computer Society, 2005.

[13] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE Trans. Softw.

Eng., 20(6):476–493, 1994.

http://www.active-endpoints.com/active-bpel-engine-overview.htm
http://www.active-endpoints.com/active-bpel-engine-overview.htm
http://www.andromda.org/
http://httpd.apache.org/
http://jakarta.apache.org/tomcat/
http://jakarta.apache.org/tomcat/
http://jakarta.apache.org/jmeter/
http://ws.apache.org/axis/

423

[14] The Condor Project. http://www.cs.wisc.edu/condor/.

[15] N. Cook, S. Shrivastava, and S. Wheater. Distributed object middleware to support dependable

information sharing between organisations. In IEEE International Conference on Dependable

Systems and Networks (DSN), 2002.

[16] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder policy specification language.

In Policy 2001: Workshop on Policies for Distributed Systems and Networks, number 1995 in

Lecture Notes in Computer Science, pages 18 – 39. Springer-Verlag, 2001.

[17] Digital Equipment Corporation (DEC). Programming with ONC RPC, 1992.

http://www.cs.arizona.edu/computer.help/policy/DIGITAL_unix/

AA-Q0R5B-TET1_html/TITLE.html.

[18] Distributed Management Task Force, inc. Common Information Model (CIM) Specification, June

1999. http://www.dmtf.org/standards/cim/.

[19] The Eclipse Project. Eclipse. http://www.eclipse.org/.

[20] The Eclipse Project. The Eclipse BPEL Project. http://www.eclipse.org/bpel/

index.php.

[21] The Eclipse Project. The Eclipse Modelling Framework (EMF). http://www.eclipse.

org/emf/.

[22] W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. L. Price. Grid service orchestration

using the business process execution language (bpel). Journal of Grid Computing, 3(3):283 – 304,

September 2005.

[23] A. S. Evans and S. Kent. Meta-modelling semantics of UML: the pUML approach. In 2nd

International Conference on the Unified Modeling Language, volume 1723 of Lecture Notes in

Computer Science (LNCS), pages 140–155. Springer-Verlag, 1999.

[24] D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer Second Edition. The World Wide

Web Consortium (W3C), October 2004. http://www.w3.org/TR/xmlschema-0/.

[25] M. S. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard. Reconciling system requirements

and runtime behavior. In Proceedings of the 9th International Workshop on Software Specification

and Design, pages 50–59, 1998.

[26] N. Fenton, W. Marsh, M. Neil, P. Cates, S. Forey, and M. Tailor. Making resource decisions for

software projects. In 26th International Conference on Software Engineering (ICSE 2004), pages

397 – 406. IEEE Computer Society, May 2004.

[27] W. Frakes and C. Terry. Software reuse: Metrics and models. ACM Computing Surveys,

28(2):415–435, 1996.

http://www.cs.wisc.edu/condor/
http://www.cs.arizona.edu/computer.help/policy/DIGITAL_unix/AA-Q0R5B-TET1_html/TITLE.html
http://www.cs.arizona.edu/computer.help/policy/DIGITAL_unix/AA-Q0R5B-TET1_html/TITLE.html
http://www.dmtf.org/standards/cim/
http://www.eclipse.org/
http://www.eclipse.org/bpel/index.php
http://www.eclipse.org/bpel/index.php
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
http://www.w3.org/TR/xmlschema-0/

424

[28] S. Frolund and J. Koistinen. QML: A language for quality of service specification. Technical

Report TR-98-10, HP Laboratories, 1998.

[29] G. Governatori and Z. Milosevic. An approach for validating BCL contract specifications. In

G. Governatori and Z. Milosevic, editors, 2nd EDOC Workshop on Contract Architectures and

Languages (CoALA 2005), September 2005.

[30] GridSAM - grid job submission and monitoring web service. http://gridsam.

sourceforge.net/2.0.1/index.html.

[31] E. Guerra, P. Dı́az, and Juan de Lara. Visual specification of metrics for domain specific visual

languages. In Graph Transformation and Visual Modeling Techniques (GT-VMT’06), Electronic

Notes in Theoretical Computer Science. Elsevier, 2006.

[32] H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M. Siegle. Compositional perfor-

mance modelling with the TIPPtool. In Computer Performance Evaluation: 10th International

Conference, Tools ’98, volume 1469 of LNCS, page 51. Springer Berlin, 1998.

[33] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press,

1996.

[34] International Business Machines (IBM), Inc. Web Service Level Agreement (WSLA) Language

Specification, January 2003.

[35] International Standards Organisation (ISO). Standard Generalized Markup Language (SGML),

1986.

[36] International Standards Organisation (ISO). Reference Model of Open Distributed Processing

(RM-ODP), June 1995.

[37] The Internet Engineering Task Force (IETF). Hypertext Transfer Protocol – HTTP/1.1, June 1999.

http://www.ietf.org/rfc/rfc2616.txt.

[38] The Internet Society. Uniform Resource Identifier (URI): Generic Syntax, rfc: 3986 edition, 2005.

http://www.ietf.org/rfc/rfc3986.txt.

[39] J.-P. Jacquet and A. Abran. Metrics validation proposals: A structured analysis. In 8th Interna-

tional Workshop on Software Measurement, 1998.

[40] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley and Sons, Inc., 1991.

[41] JANET – The UK’s education and research network. http://www.ja.net/.

[42] F. Jouault and I. Kurtev. On the architectural alignment of ATL and QVT. In Proceedings of the

2006 ACM Symposium on Applied Computing (SAC 06), Dijon, France, pages 1188 – 1195. ACM

Press, 2006.

http://gridsam.sourceforge.net/2.0.1/index.html
http://gridsam.sourceforge.net/2.0.1/index.html
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ja.net/

425

[43] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC: a run-time assurance

tool for Java programs. In K. Havelund and G. Rosu, editors, Electronic Notes in Theoretical

Computer Science, volume 55. Elsevier Science Publishers, 2001.

[44] The Kent Modelling Framework (KMF). http://www.cs.kent.ac.uk/projects/

kmf/documents.html.

[45] D. E. Knuth. Backus Normal Form vs. Backus Naur Form. Communications of the ACM,

7(12):735–736, 1964.

[46] D. E. Knuth. Literate programming. The Computer Journal, 2:97 – 111, May 1984.

[47] C. Kobryn. UML 2001: a standardization odyssey. Communuications of the ACM, 42(10):29–37,

1999.

[48] G. E. Krasner and S. T. Pope. A cookbook for using the model-view controller user interface

paradigm in smalltalk-80. Journal of Object Oriented Program., 1(3):26–49, 1988.

[49] D. D. Lamanna, J. Skene, and W. Emmerich. SLAng: A language for service level agreements. In

9th IEEE Workshop on Future Trends in Distributed Computing Systems, pages 100 – 106. IEEE

Press, 2003.

[50] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of

the ACM, 21(7):558–565, 1978.

[51] J. J. Lee and R. Ben-Natan. Integrating Service Level Agreements. Wiley Publishing, Inc., 2002.

[52] T. C. Lethbridge, S. Tichelaar, and E. Ploedereder. The Dagstuhl middle metamodel: A schema

for reverse engineering. In International Workshop on Meta-Models and Schemas for Reverse

Engineering (ateM 2003), volume 94 of Electronic Notes in Theoretical Computer Science, pages

7 – 18. Elsevier, 2003.

[53] P. F. Linington. Automating support for e-business contracts. In Proc. of the EDOC 2004 Work-

shop on Contract Architectures and Languages. IEEE Computer Society Press, 2004.

[54] P. F. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kilkarni, and S. Neal. A unified behavioural

model and a contract for extended enterprise. In Data and Knowledge Engineering, volume 51.

Elsevier Science Publishers, 2004.

[55] P. F. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulkarni, and S. Neal. A unified behavioural

model and a contract language for extended enterprise. Data and Knowledge Engineering, 51(1):5

– 29, October 2004.

[56] G. Lodi, F. Panzieri, D. Rossi, and E. Turrini. SLA-driven clustering of QoS-aware application

servers. IEEE Transactions on Software Engineering, 33(3):186–197, 2007.

http://www.cs.kent.ac.uk/projects/kmf/documents.html
http://www.cs.kent.ac.uk/projects/kmf/documents.html

426

[57] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken. Specifying and measuring quality of

service in distributed object systems. In 1st International Symposium on Object-Oriented Real-

Time Distributed Computing, pages 43 – 52. IEEE Press, April 1998.

[58] H. Ma, W. Shao, L. Zhang, Z. Ma, and Y. Jiang. Applying OO metrics to assess UML meta-

models. In The Unified Modelling Language 2004, volume 3273 of Lecture Notes in Computer

Science, pages 12 – 26. Springer, 2004.

[59] J. McCarthy. Towards a mathematical science of computation. Information Processing, 1962.

[60] J. A. McQuillan and J. F. Power. A definition of the Chidamber and Kemerer metrics suite for the

Unified Modeling Language. Technical Report NUIM-CS-TR-2006-03, Department of Computer

Science, NUI Maynooth, Co. Kildare, Ireland, 2006.

[61] J. A. McQuillan and J. F. Power. Experiences of using the Dagstuhl middle metamodel for defining

software metrics. In 4th International Conference on Principles and Practices of Programming

in Java (PPPJ 2006), pages 194 – 198, 2006.

[62] J. A. McQuillan and J. F. Power. Towards re-usable metric definitions at the meta-level. In PhD

Workshop of the 20th European Conference on Object-Oriented Programming (ECOOP 2006),

2006.

[63] D. A. Menascé and V. A. F. Almeida. Capacity Planning for Web Services. Prentice Hall, Inc.,

2001.

[64] T. Mens and M. Lanza. A graph-based metamodel for object-oriented software metrics. In Graph

Grammars Workshops / International Conference on Graph Transformation, volume 72(2) of

Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

[65] Microsoft Corporation. COM: Component Object Models Technologies. http://www.

microsoft.com/com/default.mspx.

[66] Microsoft Corporation. Microsoft .Net Homepage. http://www.microsoft.com/net/

default.mspx.

[67] Modelling, Simulation and Design Lab, McGill University, Montreal. AToM3: A tool for multi-

formalism and meta-modelling. http://atom3.cs.mcgill.ca/.

[68] A. K. Mok. Fundamental design problems of distributed systems for the hard-real-time environ-

ment. Technical report, Massachusetts Institute of Technology, 1983.

[69] C. Molina-Jimenez, J. Pruyne, and A. van Moorsel. The role of agreements in IT management

software. In R. de Lemos, C. Gacek, and A. Romanovsky, editors, Architecting Dependable

Systems III, volume 3549 of Lecture Notes in Computer Science, pages 36 – 58. Springer, 2005.

http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/net/default.mspx
http://www.microsoft.com/net/default.mspx
http://atom3.cs.mcgill.ca/

427

[70] C. Molina-Jimenez, S. Shrivastava, and J. Warne. A method for specifying contract mediated

interactions. In Ninth IEEE International EDOC Enterprise Computing Conference, pages 106 –

115. IEEE Computer Society, September 2005.

[71] C. Molina-Jimenez, S.K. Shrivastava, E. Solaiman, and J.P. Warne. Contract representation for

run-time monitoring and enforcement. In J.-Y. Chung and L.-J. Zhang, editors, IEEE International

Conference on E-Commerce (CEC 2003), pages 103 – 110. IEEE Computer Society Press, 2003.

[72] G. Morgan, S. Parkin, C. Molina-Jimenez, and J. Skene. Monitoring middleware for service

level agreements in heterogenerous environments. In Challenges of Expanding Internet: E-

Commerce, E-Business, and E-Government. 5th IFIP Conference on e-Commerce, e-Business,

and e-Government (I3E 2005), volume 189 of IFIP, pages 79 – 93. Springer, 2005.

[73] N.Chomsky. Syntactic Structures. Mouton, 1957.

[74] S. Neal, J. Cole, P.F. Linington, Z. Milosevic, S. Gibson, and S. Kulkarni. Identifying requirements

for business contract language: A monitoring perspective. In M. Steen and B. R. Bryant, editors,

Seventh International Enterprise Distributed Object Computng Conference, pages 50 – 61. IEEE

Computer Society, September 2003.

[75] Jm Nielsen. Designing Web Usability: The Practice of Simplicity. New Riders Publishing, 1999.

[76] Novosoft LLC. Novosoft Metadata Framework and UML Library, 2007. http://nsuml.

sourceforge.net/.

[77] The Object Management Group (OMG). The CORBA Trading Service, formal97-04-01 edition,

April 1997.

[78] The Object Management Group (OMG). Model Driven Architecture (MDA), ormsc/01-07-01

edition, July 2001.

[79] The Object Management Group (OMG). Meta-Object Facility Core Specification Version 2.0,

formal/2006-01-01 edition, April 2002.

[80] The Object Management Group (OMG). The Meta-Object Facility v1.4, formal/2002-04-03 edi-

tion, April 2002.

[81] The Object Management Group (OMG). UML 2.0 Superstructure Final Adopted specification,

ptc/03-08-02 edition, 2002.

[82] The Object Management Group (OMG). UML Profile for Enterprise Distributed Object Comput-

ing Specification, February 2002.

[83] The Object Management Group (OMG). XML Metadata Interchange (XMI), v1.2, formal/02-01-

01 edition, January 2002.

http://nsuml.sourceforge.net/
http://nsuml.sourceforge.net/

428

[84] The Object Management Group (OMG). Gene Expression, Version 1.1, formal/2003-10-01 edi-

tion, October 2003.

[85] The Object Management Group (OMG). MDA Guide Version 1.0.1, omg/2003-06-01 edition,

June 2003.

[86] The Object Management Group (OMG). Meta-Object Facility (MOF) 2.0 Core Proposal,

ad/2003-04-07 edition, April 2003.

[87] The Object Management Group (OMG). The Unified Modeling Language v1.5, formal/2003-03-

01 edition, March 2003.

[88] The Object Management Group (OMG). UML 2.0 OCL Final Adopted specification, ptc/03-10-14

edition, October 2003.

[89] The Object Management Group (OMG). UML Profile for Schedulability, Performance and Real-

time Specification, Final Draft, ptc/03-03-02 edition, March 2003.

[90] The Object Management Group (OMG). Common Object Request Broker Architecture: Core

Specification, formal/04-03-12 edition, March 2004.

[91] The Object Management Group (OMG). Human-Usable Textual Notation (HUTN), V1.0,

formal/2004-08-01 edition, August 2004.

[92] The Object Management Group (OMG). MOF QVT (Queries/Views/Transformations) Final

Adopted Specification, ptc/05-11-01 edition, November 2005.

[93] The Object Management Group (OMG). XML Metadata Interchange (XMI), v2.0, formal/2005-

05-01 edition, September 2005.

[94] The Object Management Group (OMG). XML Metadata Interchange (XMI), v2.1, formal/2005-

09-01 edition, September 2005.

[95] The Object Management Group (OMG). Diagram Interchange, V1.0, formal/2006-04-04 edition,

April 2006.

[96] The Object Management Group (OMG). Product Lifecycle Management Services, Version 1.0.1,

formal/2006-04-03 edition, April 2006.

[97] M. Oleneva and W. Beckmann. Application hosting requirements. TAPAS Project Deliverable D1,

Adesso AG, Dortmund, September 2002.

[98] Open Middleware Infrastructure Institute UK (OMII). http://www.omii.ac.uk/.

[99] Open Grid Forum. Job Submission Description Language (JSDL) Specification, Version 1.0, 2005.

http://www.ogf.org/documents/GFD.56.pdf.

http://www.omii.ac.uk/
http://www.ogf.org/documents/GFD.56.pdf

429

[100] Open Grid Forum. Web Services Agreement Specification (WS-Agreement) Version 2005/09,

2006. http://www.ogf.org/Public_Comment_Docs/Documents/Oct-2005/

WS-AgreementSpecificationDraft050920.pdf.

[101] Organization for the Advancement of Structured Information Standards (OASIS). Universal De-

scription Discovery and Integration (UDDI), July 2002.

[102] Organization for the Advancement of Structured Information Standards (OA-

SIS). Web Service Business Process Execution Language Version 2.0, May 2006.

http://www.oasis-open.org/committees/download.php/18714/

wsbpel-specification-draft-May17.htm.

[103] A. Paschke. RBSLA - a declarative rule-based service level agreement language based on

RuleML. In International Conference on Intelligent Agents, Web Technology and Internet Com-

merce (IAWTIC 2005), 2005.

[104] A. Paschke. ECA-RuleML/ECA-LP: A homogeneous event-condition-action logic programming

language. In International Conference of Rule Markup Languages (RuleML’06), 2006.

[105] K. Patel. XML grammar and parser fro the web service offerings language. Master’s thesis,

Ottawa-Carleton Institute for Electrical and Computer Engineering, January 2003.

[106] G. Plotkin. A structured approach to operational semantics. Technical Report DAIMI FN-19,

Computer Science Department, Aarhus University, 1981.

[107] Python Software Foundation (PSF). The Python Programming Language, 2007. http://www.

python.org/.

[108] F. Raimondi, W. Emmerich, and J. Skene. A methodology for on-line monitoring non-functional

specifications of web-services. In PROVECS. TOOLS Europe 2007., page To appear. ETH Zurich,

2007.

[109] M. Richters and M. Gogolla. On formalizing the UML Object Constraint Language (OCL). In

17th International Conference on Conceptual Modelling (ER’98), volume 1507 of Lecture Notes

in Computer Science (LNCS), pages 449 – 464. Springer-Verlag, 1998.

[110] The Rule Markup Initiative. http://www.ruleml.org/.

[111] A. Sahai, A. Durante, and V. Machiraju. Towards automated SLA management for web services.

Technical Report HPL-2001-310R1, HP Laboratories, 2001. http://www.hpl.hp.co.uk/

techreports/2001/HPL-2001-310R1.html.

[112] A. Sahai, V. Machiraju, M. Sayal, L. j. Jin, and F. Casati. Automated SLA monitoring for web

services. Technical Report HPL-2002-191, HP Laboratories, 2002. http://www.hpl.hp.

com/techreports/2002/HPL-2002-191.html.

http://www.ogf.org/Public_Comment_Docs/Documents/Oct-2005/WS-AgreementSpecificationDraft050920.pdf
http://www.ogf.org/Public_Comment_Docs/Documents/Oct-2005/WS-AgreementSpecificationDraft050920.pdf
http://www.oasis-open.org/committees/download.php/18714/wsbpel-specification-draft-May17.htm
http://www.oasis-open.org/committees/download.php/18714/wsbpel-specification-draft-May17.htm
http://www.python.org/
http://www.python.org/
http://www.ruleml.org/
http://www.hpl.hp.co.uk/techreports/2001/HPL-2001-310R1.html
http://www.hpl.hp.co.uk/techreports/2001/HPL-2001-310R1.html
http://www.hpl.hp.com/techreports/2002/HPL-2002-191.html
http://www.hpl.hp.com/techreports/2002/HPL-2002-191.html

430

[113] A. ShaikhAli, O. F. Rana, R. Al-Ali, and D. W. Walker. UDDIe: An extended registry for web

services. In Symposium on Applications and the Internet Workshops (SAINT’03 Workshops),

page 85. IEEE Press, 2003.

[114] J. Skene. Implementation of tools for monitorability analysis, 2006. http://uclslang.

sourceforge.net/monitorability.html.

[115] J. Skene and W. Emmerich. Model driven performance analysis of enterprise information systems.

In Workshop on Test and Analysis of Component Based Systems (TACoS ‘03), in conjunction with

ETAPS ‘03, Electronic Notes in Theoretical Computer Science (ENTCS). Elsevier Science B. V.,

April 2003.

[116] J. Skene and W. Emmerich. Generating a contract checker for an SLA language. In Proc. of the

EDOC 2004 Workshop on Contract Architectures and Languages. IEEE Computer Society Press,

2004.

[117] J. Skene and W. Emmerich. Engineering runtime requirements-monitoring systems using MDA

technologies. In Trustworthy Global Computing, International Symposium (TGC 2005), volume

3705 of Lecture Notes in Computer Science, pages 319–333. Springer, 2005.

[118] J. Skene and W. Emmerich. Specifications, not meta-models. In GaMMa ’06: Proceedings of the

2006 international workshop on Global integrated model management, pages 47–54. ACM Press,

2006.

[119] J. Skene, D. D. Lamanna, and W. Emmerich. Precise service level agreements. In 26th Interna-

tional Conference on Software Engineering (ICSE), pages 179–188. IEEE Press, May 2004.

[120] J. Skene, A. Skene, J. Crampton, and W. Emmerich. The monitorability of service-level agree-

ments for application-service provision. In WOSP ’07: Proceedings of the 6th international work-

shop on Software and performance, pages 3–14. ACM Press, 2007.

[121] The SLAng open-source project. http://uclslang.sourceforge.net/.

[122] M. Sloman. Policy driven management for distributed systems. Journal of Network and Systems

Management, 2(4), 1994.

[123] K. Slonneger and B. L. Kurtz. Formal Syntax and Semantics of Programming Languages – A

laboratory-based approach. Addison Wesley, 1995.

[124] E. Solaiman, C. Molina-Jimenez, and S. Shrivastava. Model checking correctness properties of

electronic contracts. In International Conference on Service Oriented Computing (ICSOC03),

volume 2910 of Lecture Notes in Computer Science, pages 303 – 318. Springer, 2003.

[125] R. Staehli, F. Eliassen, J. O. Aagedal, and G. Blair. Quality of service semantics for component-

based systems. In 2nd International Conference on Reflective and Adaptive Middleware Systems,

http://uclslang.sourceforge.net/monitorability.html
http://uclslang.sourceforge.net/monitorability.html
http://uclslang.sourceforge.net/

431

volume 2672 of Lecture Notes in Computer Science (LNCS), pages 153 – 157. Springer-Verlag,

June 2003.

[126] R. Sturm, W. Morris, and M. Jander. Foundations of Service Level Management. SAMS, 2000.

[127] Sun Microsystems, Inc. Java 2 Enterprise Edition. http://java.sun.com/j2ee/index.

jsp.

[128] Sun Microsystems, Inc. Java API for XML-Based RPC (JAX-RPC). http://java.sun.com/

webservices/jaxrpc/index.jsp.

[129] Sun Microsystems, Inc. Java Metadata Interface JMI specification. http://java.sun.com/

products/jmi/.

[130] Sun Microsystems, Inc. Java Server Pages JSP v. 2.0 specification. http://java.sun.com/

products/jsp/.

[131] Sun Microsystems, Inc. Enterprise Java-Beans (EJB) Specification v2.0, August 2001.

[132] V. Tosic. Service Offerings for XML Web Services and Their Management Applications. PhD

thesis, Ottawa-Carleton Institute for Electrical and Computer Engineering, 2002.

[133] V. Tosic, B. Esfandiari, B. Pagurek, and K. Patel. On Requirements for Ontologies in Manage-

ment of Web Services. In Web Services, e-Business, and the Semantic Web — CAiSE 2002 Int.

Workshop, WES 2002, Toronto, Canada, Lecture Notes in Computer Science (LNCS), pages 237

– 247. Springer-Verlag, June 2002.

[134] V. Tosic, K. Patel, and B. Pagurek. Reusability constructs in the Web Service Offerings Language

(WSOL) [revised extended addition]. Technical Report SCE-02-14, Department of Systems and

Computer Engineerin, Carleton University, Ottawa, May 2003.

[135] The UCL MDA tools. http://uclmda.sourceforge.net/.

[136] É. Vépa, J. Bézivin, H. Brunelière, and F. Jouault. Measuring model repositories. In Model Size

Metrics Workshop at MoDELS/UML 2006, 2006.

[137] G. H. von Wright. Deontic logic. Mind, 60:1 – 15, 1951.

[138] W3C. Hyper-Text Markup Language 4.01 Specification, December 1999. http://www.w3.

org/TR/html401/.

[139] Wikipedia. Chebychev’s Inequality, 2006. http://en.wikipedia.org/wiki/

Chebyshev%27s_inequality.

[140] The World Wide Web Consortium (W3C). Mathematical Markup Language (MathML)

Version 2.0 (Second Edition), October 2003. http://www.w3.org/TR/2003/

REC-MathML2-20031021/.

http://java.sun.com/j2ee/index.jsp
http://java.sun.com/j2ee/index.jsp
http://java.sun.com/webservices/jaxrpc/index.jsp
http://java.sun.com/webservices/jaxrpc/index.jsp
http://java.sun.com/products/jmi/
http://java.sun.com/products/jmi/
http://java.sun.com/products/jsp/
http://java.sun.com/products/jsp/
http://uclmda.sourceforge.net/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/html401/
http://en.wikipedia.org/wiki/Chebyshev%27s_inequality
http://en.wikipedia.org/wiki/Chebyshev%27s_inequality
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.w3.org/TR/2003/REC-MathML2-20031021/

432

[141] The World Wide Web Consortium (W3C). Scalable Vector Graphics (SVG) 1.1 Specification,

January 2003. http://www.w3.org/TR/SVG/.

[142] The World Wide Web Consortium (W3C). EXtensible Markup Language (XML) 1.0 (Third Edi-

tion), February 2004. http://www.w3.org/TR/2004/REC-xml-20040204/.

[143] The World Wide Web Consortium (W3C). OWL Web Ontology Language Overview, February

2004. http://www.w3.org/TR/owl-features/.

[144] The World Wide Web Consortium (W3C). RDF Primer, February 2004. http://www.w3.

org/TR/rdf-primer/.

[145] The World Wide Web Consortium (W3C). Web Services Architecture, February 2004. http:

//www.w3.org/TR/ws-arch/.

[146] The World Wide Web Consortium (W3C). OWL-S: Semantic Markup for Web Services, 2004

November. http://www.w3.org/Submission/OWL-S/.

[147] R. Yin. Case Study Research: Design and Methods. SAGE Publications, 3rd edition, 2003.

[148] A. Avižienis, J.-C. Laprie, and B. Randall. Fundamental concepts of dependability. In 3rd IEEE

Information Survivability Workshop (ISW-2000), pages 7 – 12, October 2000.

http://www.w3.org/TR/SVG/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/Submission/OWL-S/

	Introduction
	Background
	Problem statement
	Contribution
	Requirements analysis
	The SLAng language
	Evaluation

	Structure of the dissertation

	Requirements
	The Application Service Provision (ASP) scenario
	ASP risks
	Risks to the client
	Termination risks
	Risks to service providers
	The magnitudes of ASP risks

	What is a Service-Level Agreement (SLA)?
	SLAs for application services
	Conditions relating to application services
	Systems of SLAs for ASP
	Requirements for systems of ASP SLAs
	Conditions appropriate to electronic services
	Protectability
	Precision
	Monitorability
	Cost
	Machine readability
	Non-exploitability

	Requirements for ASP SLA languages
	Requirements for ASP SLA language specifications
	Other views on requirements for SLAs
	Summary

	Domain-specific languages for ASP SLAs
	Foundations of the approach
	Object-oriented modelling
	The Object Management Group (OMG) and the Model-Driven Architecture (MDA)
	The syntax of modelling languages
	The semantics of modelling languages

	Abstract, extensible, domain-specific languages for SLAs
	Modelling SLAs
	Reusable models of SLAs
	Recommendations for developing languages for ASP SLAs
	Consequences of the recommendations

	Other approaches to defining languages
	Specification of syntax
	Specification of semantics

	Summary

	Domain-specific language specifications
	Language specifications as first-class entities
	Referencing languages from models
	Suggested revisions to OMG standards
	Consequences of the proposed revisions

	The UCL MDA tools
	Alternative MDA tool support

	Testing language specifications
	Runtime monitoring of ASP SLAs
	Architecture of the SLA checker
	Evaluation of the checker component
	Other runtime requirements-monitoring approaches

	Metrics for domain-specific languages
	Language specifications, extensions and statements
	Power, adequacy and specificity
	Defining size and used functions for EMOF and OCL-based languages
	Related work in metrics

	Summary

	The Monitorability of ASP SLAs
	Monitorability
	Modelling systems of SLAs
	Monitorability analysis
	SLAs for the ASP scenario
	Multiple ISPs

	Approximate monitorability
	Accuracy constraint
	Approximate monitorability of the accuracy constraint
	Choosing parameter values

	Related work
	Summary

	The SLAng language
	The history of SLAng
	The SLAng language specification
	SLAs, parties and services
	Failures and violations
	Administration
	Accuracy of evidence
	Termination of SLAs
	Electronic services
	Reliability, timeliness and throughput conditions
	Service behaviour restrictions
	Electronic-service usage behaviour definitions
	Service-usage record accuracy

	Availability conditions
	The SLAng language specification
	Additional considerations in ASP SLAs
	Payments and penalties
	Multiple penalties, gradated penalties, and interactions between conditions
	Maintenance and scheduling
	Real-world behaviour and mutual monitorability

	Language specification overview
	Generic syntax
	Generic semantics
	Electronic-service syntax
	Electronic-service semantics
	Relationships between syntactic and semantic elements

	Summary

	Case-study: the eMaterials project
	Case-study method
	Initial analysis
	Risk analysis
	SLA design and definition
	Evaluation
	Redesign

	The eMaterials case-study
	SLAs in the eMaterials scenario

	Service architecture
	MOLPAK and DMAREL
	Condor and Polynet
	ActiveBPEL Workbench
	GridSAM and JSDL
	The plotws service
	Service deployment

	Stakeholders and fundamental requirements
	Use-case and risk analysis
	Use-cases in the scenario
	Use-case 1: conduct a simulation

	SLA design and risk analysis
	A system of SLAs for the scenario
	Individual SLA design

	SLA definition
	SLA 1: Provision of the Polymorph Search Webclient by IS to Chemistry
	SLA 4: Provision of the plotws web-service by the ISP to CS

	Case-study conclusions
	Redesigning the service

	Evaluation
	Evaluation of SLAng versus requirements
	Expressiveness requirements
	Remaining requirements for ASP SLA languages
	Requirements for ASP SLA language specifications
	Summary of conformance to requirements

	Survey of related languages
	The power, adequacy and specificity of SLAng
	A trajectory for SLAng
	Summary

	Summary
	Contributions of this work
	Conclusions
	Future work
	On domain-specific languages
	On risk
	On trust and monitorability
	On SLAng

	Critical review of alternative languages for ASP SLAs
	The Web-Service Level Agreement language (WSLA)
	The Web-Services Offerings Language (WSOL)
	Web-Services Management Language (WSML)
	Rule-Based Service-Level Agreement language (RBSLA)
	EXecutable Contracts (X-Contracts)
	Web-Services Agreement Specification (WS-Agreement)
	The Business Contract Language (BCL)
	Ontology Web Language for Services (OWL-S)
	Quality-of-service Modelling Language (QML)
	Quality-of-service for CORBA Objects QoS Description Language (QuO-QDL)
	Quality-of-service aware component Architecture (QuA)
	Quality-of-service Interface Definition Language (QIDL)
	Job Submission Description Language (JSDL)
	SLA information in trading services

	Case-study material
	Use-case 1: conduct an experiment
	Initiating Actor
	Preconditions
	Postconditions
	Steps

	SLA clauses and risk analysis
	SLA 1: Provision of Polymorph Search Webclient by IS to Chemistry
	SLA 2: Provision of Polymorph Search Webclient by CS to IS
	SLA 3: Provision of Condor cluster services by IS to CS
	SLA 4: Provision of plotws web-service by ISP to CS
	SLA 5: Provision of Plot service by Southampton to IS

	Case-study risks by party
	Chemistry
	IS
	CS
	ISP
	Southampton

	SLA 1: Chemistry and IS
	SLA 4: CS and ISP
	Specification - Combined
	Package - ::types
	Enumeration - ::types::TimeUnit
	Class - ::types::Percentage
	Class - ::types::Duration
	Abstract class - ::types::Date
	Class - ::types::TAIDate
	Primitive type - ::types::Real
	Primitive type - ::types::Boolean
	Primitive type - ::types::Integer
	Primitive type - ::types::String

	Package - ::slang
	Abstract class - ::slang::AccuracyClause
	Abstract class - ::slang::AdministrationClause
	Abstract class - ::slang::AuxiliaryClause
	Abstract class - ::slang::ConditionClause
	Abstract class - ::slang::Definition
	Class - ::slang::MutuallyMonitorableSLA
	Class - ::slang::PartyDefinition
	Class - ::slang::PenaltyDefinition
	Class - ::slang::PermanentFixedReportRecordingAccuracyClause
	Abstract class - ::slang::ReconciliationAdministrationClause
	Abstract class - ::slang::ReportRecordingAccuracyClause
	Abstract class - ::slang::ServiceBehaviourDefinition
	Abstract class - ::slang::ServiceBehaviourRestrictionConditionClause
	Abstract class - ::slang::ServiceDefinition
	Class - ::slang::SLA
	Abstract class - ::slang::TerminatingConditionClause
	Abstract class - ::slang::TerminationByReportAdministrationClause
	Abstract class - ::slang::TerminationByReportConditionClause

	Package - ::slang::es
	Enumeration - ::slang::es::ParameterKind
	Abstract class - ::slang::es::AvailabilityConditionClause
	Abstract class - ::slang::es::AvailabilityDependentElectronicServiceUsageBehaviourDefinition
	Class - ::slang::es::ElectronicServiceClientDefinition
	Class - ::slang::es::ElectronicServiceDefinition
	Class - ::slang::es::ElectronicServiceInterfaceDefinition
	Abstract class - ::slang::es::ElectronicServiceUsageBehaviourDefinition
	Abstract class - ::slang::es::FailureModeDefinition
	Class - ::slang::es::InformalFailureModeDefinition
	Class - ::slang::es::InformalUsageModeDefinition
	Abstract class - ::slang::es::LatencyFailureModeDefinition
	Class - ::slang::es::OperationDefinition
	Class - ::slang::es::ParameterDefinition
	Class - ::slang::es::PermanentFixedServiceUsageRecordAccuracyClause
	Abstract class - ::slang::es::ServiceUsageRecordAccuracyClause
	Abstract class - ::slang::es::UsageModeDefinition

	Package - ::services
	Class - ::services::Account
	Class - ::services::Administration
	Abstract class - ::services::Compensation
	Abstract class - ::services::Event
	Abstract class - ::services::Evidence
	Class - ::services::Party
	Abstract class - ::services::Report
	Class - ::services::ReportRecord
	Class - ::services::TerminationReport
	Class - ::services::Violation

	Package - ::services::es
	Class - ::services::es::BugFixReport
	Class - ::services::es::BugReport
	Class - ::services::es::ElectronicServiceClient
	Class - ::services::es::ElectronicServiceInterface
	Class - ::services::es::Operation
	Class - ::services::es::Parameter
	Class - ::services::es::ParameterValue
	Class - ::services::es::ParameterRecord
	Class - ::services::es::ServiceRequest
	Class - ::services::es::ServiceResponse
	Class - ::services::es::ServiceUsageRecord

	Package - ::combined
	Package - ::combined::slang
	Abstract class - ::combined::slang::ConsecutiveAdministrationClause
	Class - ::combined::slang::FixedDeadlineFixedPoundsSterlingPaymentPenaltyDefinition
	Class - ::combined::slang::FixedPenaltyTerminationByReportConditionClause
	Class - ::combined::slang::PeriodicInterval
	Class - ::combined::slang::PeriodicProcess
	Class - ::combined::slang::PermanentFixedWindowFixedOccurrencesFixedPenaltyMinimalServiceBehaviourRestrictionConditionClause
	Abstract class - ::combined::slang::PermanentFixedWindowFixedOccurrencesMaximalServiceBehaviourRestrictionConditionClause
	Class - ::combined::slang::PermanentFixedWindowFixedOccurrencesNoPenaltyMaximalServiceBehaviourRestrictionConditionClause
	Abstract class - ::combined::slang::PaymentPenaltyDefinition
	Class - ::combined::slang::ScheduledAdministrationClause
	Abstract class - ::combined::slang::ScheduledClause

	Package - ::combined::slang::es
	Class - ::combined::slang::es::ConsecutiveAvailabilityAwareAdministrationClause
	Class - ::combined::slang::es::FixedDeadlineTerminationByReportConsecutiveAvailabilityAwareReconciliationAdministrationClause
	Class - ::combined::slang::es::InformalSuccessModeDefinition
	Class - ::combined::slang::es::ScheduledConsecutiveAvailabilityAwareReconciliationAdministrationClause
	Abstract class - ::combined::slang::es::SuccessModeDefinition
	Abstract class - ::combined::slang::es::ViolationDependentElectronicServiceUsageBehaviourDefinition

	Package - ::combined::services
	Class - ::combined::services::PoundsSterlingPenaltyPayment

	Package - ::sla1
	Package - ::sla1::slang
	Class - ::sla1::slang::PermanentFixedWindowFixedOccurrencesFixedPenaltyMaximalServiceBehaviourRestrictionConditionClause
	Class - ::sla1::slang::PermanentFixedWindowFixedOccurrencesSteppedPenaltyMaximalServiceBehaviourRestrictionConditionClause
	Class - ::sla1::slang::SteppedPenalty
	Abstract class - ::sla1::slang::SteppedPenaltyClause

	Package - ::sla1::slang::es
	Abstract class - ::sla1::slang::es::AsynchronousFailureModeDefinition
	Class - ::sla1::slang::es::AsynchronousOperationDefinition
	Abstract class - ::sla1::slang::es::DelegatedExecutionDependentFailureModeDefinition
	Class - ::sla1::slang::es::DelegatedExecutionOperationDefinition
	Abstract class - ::sla1::slang::es::ExecutableDefinition
	Class - ::sla1::slang::es::FixedDurationExecutableDefinition
	Class - ::sla1::slang::es::FixedLatencyAvailabilityDependentViolationDependentFailureModeDefinition
	Class - ::sla1::slang::es::FixedLatencyFixedDeadlineDelegatedExecutionDependentAvailabilityDependentViolationDependentAsynchronousFailureModeDefinition
	Class - ::sla1::slang::es::InformalAvailabilityDependentViolationDependentFailureModeDefinition
	Class - ::sla1::slang::es::PermanentSteppedPenaltyFixedDeadlineAvailabilityConditionClause

	Package - ::sla1::services
	Package - ::sla1::services::es
	Class - ::sla1::services::es::DelegatedExecution
	Class - ::sla1::services::es::Executable
	Class - ::sla1::services::es::ExecutionParameterRecord
	Class - ::sla1::services::es::ExecutionParameterValue
	Class - ::sla1::services::es::Node
	Class - ::sla1::services::es::SlowExecutionReport

	Package - ::sla4
	Package - ::sla4::slang
	Class - ::sla4::slang::FixedDeadlineScalingPoundsSterlingPaymentPenaltyDefinition
	Class - ::sla4::slang::PermanentFixedWindowFixedOccurrencesScalingPenaltyMaximalServiceBehaviourRestrictionConditionClause
	Abstract class - ::sla4::slang::ScalingPenaltyConditionClause

	Package - ::sla4::slang::es
	Class - ::sla4::slang::es::ScheduledFixedLatencyAvailabilityDependentViolationDependentFailureModeDefinition
	Class - ::sla4::slang::es::ScheduledInformalAvailabilityDependentViolationDependentFailureModeDefinition
	Class - ::sla4::slang::es::ScheduledScalingPenaltyFixedDeadlineAvailabilityConditionClause

	Bibliography

